Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

The value of cos 1° cos 2° cos 3° ... cos 179° is(A)1/√2(B) 0 (C) 1 (D) –1

Answer»

Answer is (B) 

Since cos 90° = 0, we have

cos 1° cos 2° cos 3° …cos 90°… cos 179° = 0

52.

Which of the following is incorrect?A. sin x = −1/5B. cos x = 1C. sec x = 1/2D. tan x = 20

Answer»

Correct option is C. sec x = 1/2

Sec x = 1/2 is incorrect because for no real value of x sec x attains 1/2.

53.

The value of cos 1° cos 2° cos 3° ... cos 179° isA.1/√2B. 0C. 1D. −1

Answer»

Correct option is B. 0

Cos 1 × cos 2 × cos 3 × ......× cos 179

= cos 1 × cos 2 × cos 3 × .....× cos 90 × ..... × cos 179

= cos 1 × cos 2 × cos 3 × .....× 0 × ..... × cos 179

= 0 × cos 1 × cos 2 × cos 3 × ....... × cos 179

= 0

54.

Prove that sin 10° sin 30° sin 50° sin 70° = \(\frac{1}{16}\)

Answer»

L.H.S 

= sin 10° sin 30° sin 50° sin 70° 

= \(\frac{1}{2}\) (sin 10° sin 50° sin 70° )

= \(\frac{1}{2}\) (sin 50° sin 70°) sin 10° 

= \(\frac{1}{2}\) [sin (60° − 10°) sin (60° + 10°)] sin 10° 

= \(\frac{1}{2}\) [(\(sin^260°-sin^210°\))] sin 10° 

= \(\frac{1}{2}\)(( \(\frac{3}{2}\))2 − \(sin^210°\)) sin 10° 

= \(\frac{1}{2}\) [ \(\frac{3}{4}\)\(sin^210°\)] sin 10° 

= \(\frac{1}{8}\) (3 − 4 \(sin^210°\))sin 10° 

= \(\frac{1}{8}\)(3 sin 10° − 4 \(sin^210°\)

= \(\frac{1}{11}\) (sin 3 × 10°) 

= \(\frac{1}{8}\) (sin 30°) 

= \(\frac{1}{16}\) = R.H.S

55.

The value of (sin 50°)/(sin130°) is _______ .

Answer»

Answer is  1

56.

If A lies in the second quadrant and 3 tan A + 4 = 0, then the value of 2cotA – 5 cos A + sin A is equal to(A) -53/10(B) 23/10(C) 37/10(D) 7/10

Answer»

Answer is (B) 23/10

57.

If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ

Answer»

We have, tanθ + sinθ = m ...... (i)

And tanθ -sinθ = n .......... (ii)

Now, m + n = 2 tanθ

And m – n = 2 sinθ.

(m + n)(m -n) = 4 sinθtanθ

 m2 -n2 = 4 sinθtanθ

58.

In a right-angled triangle ABC, write the value of sin2 A + sin2 B + sin2 C.

Answer»

Given, triangle ABC is right angle.

So, let ∠ B = 90°

Then as per the property of angles in a triangle

∠ A + ∠ B + ∠ C = 180°

As ∠ B = 90°

∠ A + 90° + ∠ C = 180°

Then ∠ A + ∠ C = 180° - 90° = 90°

Now, consider sin2A + sin2B + sin2C

As ∠ B = 90°

sin2A + sin2B + sin2C = sin2A + sin2(90°) + sin2C

= sin2A + 1 + sin2C

From before, we know that ∠ A + ∠ C = 90° ; ∠ C = 90° - ∠ A

sin2A + sin2B + sin2C = sin2A + 1 + sin2( 90° - A)

= sin2A + cos2(A) + 1

[by using the identity cos x = sin ( 90° - x)]

sin2A + sin2B + sin2C = (sin 2A + cos 2A) + 1

= 1 + 1

= 2

[by using the identity sin2θ + cos2θ = 1]

Therefore, sin2A + sin2B + sin2C = 2.

59.

In any ΔABC, prove that a(bcosC - c cos B) = b2 - c2.

Answer»

LHS = abcosC - ca cosB

= (a2 + b2 - c2)/2 - (c2 + a2 - b2)/2

= b2 - c2

= RHS

60.

If x is any real number then show that cos θ cannot be equal to x + 1/x.

Answer»

We know,

Range of cos θ is -1.

If cos θ = x + 1/x

if x > 1 then 1/x < 1

Ultimately x + 1/x > 1

Which shows, cos θ > 1 which is not possible.

61.

Define a radian measure.

