InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
The value of cos 1° cos 2° cos 3° ... cos 179° is(A)1/√2(B) 0 (C) 1 (D) –1 |
|
Answer» Answer is (B) Since cos 90° = 0, we have cos 1° cos 2° cos 3° …cos 90°… cos 179° = 0 |
|
| 52. |
Which of the following is incorrect?A. sin x = −1/5B. cos x = 1C. sec x = 1/2D. tan x = 20 |
|
Answer» Correct option is C. sec x = 1/2 Sec x = 1/2 is incorrect because for no real value of x sec x attains 1/2. |
|
| 53. |
The value of cos 1° cos 2° cos 3° ... cos 179° isA.1/√2B. 0C. 1D. −1 |
|
Answer» Correct option is B. 0 Cos 1 × cos 2 × cos 3 × ......× cos 179 = cos 1 × cos 2 × cos 3 × .....× cos 90 × ..... × cos 179 = cos 1 × cos 2 × cos 3 × .....× 0 × ..... × cos 179 = 0 × cos 1 × cos 2 × cos 3 × ....... × cos 179 = 0 |
|
| 54. |
Prove that sin 10° sin 30° sin 50° sin 70° = \(\frac{1}{16}\) |
|
Answer» L.H.S = sin 10° sin 30° sin 50° sin 70° = \(\frac{1}{2}\) (sin 10° sin 50° sin 70° ) = \(\frac{1}{2}\) (sin 50° sin 70°) sin 10° = \(\frac{1}{2}\) [sin (60° − 10°) sin (60° + 10°)] sin 10° = \(\frac{1}{2}\) [(\(sin^260°-sin^210°\))] sin 10° = \(\frac{1}{2}\)(( \(\frac{3}{2}\))2 − \(sin^210°\)) sin 10° = \(\frac{1}{2}\) [ \(\frac{3}{4}\) − \(sin^210°\)] sin 10° = \(\frac{1}{8}\) (3 − 4 \(sin^210°\))sin 10° = \(\frac{1}{8}\)(3 sin 10° − 4 \(sin^210°\)) = \(\frac{1}{11}\) (sin 3 × 10°) = \(\frac{1}{8}\) (sin 30°) = \(\frac{1}{16}\) = R.H.S |
|
| 55. |
The value of (sin 50°)/(sin130°) is _______ . |
|
Answer» Answer is 1 |
|
| 56. |
If A lies in the second quadrant and 3 tan A + 4 = 0, then the value of 2cotA – 5 cos A + sin A is equal to(A) -53/10(B) 23/10(C) 37/10(D) 7/10 |
|
Answer» Answer is (B) 23/10 |
|
| 57. |
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ |
|
Answer» We have, tanθ + sinθ = m ...... (i) And tanθ -sinθ = n .......... (ii) Now, m + n = 2 tanθ And m – n = 2 sinθ. (m + n)(m -n) = 4 sinθtanθ m2 -n2 = 4 sinθtanθ |
|
| 58. |
In a right-angled triangle ABC, write the value of sin2 A + sin2 B + sin2 C. |
|
Answer» Given, triangle ABC is right angle. So, let ∠ B = 90° Then as per the property of angles in a triangle ∠ A + ∠ B + ∠ C = 180° As ∠ B = 90° ∠ A + 90° + ∠ C = 180° Then ∠ A + ∠ C = 180° - 90° = 90° Now, consider sin2A + sin2B + sin2C As ∠ B = 90° sin2A + sin2B + sin2C = sin2A + sin2(90°) + sin2C = sin2A + 1 + sin2C From before, we know that ∠ A + ∠ C = 90° ; ∠ C = 90° - ∠ A sin2A + sin2B + sin2C = sin2A + 1 + sin2( 90° - A) = sin2A + cos2(A) + 1 [by using the identity cos x = sin ( 90° - x)] sin2A + sin2B + sin2C = (sin 2A + cos 2A) + 1 = 1 + 1 = 2 [by using the identity sin2θ + cos2θ = 1] Therefore, sin2A + sin2B + sin2C = 2. |
|
| 59. |
In any ΔABC, prove that a(bcosC - c cos B) = b2 - c2. |
|
Answer» LHS = abcosC - ca cosB = (a2 + b2 - c2)/2 - (c2 + a2 - b2)/2 = b2 - c2 = RHS |
|
| 60. |
If x is any real number then show that cos θ cannot be equal to x + 1/x. |
|
Answer» We know, Range of cos θ is -1. If cos θ = x + 1/x if x > 1 then 1/x < 1 Ultimately x + 1/x > 1 Which shows, cos θ > 1 which is not possible. |
|
| 61. |
Define a radian measure. |
||||||||||||||||
|
Answer» Angle subtended at the centre by an arc of length 1 unit in a unit circle is said to have a measure of 1 radian. Keen eye: 1rad = 180°/π = 57°16'.