Answer»

Angle subtended at the centre by an arc of length 1 unit in a unit circle is said to have a measure of 1 radian. 

Keen eye:

1rad = 180°/π = 57°16'.

Degree30°45°60°90°180°270°360°
Radianπ/6π/4π/3π/2π3π/2

62.

Define a degree measure.

Answer»

If a rotation from the initial side to terminal side is (1/360)th of a revolution, the angle is said to have a measure of one degree, written as 1°.

Keen eye: A degree is divided into 60 minutes and a minute is divided into 60 seconds. One sixtieth of a degree is called a minute, written as 1′ and one sixtieth of a minute is called second, written as 1″ 

∴ 1 ° – 60′ 

1’= 60″

63.

A wheel makes 360° revolutions in one minute. Through how many radians does it turn in one second?

Answer»

Number of revolutions in one minute = 360

Number of revolutions in one second = 360/60 = 6

But, in one revolutions angle traced = 360°

= 2π rad

⇒ Angle traced in 6 revolutions

= 6 x 2π = 12π radians

Angle traced in one second = 12π radians

64.

If cos x = cos α cos β then prove that tan(\(\frac{x+a}{2}\)).tan (\(\frac{x-a}{2}\) ) = \(\frac{tan^2\beta}{2}\)

Answer»

Given, cosx = cosα cosβ 

  ∴ cos β = \(\frac{cosx}{cos\alpha}\)    ...(i) 

We know that, \(tan^2\frac{θ}{2}\) = \(\frac{1-cosθ}{1+cosθ}\) 

R. H. S = \(tan^2\frac{θ}{2}\) = \(\frac{1-cos\beta}{1+cos\beta}\) 

\(\frac{1-\frac{cos\alpha}{cosx}}{1+\frac{cosx}{cos\alpha}}\)

\(\frac{cos\alpha-cosx}{cos\alpha +cosx}\) 

= \(\frac{2sin(\frac{a+x}{2})sin(\frac{x-a}{2})}{2cos(\frac{x+a}{2})sin(\frac{x-a}{2}))}\)

= \(tan(\frac{x+a}{2}).tan(\frac{x-a}{2})\) 

[ ∵ cosC − cosD = −2 sin (\(\frac{C+D}{2}\)) sin (\(\frac{C-D}{2}\)

and cosC + cosD = 2 cos (\(\frac{C+D}{2}\)) cos (\(\frac{C-D}{2}\)) ] 

= L. H. S    Hence Proved

65.

If α and β are the solution of the equation, a tanθ + b secθ = c, then show that (α + β) = \(\frac{2ac}{a^2-c^2}\)

Answer»

Given, α tanθ + b secθ = c    ...(i) 

⇒ (α tanθ − c)2 = b2 (1 + tan2θ) 

⇒ (a2 tan2b2 ) − 2ac tanθ + c2 = b2 + b2 tan2θ 

⇒ (a2 − b2)  tan2θ − 2ac tanθ + c2 − b2 = 0 

Since, α and β are roots of the equation (i), 

we have 

tan α + tan β = \(\frac{2ac}{a^2-b^2}\) and tan α.tan β = \(\frac{c^2-b^2}{a^2-b^2}\) 

Therefore, tan (α + β) = \(\frac{tan\alpha tan\beta}{1-tan\alpha tan\beta}\)

=\(\frac{\frac{2ac}{a^2-b^2}}{1-\frac{c^2-b^2}{a^2-b^2}}\)

=\(\frac{2ac}{a^2-c^2}\)

66.

If tan A – tan B = x, cot B – cot A = y, Prove that cot (A – B) = \(\frac{1}{x}+\frac{1}{y}\)

Answer»

Given, tan A – tan B = x    ...(i) 

and  cot B – cot A = y    ...(ii) 

From (ii), cot B – cot A = y 

\(\frac{1}{tanB}-\frac{1}{tanA}=y\)

\(\frac{tanA - tanB}{tanAtanB}=y\) 

\(\frac{x}{tanAtanB}=y\) 

⇒ tanA tanB = \(\frac{x}{y}\) 

Now, ⇒ cot (A − B) = \(\frac{1}{tan(A-B)}\)= \(\frac{1+tanAtanB}{tanA-tanB}\)

⇒ cot (A − B) = \(\frac{1+\frac{x}{y}}{x}\)= \(\frac{y+x}{xy}\) 

⇒ cot (A − B) = \(\frac{1}{x}+\frac{1}{y}\)Hence Proved

67.

Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π

Answer»

Here,

2 tan2 x + sec2 x = 2

which gives tan x = ±1/√3

If we take  tan x = 1/√3, then

x = π/6 or 7π/6

Again, if we take  tan x = -1/√3, then

x = 5π/6 or 11π/6

Therefore, the possible solutions of above equations are

x = 5π/6, 11π/6, 5π/6 and 11π/6 

where 0 ≤ x ≤ 2π

68.

If tan θ + sin θ = m and tan θ – sin θ = n, then prove that m2 – n2 = 4 sin θ tan θ[Hint: m + n = 2tanθ, m – n = 2 sin θ, then use m2 – n2 = (m + n)(m – n)]

Answer»

According to the question,

tan θ + sin θ = m …(i)

tan θ – sin θ = n …(ii)

Adding equation i and ii,

2 tan θ = m + n …(iii)

Subtracting equation ii from i,

We get,

2sin θ = m – n …(iv)

Multiplying equations (iii) and (iv),

2sin θ (2tan θ) = (m + n)(m – n)

⇒ 4 sin θ tan θ = m2 – n2

Hence,

m2 – n2 = 4 sin θ tan θ

69.

Prove that : cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \(\cfrac12\)

Answer»

LHS  = cos 24° + cos 55° + cos 125° + cos 204° + cos 300°

= cos 24° + cos (90° × 1 – 35°) + cos (90° × 1 + 35°) + cos (90° × 2 + 24°) + cos (90° × 3 + 30°)

We know that when n is odd, cos → sin.

= cos 24° + sin 35° - sin 35° - cos 24° + sin 30°

= 0 + 0 + 1/2 = 1/2

= RHS

Hence proved.

70.

Prove the identity: sin6 x + cos6 x = 1 – 3 sin2 x cos2 x

Answer»

Let us consider the LHS: sinx + cosx

(sinx)3 + (cosx)3

On using the formula, a3 + b3 = (a + b) (a2 + b2 – ab)

(sinx + cosx) [(sinx)2 + (cosx)2 – sinx cosx]

On using the formula, sinx + cosx = 1 and a2 + b2 = (a + b)2 - 2ab

1 × [(sinx + cosx)2 – 2sinx cosx – sinx cosx

12 – 3sinx cosx

1 – 3sinx cosx

= RHS

∴ LHS = RHS

Thus proved.

71.

Prove the identity: (sec x sec y + tan x tan y)2 – (sec x tan y + tan x sec y)2 = 1

Answer»

Let us consider the LHS:

(sec x sec y + tan x tan y)2 – (sec x tan y + tan x sec y)2

By expanding the above equation we get,

[(sec x sec y)2 + (tan x tan y)2 + 2(sec x sec y) (tan x tan y)] – [(sec x tan y)2 + (tan x sec y)2 + 2(sec x tan y) (tan x sec y)] [secx sec2 y + tanx tan2 y + 2(sec x sec y) (tan x tan y)] – [secx tan2 y + tanx sec2 y + 2(secx tan2 y) (tan x sec y)]

secx sec2 y – secx tan2 y + tanx tan2 y – tanx sec2 y

secx(sec2 y – tan2 y) + tanx(tan2 y – sec2 y)

secx(sec2 y – tan2 y) – tanx(sec2 y – tan2 y)

As we know, secx – tanx = 1.

secx × 1 – tanx × 1

secx – tanx

1 = RHS

∴ LHS = RHS

Thus proved.

72.

Prove the identity: sec4 x – sec2 x = tan4 x + tan2 x

Answer»

Let us consider the LHS: secx – secx

(secx)2 – secx

On using the formula, sec2 θ = 1 + tan2 θ.

(1 + tanx)2 – (1 + tanx)

1 + 2tanx + tanx – 1 – tanx

tanx + tanx

= RHS

∴ LHS = RHS

Thus proved.

73.

Prove that :sin \(\cfrac{10\pi}3\) cos \(\cfrac{13\pi}6\) + cos \(\cfrac{8\pi}3\) sin \(\cfrac{5\pi}6\) = -1

Answer»

LHS = sin \(\cfrac{10\pi}3\) cos \(\cfrac{13\pi}6\) + cos \(\cfrac{8\pi}3\) sin \(\cfrac{5\pi}6\) 

= sin 600° cos 390° + cos 480° sin 150°

= sin (90° × 6 + 60°) cos (90° × 4 + 30°) + cos (90° × 5 + 30°) sin (90° × 1 + 60°)

We know that when n is odd, sin → cos and cos → sin.

= [-sin 60°] cos 30° + [-sin 30°] cos 60°

= -sin 60° cos 30° - sin 30° cos 60°

= -[sin 60° cos 30° + cos 60° sin 30°]

We know that sin A cos B + cos A sin B = sin (A + B)

= -sin (60° + 30°)

= -sin 90°

= -1

= RHS

Hence proved.