|
|||||||||||||||||
| 62. |
Define a degree measure. |
|
Answer» If a rotation from the initial side to terminal side is (1/360)th of a revolution, the angle is said to have a measure of one degree, written as 1°. Keen eye: A degree is divided into 60 minutes and a minute is divided into 60 seconds. One sixtieth of a degree is called a minute, written as 1′ and one sixtieth of a minute is called second, written as 1″ ∴ 1 ° – 60′ 1’= 60″ |
|
| 63. |
A wheel makes 360° revolutions in one minute. Through how many radians does it turn in one second? |
|
Answer» Number of revolutions in one minute = 360 Number of revolutions in one second = 360/60 = 6 But, in one revolutions angle traced = 360° = 2π rad ⇒ Angle traced in 6 revolutions = 6 x 2π = 12π radians Angle traced in one second = 12π radians |
|
| 64. |
If cos x = cos α cos β then prove that tan(\(\frac{x+a}{2}\)).tan (\(\frac{x-a}{2}\) ) = \(\frac{tan^2\beta}{2}\) |
|
Answer» Given, cosx = cosα cosβ ∴ cos β = \(\frac{cosx}{cos\alpha}\) ...(i) We know that, \(tan^2\frac{θ}{2}\) = \(\frac{1-cosθ}{1+cosθ}\) R. H. S = \(tan^2\frac{θ}{2}\) = \(\frac{1-cos\beta}{1+cos\beta}\) ⇒ \(\frac{1-\frac{cos\alpha}{cosx}}{1+\frac{cosx}{cos\alpha}}\) ⇒\(\frac{cos\alpha-cosx}{cos\alpha +cosx}\) = \(\frac{2sin(\frac{a+x}{2})sin(\frac{x-a}{2})}{2cos(\frac{x+a}{2})sin(\frac{x-a}{2}))}\) = \(tan(\frac{x+a}{2}).tan(\frac{x-a}{2})\) [ ∵ cosC − cosD = −2 sin (\(\frac{C+D}{2}\)) sin (\(\frac{C-D}{2}\)) and cosC + cosD = 2 cos (\(\frac{C+D}{2}\)) cos (\(\frac{C-D}{2}\)) ] = L. H. S Hence Proved |
|
| 65. |
If α and β are the solution of the equation, a tanθ + b secθ = c, then show that (α + β) = \(\frac{2ac}{a^2-c^2}\) |
|
Answer» Given, α tanθ + b secθ = c ...(i) ⇒ (α tanθ − c)2 = b2 (1 + tan2θ) ⇒ (a2 tan2b2 ) − 2ac tanθ + c2 = b2 + b2 tan2θ ⇒ (a2 − b2) tan2θ − 2ac tanθ + c2 − b2 = 0 Since, α and β are roots of the equation (i), we have tan α + tan β = \(\frac{2ac}{a^2-b^2}\) and tan α.tan β = \(\frac{c^2-b^2}{a^2-b^2}\) Therefore, tan (α + β) = \(\frac{tan\alpha tan\beta}{1-tan\alpha tan\beta}\) =\(\frac{\frac{2ac}{a^2-b^2}}{1-\frac{c^2-b^2}{a^2-b^2}}\) =\(\frac{2ac}{a^2-c^2}\) |
|
| 66. |
If tan A – tan B = x, cot B – cot A = y, Prove that cot (A – B) = \(\frac{1}{x}+\frac{1}{y}\) |
|
Answer» Given, tan A – tan B = x ...(i) and cot B – cot A = y ...(ii) From (ii), cot B – cot A = y ⇒ \(\frac{1}{tanB}-\frac{1}{tanA}=y\) ⇒ \(\frac{tanA - tanB}{tanAtanB}=y\) ⇒ \(\frac{x}{tanAtanB}=y\) ⇒ tanA tanB = \(\frac{x}{y}\) Now, ⇒ cot (A − B) = \(\frac{1}{tan(A-B)}\)= \(\frac{1+tanAtanB}{tanA-tanB}\) ⇒ cot (A − B) = \(\frac{1+\frac{x}{y}}{x}\)= \(\frac{y+x}{xy}\) ⇒ cot (A − B) = \(\frac{1}{x}+\frac{1}{y}\)Hence Proved |
|
| 67. |
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π |
|
Answer» Here, 2 tan2 x + sec2 x = 2 which gives tan x = ±1/√3 If we take tan x = 1/√3, then x = π/6 or 7π/6 Again, if we take tan x = -1/√3, then x = 5π/6 or 11π/6 Therefore, the possible solutions of above equations are x = 5π/6, 11π/6, 5π/6 and 11π/6 where 0 ≤ x ≤ 2π |
|
| 68. |
If tan θ + sin θ = m and tan θ – sin θ = n, then prove that m2 – n2 = 4 sin θ tan θ[Hint: m + n = 2tanθ, m – n = 2 sin θ, then use m2 – n2 = (m + n)(m – n)] |
|
Answer» According to the question, tan θ + sin θ = m …(i) tan θ – sin θ = n …(ii) Adding equation i and ii, 2 tan θ = m + n …(iii) Subtracting equation ii from i, We get, 2sin θ = m – n …(iv) Multiplying equations (iii) and (iv), 2sin θ (2tan θ) = (m + n)(m – n) ⇒ 4 sin θ tan θ = m2 – n2 Hence, m2 – n2 = 4 sin θ tan θ |
|
| 69. |
Prove that : cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \(\cfrac12\) |
|
Answer» LHS = = cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = cos 24° + cos (90° × 1 – 35°) + cos (90° × 1 + 35°) + cos (90° × 2 + 24°) + cos (90° × 3 + 30°) We know that when n is odd, cos → sin. = cos 24° + sin 35° - sin 35° - cos 24° + sin 30° = 0 + 0 + 1/2 = 1/2 = RHS Hence proved. |
|
| 70. |
Prove the identity: sin6 x + cos6 x = 1 – 3 sin2 x cos2 x |
|
Answer» Let us consider the LHS: sin6 x + cos6 x (sin2 x)3 + (cos2 x)3 On using the formula, a3 + b3 = (a + b) (a2 + b2 – ab) (sin2 x + cos2 x) [(sin2 x)2 + (cos2 x)2 – sin2 x cos2 x] On using the formula, sin2 x + cos2 x = 1 and a2 + b2 = (a + b)2 - 2ab 1 × [(sin2 x + cos2 x)2 – 2sin2 x cos2 x – sin2 x cos2 x 12 – 3sin2 x cos2 x 1 – 3sin2 x cos2 x = RHS ∴ LHS = RHS Thus proved. |
|
| 71. |
Prove the identity: (sec x sec y + tan x tan y)2 – (sec x tan y + tan x sec y)2 = 1 |
|
Answer» Let us consider the LHS: (sec x sec y + tan x tan y)2 – (sec x tan y + tan x sec y)2 By expanding the above equation we get, [(sec x sec y)2 + (tan x tan y)2 + 2(sec x sec y) (tan x tan y)] – [(sec x tan y)2 + (tan x sec y)2 + 2(sec x tan y) (tan x sec y)] [sec2 x sec2 y + tan2 x tan2 y + 2(sec x sec y) (tan x tan y)] – [sec2 x tan2 y + tan2 x sec2 y + 2(sec2 x tan2 y) (tan x sec y)] sec2 x sec2 y – sec2 x tan2 y + tan2 x tan2 y – tan2 x sec2 y sec2 x(sec2 y – tan2 y) + tan2 x(tan2 y – sec2 y) sec2 x(sec2 y – tan2 y) – tan2 x(sec2 y – tan2 y) As we know, sec2 x – tan2 x = 1. sec2 x × 1 – tan2 x × 1 sec2 x – tan2 x 1 = RHS ∴ LHS = RHS Thus proved. |
|
| 72. |
Prove the identity: sec4 x – sec2 x = tan4 x + tan2 x |
|
Answer» Let us consider the LHS: sec4 x – sec2 x (sec2 x)2 – sec2 x On using the formula, sec2 θ = 1 + tan2 θ. (1 + tan2 x)2 – (1 + tan2 x) 1 + 2tan2 x + tan4 x – 1 – tan2 x tan4 x + tan2 x = RHS ∴ LHS = RHS Thus proved. |
|
| 73. |
Prove that :sin \(\cfrac{10\pi}3\) cos \(\cfrac{13\pi}6\) + cos \(\cfrac{8\pi}3\) sin \(\cfrac{5\pi}6\) = -1 |
|
Answer» LHS = sin \(\cfrac{10\pi}3\) cos \(\cfrac{13\pi}6\) + cos \(\cfrac{8\pi}3\) sin \(\cfrac{5\pi}6\) = sin 600° cos 390° + cos 480° sin 150° = sin (90° × 6 + 60°) cos (90° × 4 + 30°) + cos (90° × 5 + 30°) sin (90° × 1 + 60°) We know that when n is odd, sin → cos and cos → sin. = [-sin 60°] cos 30° + [-sin 30°] cos 60° = -sin 60° cos 30° - sin 30° cos 60° = -[sin 60° cos 30° + cos 60° sin 30°] We know that sin A cos B + cos A sin B = sin (A + B) = -sin (60° + 30°) = -sin 90° = -1 = RHS Hence proved. |