74.

Prove that: sin2 2π/5 – sin2 π/3 = (√5 – 1)/8

Answer»

Let us consider the LHS

sin2 2π/5 – sin2 π/3 = sin2 (π/2 – π/10) – sin2 π/3

As we know, sin (90°– A) = cos A

Therefore, sin2 (π/2 – π/10) = cos2 π/10

Sin π/3 = √3/2

Now the above equation becomes,

= Cos2 π/10 – (√3/2)2

As we know, cos π/10 = √(10+2√5)/4

Then, the above equation becomes,

= [√(10 + 2√5)/4]2 – 3/4

= [10 + 2√5]/16 – 3/4

= [10 + 2√5 – 12]/16

= [2√5 – 2]/16

= [√5 – 1]/8

= RHS

Thus proved.

75.

If A + B = \(\frac{\pi}{4},\)then prove that (1 + tan A) (1 + tan B) = 2.

Answer»

Given,

A + B = \(\frac{\pi}{4}\)

Taking tangent both sides, we get

tan(A + B) = tan\(\frac{\pi}{4}\)

or, \(\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}=1\)

or, tan A + tan B = 1 – tan A tan B

or, tan A + tan B + tan A tan B = 1

Now, adding 1 both sides, we get

tan A + tan B + tan A tan B + 1 = 2

(tan A + 1) + tan B (1 + tan A) = 2

or, (tan A + 1) (1 + tan B) = 2

or, (1 + tan A) (1 + tan B) = 2

76.

Solve: 2 cos2x + 3 sinx = 0

Answer»

We have:

2 cos2x + 3 sinx = 0

2 cos2x= – 3 sinx

Squaring both sides, we get 

4 cos4x = 9 sin2x

4 cos4x – 9 (1 – cos2x) = 0

Let cos2x = y

4y2 + 9y – 9 = 0

4y2 + 12y – 3y – 9 = 0

4y (y + 3) – 3 (y + 3) = 0

(y + 3) (4y – 3) = 0

y = – 3 or, y = \(\frac{3}{4}\)

cos2x = – 3 or cos2x = \(\frac{3}{4}\)

∴  cos2x = \(\frac{3}{4}\) = cos2\((\frac{\pi}{6})\) 

x = nπ ±  \(\frac{\pi}{6}\)

77.

Find the maximum and minimum value of 7 cos x + 24 sin x.

Answer»

y = 7 cos x + 24 sin x

y2 = (7 cos x + 24 sinx)2

= 49 cos2x + 576 sin2x + 2 × 7× 24 cos x sin x

= 49 – 49 sin2 x + 576 – 576 cos2 x + 2 × 7 × 24 cos x sin x

= 625 – (7 sin x – 24 cos x)2

∴ Maximum value = 25

For maximum value

Cos x = \(\frac{-7}{25}\) and sin x =\(\frac{-24}{25}\)

∴ Minimum value = 7(\(\frac{-7}{25}\)) + 24 (\(\frac{-24}{25}\))

\(=\frac{-49-576}{25}\) = -25

∴ Minimum value = – 25

78.

If tan A =(1-cosB)/sinB, then tan 2A = tan B

Answer»

Answer is True

79.

The value of cos2 48° – sin2 12° is(A) (√5 + 1)/8(B)  (√5 - 1)/8(C) (√5 + 1)/5(D) (√5 + 1)/2√2

Answer»

Answer is (A) (√5 + 1)/8

80.

Prove that sin 12°. sin 48°. sin 54° = 1/8.

Answer»

L.H.S=sin(12°)sin(48°)sin(54°)

= [sin(12°)sin(48°)]sin(54°)

= sin(54°) * [cos(48° - 12°) - cos(48° + 12°)]/2

= sin(54°) * [cos(36°) - cos(60°)]/2

= sin(54°) * [cos(36°) - 1/2]/2

= cos(36°) * [cos(36°)/2 - 1/4]

= cos2(36°)/2 - cos(36°)/4.

Since cos(36°) = (1 + √5)/4:

cos2(36°)/2 - cos(36°)/4

= [(1 + √5)/4]2/2 - [(1 + √5)/4]/4

= (1 + √5)2/32 - (1 + √5)/16

= (6 + 2√5)/32 - (1 + √5)/16

= (6 + 2√5)/32 - (2 + 2√5)/32

= 4/32

= 1/8 R.H.S

81.