|
| 74. |
Prove that: sin2 2π/5 – sin2 π/3 = (√5 – 1)/8 |
|
Answer» Let us consider the LHS sin2 2π/5 – sin2 π/3 = sin2 (π/2 – π/10) – sin2 π/3 As we know, sin (90°– A) = cos A Therefore, sin2 (π/2 – π/10) = cos2 π/10 Sin π/3 = √3/2 Now the above equation becomes, = Cos2 π/10 – (√3/2)2 As we know, cos π/10 = √(10+2√5)/4 Then, the above equation becomes, = [√(10 + 2√5)/4]2 – 3/4 = [10 + 2√5]/16 – 3/4 = [10 + 2√5 – 12]/16 = [2√5 – 2]/16 = [√5 – 1]/8 = RHS Thus proved. |
|
| 75. |
If A + B = \(\frac{\pi}{4},\)then prove that (1 + tan A) (1 + tan B) = 2. |
|
Answer» Given, A + B = \(\frac{\pi}{4}\) Taking tangent both sides, we get tan(A + B) = tan\(\frac{\pi}{4}\) or, \(\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}=1\) or, tan A + tan B = 1 – tan A tan B or, tan A + tan B + tan A tan B = 1 Now, adding 1 both sides, we get tan A + tan B + tan A tan B + 1 = 2 (tan A + 1) + tan B (1 + tan A) = 2 or, (tan A + 1) (1 + tan B) = 2 or, (1 + tan A) (1 + tan B) = 2 |
|
| 76. |
Solve: 2 cos2x + 3 sinx = 0 |
|
Answer» We have: 2 cos2x + 3 sinx = 0 2 cos2x= – 3 sinx Squaring both sides, we get 4 cos4x = 9 sin2x 4 cos4x – 9 (1 – cos2x) = 0 Let cos2x = y 4y2 + 9y – 9 = 0 4y2 + 12y – 3y – 9 = 0 4y (y + 3) – 3 (y + 3) = 0 (y + 3) (4y – 3) = 0 y = – 3 or, y = \(\frac{3}{4}\) cos2x = – 3 or cos2x = \(\frac{3}{4}\) ∴ cos2x = \(\frac{3}{4}\) = cos2\((\frac{\pi}{6})\) x = nπ ± \(\frac{\pi}{6}\) |
|
| 77. |
Find the maximum and minimum value of 7 cos x + 24 sin x. |
|
Answer» y = 7 cos x + 24 sin x y2 = (7 cos x + 24 sinx)2 = 49 cos2x + 576 sin2x + 2 × 7× 24 cos x sin x = 49 – 49 sin2 x + 576 – 576 cos2 x + 2 × 7 × 24 cos x sin x = 625 – (7 sin x – 24 cos x)2 ∴ Maximum value = 25 For maximum value Cos x = \(\frac{-7}{25}\) and sin x =\(\frac{-24}{25}\) ∴ Minimum value = 7(\(\frac{-7}{25}\)) + 24 (\(\frac{-24}{25}\)) \(=\frac{-49-576}{25}\) = -25 ∴ Minimum value = – 25 |
|
| 78. |
If tan A =(1-cosB)/sinB, then tan 2A = tan B |
|
Answer» Answer is True |
|
| 79. |
The value of cos2 48° – sin2 12° is(A) (√5 + 1)/8(B) (√5 - 1)/8(C) (√5 + 1)/5(D) (√5 + 1)/2√2 |
|
Answer» Answer is (A) (√5 + 1)/8 |
|
| 80. |
Prove that sin 12°. sin 48°. sin 54° = 1/8. |
|
Answer» L.H.S=sin(12°)sin(48°)sin(54°) = [sin(12°)sin(48°)]sin(54°) = sin(54°) * [cos(48° - 12°) - cos(48° + 12°)]/2 = sin(54°) * [cos(36°) - cos(60°)]/2 = sin(54°) * [cos(36°) - 1/2]/2 = cos(36°) * [cos(36°)/2 - 1/4] = cos2(36°)/2 - cos(36°)/4. Since cos(36°) = (1 + √5)/4: cos2(36°)/2 - cos(36°)/4 = [(1 + √5)/4]2/2 - [(1 + √5)/4]/4 = (1 + √5)2/32 - (1 + √5)/16 = (6 + 2√5)/32 - (1 + √5)/16 = (6 + 2√5)/32 - (2 + 2√5)/32 = 4/32 = 1/8 R.H.S |
|
| 81. |
The greatest value of sin x cos x is(A) 1 (B) 2 (C) √2 (D)1/2 |
|
Answer» (D) is the correct choice, since sinx cosx = 1/2, sin 2x ≤1/2, since |sin2x | ≤ 1. |
|
| 82. |
A right angle is:(A) equal to a radian(B) equal to 90 degree(C) equal to 18°(D) equal to 90 radian |
|
Answer» Answer is (B) equal to 90 degree |
|
| 83. |
Prove that:(i) (cos 11°+ sin 11°)/(cos 11° – sin 11°) = tan 56° (ii) (cos 9° + sin 9°)/(cos 9° – sin 9°) = tan 54°(iii) (cos 8° – sin 8°)/(cos 8° + sin 8°) = tan 37° |
|
Answer» (i) Let us consider the LHS: (cos 11° + sin 11°)/(cos 11° – sin 11°) Let us divide the numerator and denominator by cos 11° we get, (cos 11° + sin 11°)/(cos 11° – sin 11°) = (1 + tan 11°)/(1 – tan 11°) = (1 + tan 11°)/(1 - 1 × tan 11°) = (tan 45° + tan 11°)/(1 – tan 45° × tan 11°) As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 45° + tan 11°)/(1 – tan 45° × tan 11°) = tan (45° + 11°) = tan 56° = RHS ∴ LHS = RHS Thus proved. (ii) (cos 9° + sin 9°)/(cos 9° – sin 9°) = tan 54° Let us consider the LHS: (cos 9° + sin 9°)/(cos 9° – sin 9°) Let us divide the numerator and denominator by cos 9° we get, (cos 9° + sin 9°)/(cos 9° – sin 9°) = (1 + tan 9°)/(1 – tan 9°) = (1 + tan 9°)/(1 – 1 × tan 9°) = (tan 45° + tan 9°)/(1 – tan 45° × tan 9°) As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 45° + tan 9°)/(1 – tan 45° × tan 9°) = tan (45° + 9°) = tan 54° = RHS ∴ LHS = RHS Thus proved. (iii) Let us consider the LHS: (cos 8° – sin 8°)/(cos 8° + sin 8°) Let us divide the numerator and denominator by cos 8° we get, (cos 8° – sin 8°)/(cos 8° + sin 8°) = (1 – tan 8°)/(1 + tan 8°) = (1 – tan 8°)/(1 + 1 × tan 8°) = (tan 45° – tan 8°)/(1 + tan 45° × tan 8°) As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 45° – tan 8°)/(1 + tan 45° × tan 8°) = tan (45° – 8°) = tan 37° = RHS ∴ LHS = RHS Thus proved. |
|
| 84. |
Prove that: sin2 42° – cos2 78° = (√5 + 1)/8 |
|
Answer» Let us consider the LHS sin2 42° – cos2 78° = sin2 (90° – 48°) – cos2 (90° – 12°) = cos2 48° – sin2 12° [since, sin (90 – A) = cos A and cos (90 – A) = sin A] As we know, cos (A + B) cos (A – B) = cos2A – sin2B Now the above equation becomes, = cos2 (48° + 12°) cos (48° – 12°) = cos 60° cos 36° [since, cos 36° = (√5 + 1)/4] = 1/2 × (√5 + 1)/4 = (√5 + 1)/8 = RHS Thus proved. |
|
| 85. |
Prove that: cos 78° cos 42° cos 36° = 1/8 |
|
Answer» Let us consider the LHS cos 78° cos 42° cos 36° Now let us multiply and divide by 2 we get, cos 78° cos 42° cos 36° = 1/2 (2 cos 78° cos 42° cos 36°) As we know, 2 cos A cos B = cos (A + B) + cos (A – B) Now the above equation becomes, = 1/2 (cos (78° + 42°) + cos (78° – 42°)) × cos 36° = 1/2 (cos 120° + cos 36°) × cos 36° = 1/2 (cos (180° – 60°) + cos 36°) × cos 36° = 1/2 (-cos (60°) + cos 36°) × cos 36° [since, cos(180° – A) = – A] = 1/2 (-1/2 + (√5 + 1)/4) ((√5 + 1)/4) [since, cos 36° = (√5 + 1)/4] = 1/2 (√5 + 1 – 2)/4 ((√5 + 1)/4) = 1/2 (√5 – 1)/4) ((√5 + 1)/4) = 1/2 ((√5)2 – 12)/16 = 1/2 (5 - 1)/16 = 1/2 (4/16) = 1/8 = RHS Thus proved. |