The greatest value of sin x cos x is(A) 1 (B) 2 (C) √2 (D)1/2

Answer»

(D) is the correct choice, since

sinx cosx = 1/2, sin 2x ≤1/2, since |sin2x | ≤ 1.

82.

A right angle is:(A) equal to a radian(B) equal to 90 degree(C) equal to 18°(D) equal to 90 radian

Answer»

Answer is (B) equal to 90 degree

83.

Prove that:(i) (cos 11°+ sin 11°)/(cos 11° – sin 11°) = tan 56°  (ii) (cos 9° + sin 9°)/(cos 9° – sin 9°) = tan 54°(iii) (cos 8° – sin 8°)/(cos 8° + sin 8°) = tan 37°

Answer»

(i) Let us consider the LHS:

(cos 11° + sin 11°)/(cos 11° – sin 11°)

Let us divide the numerator and denominator by cos 11° we get,

(cos 11° + sin 11°)/(cos 11° – sin 11°) = (1 + tan 11°)/(1 – tan 11°)

= (1 + tan 11°)/(1 - 1 × tan 11°)

= (tan 45° + tan 11°)/(1 – tan 45° × tan 11°)

As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B)

Therefore,

(tan 45° + tan 11°)/(1 – tan 45° × tan 11°) = tan (45° + 11°)

= tan 56°

= RHS

∴ LHS = RHS

Thus proved.

(ii) (cos 9° + sin 9°)/(cos 9° – sin 9°) = tan 54°

Let us consider the LHS:

(cos 9° + sin 9°)/(cos 9° – sin 9°)

Let us divide the numerator and denominator by cos 9° we get,

(cos 9° + sin 9°)/(cos 9° – sin 9°) = (1 + tan 9°)/(1 – tan 9°)

= (1 + tan 9°)/(1 – 1 × tan 9°)

= (tan 45° + tan 9°)/(1 – tan 45° × tan 9°)

As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B)

Therefore,

(tan 45° + tan 9°)/(1 – tan 45° × tan 9°) = tan (45° + 9°)

= tan 54°

= RHS

∴ LHS = RHS

Thus proved.

(iii) Let us consider the LHS:

(cos 8° – sin 8°)/(cos 8° + sin 8°)

Let us divide the numerator and denominator by cos 8° we get,

(cos 8° – sin 8°)/(cos 8° + sin 8°) = (1 – tan 8°)/(1 + tan 8°)

= (1 – tan 8°)/(1 + 1 × tan 8°)

= (tan 45° – tan 8°)/(1 + tan 45° × tan 8°)

As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B)

Therefore,

(tan 45° – tan 8°)/(1 + tan 45° × tan 8°) = tan (45° – 8°)

= tan 37°

= RHS

∴ LHS = RHS

Thus proved.

84.

Prove that: sin2 42° – cos2 78° = (√5 + 1)/8

Answer»

Let us consider the LHS

sin2 42° – cos2 78° = sin2 (90° – 48°) – cos2 (90° – 12°)

= cos2 48° – sin2 12° [since, sin (90 – A) = cos A and cos (90 – A) = sin A]

As we know, cos (A + B) cos (A – B) = cos2A – sin2B

Now the above equation becomes,

= cos2 (48° + 12°) cos (48° – 12°)

= cos 60° cos 36° [since, cos 36° = (√5 + 1)/4]

= 1/2 × (√5 + 1)/4

= (√5 + 1)/8

= RHS

Thus proved.

85.

Prove that: cos 78° cos 42° cos 36° = 1/8

Answer»

Let us consider the LHS

cos 78° cos 42° cos 36°

Now let us multiply and divide by 2 we get,

cos 78° cos 42° cos 36° = 1/2 (2 cos 78° cos 42° cos 36°)

As we know, 2 cos A cos B = cos (A + B) + cos (A – B)

Now the above equation becomes,

= 1/2 (cos (78° + 42°) + cos (78° – 42°)) × cos 36°

= 1/2 (cos 120° + cos 36°) × cos 36°

= 1/2 (cos (180° – 60°) + cos 36°) × cos 36°

= 1/2 (-cos (60°) + cos 36°) × cos 36° [since, cos(180° – A) = – A]

= 1/2 (-1/2 + (√5 + 1)/4) ((√5 + 1)/4) [since, cos 36° = (√5 + 1)/4]

= 1/2 (√5 + 1 – 2)/4 ((√5 + 1)/4)

= 1/2 (√5 – 1)/4) ((√5 + 1)/4)

= 1/2 ((√5)2 – 12)/16

= 1/2 (5 - 1)/16

= 1/2 (4/16)

= 1/8

= RHS

Thus proved.