|
| 86. |
Prove that: sin2 24° – sin2 6° = (√5 – 1)/8 |
|
Answer» Let us consider the LHS sin2 24° – sin2 6° As we know, sin (A + B) sin (A – B) = sin2A – sin2B Now the above equation becomes, sin2 24° – sin2 6° = sin (24° + 6°) – sin (24° – 6°) = sin 30° – sin 18° = sin 30° – (√5 – 1)/4 [since, sin 18° = (√5 – 1)/4] = 1/2 × (√5 – 1)/4 = (√5 – 1)/8 = RHS Thus proved. |
|
| 87. |
Find the value of sin(31π/3) |
|
Answer» We know that values of sinx repeats after an interval of 2π. sin(31π/3) = sin(10π + π/3) = sin(π/3) = √3/2 |
|
| 88. |
Find the values of the following trigonometric ratios:sin \(\cfrac{151\pi}6\) |
|
Answer» Given sin \(\cfrac{151\pi}6\) ⇒ sin \(\cfrac{151\pi}6\) = sin 4530° ⇒ sin 4530° = 90° × 50 + 30° 4530° lies in the third quadrant in which the sine function is negative. ∴ sin 4530° = sin (90° × 50 + 30°) = - sin 30° = -1/2 |
|
| 89. |
Prove that :\(sin\cfrac{8\pi}3cos\cfrac{23\pi}6+cos\cfrac{13\pi}3sin\cfrac{35\pi}6=\cfrac12\) |
|
Answer» LHS = \(sin\cfrac{8\pi}3cos\cfrac{23\pi}6+cos\cfrac{13\pi}3sin\cfrac{35\pi}6\) = sin 480° cos 690° + cos 780° sin 1050° = sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°) We know that when n is odd, sin → cos and cos → sin. = cos 30° sin 60° + cos 60° [-cos 60°] = \(\cfrac{\sqrt3}2\times\cfrac{\sqrt3}2-\cfrac12\times\cfrac12\) = 3/4 - 1/4 = 2/4 = 1/2 = RHS Hence proved. |
|
| 90. |
Find the values of the following trigonometric ratios:(i) sin (-11π/6)(ii) cosec (-20π/3)(iii) tan (-13π/4)(iv) cos 19π/4(v) sin 41π/4(vi) cos 39π/4(vii) sin 151π/6 |
|
Answer» (i) Given as sin (-11π/6) sin (-11π/6) = sin (-330°) = – sin (90 × 3 + 60)° Here, 330° lies in the IV quadrant in which the sine function is negative. sin (-330°) = – sin (90 × 3 + 60)° = – (-cos 60°) = – (-1/2) Thus, 1/2 (ii) Given as cosec (-20π/3) cosec (-20π/3) = cosec (-1200)° = – cosec (1200)° = – cosec (90 × 13 + 30)° Here, 1200° lies in the II quadrant in which cosec function is positive. cosec (-1200)° = – cosec (90 × 13 + 30)° = – sec 30° = -2/√3 (iii) Given as tan (-13π/4) tan (-13π/4) = tan (-585)° = – tan (90 × 6 + 45)° Here, 585° lies in the III quadrant in which the tangent function is positive. tan (-585)° = – tan (90 × 6 + 45)° = – tan 45° = -1 (iv) Given as cos 19π/4 cos 19π/4 = cos 855° = cos (90 × 9 + 45)° Here, 855° lies in the II quadrant in which the cosine function is negative. cos 855° = cos (90 × 9 + 45)° = – sin 45° = – 1/√2 (v) Given as sin 41π/4 sin 41π/4 = sin 1845° = sin (90 × 20 + 45)° Here, 1845° lies in the I quadrant in which the sine function is positive. sin 1845° = sin (90 × 20 + 45)° = sin 45° = 1/√2 (vi) Given as cos 39π/4 cos 39π/4 = cos 1755° = cos (90 × 19 + 45)° Here, 1755° lies in the IV quadrant in which the cosine function is positive. cos 1755° = cos (90 × 19 + 45)° = sin 45° = 1/√2 (vii) Given as sin 151π/6 sin 151π/6 = sin 4530° = sin (90 × 50 + 30)° Here, 4530° lies in the III quadrant in which the sine function is negative. sin 4530° = sin (90 × 50 + 30)° = – sin 30° Thus, -1/2 |