86.

Prove that: sin2 24° – sin2 6° = (√5 – 1)/8

Answer»

Let us consider the LHS

sin2 24° – sin2 6°

As we know, sin (A + B) sin (A – B) = sin2A – sin2B

Now the above equation becomes,

sin2 24° – sin2 6° = sin (24° + 6°) – sin (24° – 6°)

= sin 30° – sin 18°

= sin 30° – (√5 – 1)/4 [since, sin 18° = (√5 – 1)/4]

= 1/2 × (√5 – 1)/4

= (√5 – 1)/8

= RHS

Thus proved.

87.

Find the value of sin(31π/3)

Answer»

We know that values of sinx repeats after an interval of 2π. sin(31π/3) = sin(10π + π/3) = sin(π/3) = 3/2

88.

Find the values of the following trigonometric ratios:sin \(\cfrac{151\pi}6\)

Answer»

Given sin \(\cfrac{151\pi}6\)

⇒ sin \(\cfrac{151\pi}6\) = sin 4530°

⇒ sin 4530° = 90° × 50 + 30°

4530° lies in the third quadrant in which the sine function is negative.

∴ sin 4530° = sin (90° × 50 + 30°)

= - sin 30°

= -1/2

89.

Prove that :\(sin\cfrac{8\pi}3cos\cfrac{23\pi}6+cos\cfrac{13\pi}3sin\cfrac{35\pi}6=\cfrac12\)

Answer»

LHS\(sin\cfrac{8\pi}3cos\cfrac{23\pi}6+cos\cfrac{13\pi}3sin\cfrac{35\pi}6\)

= sin 480° cos 690° + cos 780° sin 1050°

= sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°)

We know that when n is odd, sin → cos and cos → sin.

= cos 30° sin 60° + cos 60° [-cos 60°]

\(\cfrac{\sqrt3}2\times\cfrac{\sqrt3}2-\cfrac12\times\cfrac12\)

= 3/4 - 1/4

= 2/4

= 1/2

= RHS

Hence proved.

90.

Find the values of the following trigonometric ratios:(i) sin (-11π/6)(ii) cosec (-20π/3)(iii) tan (-13π/4)(iv) cos 19π/4(v) sin 41π/4(vi) cos 39π/4(vii) sin 151π/6

Answer»

(i) Given as

sin (-11π/6)

sin (-11π/6) = sin (-330°)

= – sin (90 × 3 + 60)°

Here, 330° lies in the IV quadrant in which the sine function is negative.

sin (-330°) = – sin (90 × 3 + 60)°

= – (-cos 60°)

= – (-1/2)

Thus, 1/2

(ii) Given as

cosec (-20π/3)

cosec (-20π/3) = cosec (-1200)°

= – cosec (1200)°

= – cosec (90 × 13 + 30)°

Here, 1200° lies in the II quadrant in which cosec function is positive.

cosec (-1200)° = – cosec (90 × 13 + 30)°

= – sec 30°

= -2/√3

(iii) Given as

tan (-13π/4)

tan (-13π/4) = tan (-585)°

= – tan (90 × 6 + 45)°

Here, 585° lies in the III quadrant in which the tangent function is positive.

tan (-585)° = – tan (90 × 6 + 45)°

= – tan 45°

= -1

(iv) Given as

cos 19π/4

cos 19π/4 = cos 855°

= cos (90 × 9 + 45)°

Here, 855° lies in the II quadrant in which the cosine function is negative.

cos 855° = cos (90 × 9 + 45)°

= – sin 45°

= – 1/√2

(v) Given as

sin 41π/4

sin 41π/4 = sin 1845°

= sin (90 × 20 + 45)°

Here, 1845° lies in the I quadrant in which the sine function is positive.

sin 1845° = sin (90 × 20 + 45)°

= sin 45°

= 1/√2

(vi) Given as

cos 39π/4

cos 39π/4 = cos 1755°

= cos (90 × 19 + 45)°

Here, 1755° lies in the IV quadrant in which the cosine function is positive.

cos 1755° = cos (90 × 19 + 45)°

= sin 45°

= 1/√2

(vii) Given as

sin 151π/6

sin 151π/6 = sin 4530°

= sin (90 × 50 + 30)°

Here, 4530° lies in the III quadrant in which the sine function is negative.

sin 4530° = sin (90 × 50 + 30)°

= – sin 30°

Thus, -1/2

91.