|
| 91. |
Prove that :tan 225° cot 405° + tan 765° cot 675° = 0 |
|
Answer» LHS = tan 225° cot 405° + tan 765° cot 675° = tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°) We know that when n is odd, cot → tan. = tan 45° cot 45° + tan 45° [-tan 45°] = tan 45° cot 45° - tan 45° tan 45° = 1 × 1 – 1 × 1 = 1 – 1 = 0 = RHS Hence proved. |
|
| 92. |
Prove that:(i) tan 225° cot 405° + tan 765° cot 675° = 0(ii) sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 = 1/2(iii) cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = 1/2(iv) tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0(v) cos 570° sin 510° + sin (-330°) cos (-390°) = 0(vi) tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 = (3 – 4√3)/2(vii) 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 = 1 |
|
Answer» (i) Let us consider the LHS: tan 225° cot 405° + tan 765° cot 675° tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°) As we know that when n is odd, cot → tan. tan 45° cot 45° + tan 45° [-tan 45°] tan 45° cot 45° – tan 45° tan 45° 1 × 1 – 1 × 1 1 – 1 0 = RHS ∴ LHS = RHS Thus proved. (ii) sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 = 1/2 Let us consider the LHS: sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 sin 480° cos 690° + cos 780° sin 1050° sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°) As we know that when n is odd, sin → cos and cos → sin. cos 30° sin 60° + cos 60° [-cos 60°] √3/2 × √3/2 – 1/2 × 1/2 3/4 – 1/4 2/4 1/2 = RHS ∴ LHS = RHS Thus proved. (iii) Let us consider the LHS: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° cos 24° + cos (90° × 1 – 35°) + cos (90° × 1 + 35°) + cos (90° × 2 + 24°) + cos (90° × 3 + 30°) As we know that when n is odd, cos → sin. cos 24° + sin 35° – sin 35° – cos 24° + sin 30° 0 + 0 + 1/2 1/2 = RHS ∴ LHS = RHS Thus proved. (iv) Let us consider the LHS: tan (-125°) cot (-405°) – tan (-765°) cot (675°) As we know that tan (-x) = -tan (x) and cot (-x) = -cot (x). [-tan (225°)] [-cot (405°)] – [-tan (765°)] cot (675°) tan (225°) cot (405°) + tan (765°) cot (675°) tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°) tan 45° cot 45° + tan 45° [-tan 45°] 1 × 1 + 1 × (-1) 1 – 1 0 = RHS ∴ LHS = RHS Thus proved. (v) Let us consider the LHS: cos 570° sin 510° + sin (-330°) cos (-390°) As we know that sin (-x) = -sin (x) and cos (-x) = +cos (x). cos 570° sin 510° + [-sin (330°)] cos (390°) cos 570° sin 510° – sin (330°) cos (390°) cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°) As we know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sin → cos and cos → sin. -cos 30° cos 60° – [-cos 60°] cos 30° -cos 30° cos 60° + cos 60° cos 30° 0 = RHS ∴ LHS = RHS Thus proved. (vi) tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 = (3 – 4√3)/2 Let us consider the