Prove that :tan 225° cot 405° + tan 765° cot 675° = 0

Answer»

LHS = tan 225° cot 405° + tan 765° cot 675°

= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°) 

We know that when n is odd, cot → tan. =

tan 45° cot 45° + tan 45° [-tan 45°]

= tan 45° cot 45° - tan 45° tan 45°

= 1 × 1 – 1 × 1

= 1 – 1

= 0

= RHS

Hence proved.

92.

Prove that:(i) tan 225° cot 405° + tan 765° cot 675° = 0(ii) sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 = 1/2(iii) cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = 1/2(iv) tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0(v) cos 570° sin 510° + sin (-330°) cos (-390°) = 0(vi) tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 = (3 – 4√3)/2(vii) 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 = 1

Answer»

(i) Let us consider the LHS:

tan 225° cot 405° + tan 765° cot 675°

tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)

As we know that when n is odd, cot → tan.

tan 45° cot 45° + tan 45° [-tan 45°]

tan 45° cot 45° – tan 45° tan 45°

1 × 1 – 1 × 1

1 – 1

0 = RHS

∴ LHS = RHS

Thus proved.

(ii) sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 = 1/2

Let us consider the LHS:

sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6

sin 480° cos 690° + cos 780° sin 1050°

sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°)

As we know that when n is odd, sin → cos and cos → sin.

cos 30° sin 60° + cos 60° [-cos 60°]

√3/2 × √3/2 – 1/2 × 1/2

3/4 – 1/4

2/4

1/2

= RHS

∴ LHS = RHS

Thus proved.

(iii) Let us consider the LHS:

cos 24° + cos 55° + cos 125° + cos 204° + cos 300°

cos 24° + cos (90° × 1 – 35°) + cos (90° × 1 + 35°) + cos (90° × 2 + 24°) + cos (90° × 3 + 30°)

As we know that when n is odd, cos → sin.

cos 24° + sin 35° – sin 35° – cos 24° + sin 30°

0 + 0 + 1/2

1/2

= RHS

∴ LHS = RHS

Thus proved.

(iv) Let us consider the LHS:

tan (-125°) cot (-405°) – tan (-765°) cot (675°)

As we know that tan (-x) = -tan (x) and cot (-x) = -cot (x).

[-tan (225°)] [-cot (405°)] – [-tan (765°)] cot (675°)

tan (225°) cot (405°) + tan (765°) cot (675°)

tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)

tan 45° cot 45° + tan 45° [-tan 45°]

1 × 1 + 1 × (-1)

1 – 1

0

= RHS

∴ LHS = RHS

Thus proved.

(v) Let us consider the LHS:

cos 570° sin 510° + sin (-330°) cos (-390°)

As we know that sin (-x) = -sin (x) and cos (-x) = +cos (x).

cos 570° sin 510° + [-sin (330°)] cos (390°)

cos 570° sin 510° – sin (330°) cos (390°)

cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°)

As we know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sin → cos and cos → sin.

-cos 30° cos 60° – [-cos 60°] cos 30°

-cos 30° cos 60° + cos 60° cos 30°

0

= RHS

∴ LHS = RHS

Thus proved.

(vi) tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 = (3 – 4√3)/2

Let us consider the LHS:

tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6

tan (11 × 180°)/3 – 2 sin (4 × 180°)/6 – 3/4 cosec2 180°/4 + 4 cos2 (17 × 180°)/6

tan 660° – 2 sin 120° – 3/4 (cosec 45°)2 + 4 (cos 510°)2

tan (90° × 7 + 30°) – 2 sin (90° × 1 + 30°) – 3/4 [cosec 45°]2 + 4 [cos (90° × 5 + 60°)]2

As we know that tan and cos is negative at 90° + θ i.e. in Q2 and when n is odd, tan → cot, sin → cos and cos → sin.

[-cot 30°] – 2 cos 30° – 3/4 [cosec 45°]2 + [-sin 60°]2

– cot 30° – 2 cos 30° – 3/4 [cosec 45°]2 + [sin 60°]2

-√3 – 2√3/2 – 3/4 (√2)2 + 4 (√3/2)2

-√3 – √3 – 6/4 + 12/4

(3 – 4√3)/2

= RHS

∴ LHS = RHS

Thus proved.

(vii) 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 = 1

Let us consider the LHS:

3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4

3 sin 180°/6 sec 180°/3 – 4 sin 5(180°)/6 cot 180°/4

3 sin 30° sec 60° – 4 sin 150° cot 45°

3 sin 30° sec 60° – 4 sin (90° × 1 + 60°) cot 45°

As we know that when n is odd, sin → cos.

3 sin 30° sec 60° – 4 cos 60° cot 45°

3 (1/2) (2) – 4 (1/2) (1)

3 – 2

1

= RHS

∴ LHS = RHS
Thus proved.

93.

Find the value of cosec (-1410°)

Answer»

cosec (- 1410°)

= – cosec (1410°)

= – cosec[4(360°) – 30°]

= – cosec (- 30°)

= cosec 30° = 2

94.

Find the values of the following trigonometric ratios:sin(\(-\cfrac{11\pi}6\))

Answer»

Given sin \((\cfrac{-11\pi}6)\)

⇒  sin \(\cfrac{-11\pi}6\) = sin -330°

⇒ -sin 330° = -sin (90° × 3 + 60°)

330° lies in the fourth quadrant in which the sine function is negative.

∴ sin (-330)° = -sin (90° × 3 + 60°)

= - (-cos 60°)

= - (-1/2)

= 1/2

95.

Find the values of the following trigonometric ratios:sin\(\cfrac{17\pi}6\)

Answer»

Given sin \(\cfrac{17\pi}6\)

 ⇒ sin \(\cfrac{17\pi}6\) = sin 510°

⇒ 510° = (90° × 5 + 60°)

510° lies in second quadrant in which sine function is positive.

∴ sin (510°) = sin (90° × 5 + 60°)

= cos (60°) = 1/2

96.

Find the value of sin(- 11π/3)

Answer»

sin(- 11π/3) = - sin(11π/3) = - sin(4π - π/3)

= sin(π/3) = 3/2

97.

Find the value ofcot (13π/4)

Answer»

To find: Value of cot\(\frac{13\pi}{4}\)

We have,

cot\(\frac{13\pi}{4}\)

Putting π = 180°

= cot\(\frac{(13\times180^\circ)}{4}\)

= cot (13 × 45°)

= cot (585°)

= cot [90° x 6 + 45°]

= cot 45°

[Clearly, 585° is in IIIrd Quadrant and the multiple of 90° is even]

= 1 [\(\because\) cot 45° = 1]

98.

Write the value of 2 (sin6 x + cos6 x) − 3 (sin4 x + cos4 x) + 1.

Answer»

sin6x + cos6x = (sin2x)3 + (cos2x)3

=(sin2x + cos2x)(sin4x+cos4x - sin2xcos2x)

= 1 (sin4x + cos4x – sin2xcos2x)

Substituting above value in given equation

⇒ 2(sin4x + cos4x – sin2xcos2x) - 3(sin4 x + cos4 x) + 1

⇒ 2sin4x + 2cos4x – 2sin2xcos2x – 3sin4x - 3cos4x + 1.

⇒ -sin4x - cos4x - 2sin2xcos2x + 1

⇒ -[(sin2x)+ (cos2x)- 2sin2xcos2x] + 1

⇒ -[( sin2x + cos2x)2] + 1

⇒ -1 + 1

⇒ 0

99.

Write the value of tan ( \(\frac{\pi}{8}\)):

Answer»

We have 

tan (\(\frac{\pi}{8}\)) = tan ( \(\frac{1}{2},\frac{\pi}{4}\) ) 

Using the half angle formulae, 

\(tan(\frac{\alpha}{8})=\frac{sin\alpha}{1+cos\alpha}\)

\(tan(\frac{\pi}{8})=\frac{sin(\frac{\pi}{4})}{1+cos(\frac{\pi}{4})}\) \(=\frac{\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}}=\frac{1}{1+\sqrt{2}}\)

Given, \(secβ=\frac{-5}{3},\frac{\pi}{2}<β<\pi\)

\(tan^2β=1-sec^2β\) \(=1-\frac{25}{9}=\frac{-16}{9}\) 

\(tanβ=\frac{-4}{3}\)                 (∵ \(\frac{p}{2}<β<p\)

And \(cot\alpha=\frac{1}{2},\)              \(\frac{\pi}{2}<\alpha<\frac{3\pi}{2}\)

100.

A circular wire of radius 7.5 cm is cut and bent so as to tie along the circumference of a hoop whose radius is 120 cm. Find in degrees the angle which is subtended at the centre of the hoop.

Answer»

Radius of the circular wire = 7.5 cm 

∴ Length of the circular wire = 2π × 7.5 = \(\frac{1}{2}\) 15 π cm 

[∴ Circumference = 2πr] 

Radius of the hoop = 120 cm 

Let θ be the angle subtended by the wire at the centre of the hoop, Then, 

\(θ=\frac{arc}{radius}\Rightarrow θ = (\frac{15\pi}{120})°\)

\(=(\frac{\pi}{8})°=(\frac{\pi}{8}\times\frac{180}{\pi})°=22°30'\)