LHS: tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 tan (11 × 180°)/3 – 2 sin (4 × 180°)/6 – 3/4 cosec2 180°/4 + 4 cos2 (17 × 180°)/6 tan 660° – 2 sin 120° – 3/4 (cosec 45°)2 + 4 (cos 510°)2 tan (90° × 7 + 30°) – 2 sin (90° × 1 + 30°) – 3/4 [cosec 45°]2 + 4 [cos (90° × 5 + 60°)]2 As we know that tan and cos is negative at 90° + θ i.e. in Q2 and when n is odd, tan → cot, sin → cos and cos → sin. [-cot 30°] – 2 cos 30° – 3/4 [cosec 45°]2 + [-sin 60°]2 – cot 30° – 2 cos 30° – 3/4 [cosec 45°]2 + [sin 60°]2 -√3 – 2√3/2 – 3/4 (√2)2 + 4 (√3/2)2 -√3 – √3 – 6/4 + 12/4 (3 – 4√3)/2 = RHS ∴ LHS = RHS Thus proved. (vii) 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 = 1 Let us consider the LHS: 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 3 sin 180°/6 sec 180°/3 – 4 sin 5(180°)/6 cot 180°/4 3 sin 30° sec 60° – 4 sin 150° cot 45° 3 sin 30° sec 60° – 4 sin (90° × 1 + 60°) cot 45° As we know that when n is odd, sin → cos. 3 sin 30° sec 60° – 4 cos 60° cot 45° 3 (1/2) (2) – 4 (1/2) (1) 3 – 2 1 = RHS ∴ LHS = RHS |
|
| 93. |
Find the value of cosec (-1410°) |
|
Answer» cosec (- 1410°) = – cosec (1410°) = – cosec[4(360°) – 30°] = – cosec (- 30°) = cosec 30° = 2 |
|
| 94. |
Find the values of the following trigonometric ratios:sin(\(-\cfrac{11\pi}6\)) |
|
Answer» Given sin \((\cfrac{-11\pi}6)\) ⇒ sin \(\cfrac{-11\pi}6\) = sin -330° ⇒ -sin 330° = -sin (90° × 3 + 60°) 330° lies in the fourth quadrant in which the sine function is negative. ∴ sin (-330)° = -sin (90° × 3 + 60°) = - (-cos 60°) = - (-1/2) = 1/2 |
|
| 95. |
Find the values of the following trigonometric ratios:sin\(\cfrac{17\pi}6\) |
|
Answer» Given sin \(\cfrac{17\pi}6\) ⇒ sin \(\cfrac{17\pi}6\) = sin 510° ⇒ 510° = (90° × 5 + 60°) 510° lies in second quadrant in which sine function is positive. ∴ sin (510°) = sin (90° × 5 + 60°) = cos (60°) = 1/2 |
|
| 96. |
Find the value of sin(- 11π/3) |
|
Answer» sin(- 11π/3) = - sin(11π/3) = - sin(4π - π/3) = sin(π/3) = √3/2 |
|
| 97. |
Find the value ofcot (13π/4) |
|
Answer» To find: Value of cot\(\frac{13\pi}{4}\) We have, cot\(\frac{13\pi}{4}\) Putting π = 180° = cot\(\frac{(13\times180^\circ)}{4}\) = cot (13 × 45°) = cot (585°) = cot [90° x 6 + 45°] = cot 45° [Clearly, 585° is in IIIrd Quadrant and the multiple of 90° is even] = 1 [\(\because\) cot 45° = 1] |
|
| 98. |
Write the value of 2 (sin6 x + cos6 x) − 3 (sin4 x + cos4 x) + 1. |
|
Answer» sin6x + cos6x = (sin2x)3 + (cos2x)3 =(sin2x + cos2x)(sin4x+cos4x - sin2xcos2x) = 1 (sin4x + cos4x – sin2xcos2x) Substituting above value in given equation ⇒ 2(sin4x + cos4x – sin2xcos2x) - 3(sin4 x + cos4 x) + 1 ⇒ 2sin4x + 2cos4x – 2sin2xcos2x – 3sin4x - 3cos4x + 1. ⇒ -sin4x - cos4x - 2sin2xcos2x + 1 ⇒ -[(sin2x)2 + (cos2x)2 - 2sin2xcos2x] + 1 ⇒ -[( sin2x + cos2x)2] + 1 ⇒ -1 + 1 ⇒ 0 |
|
| 99. |
Write the value of tan ( \(\frac{\pi}{8}\)): |
|
Answer» We have tan (\(\frac{\pi}{8}\)) = tan ( \(\frac{1}{2},\frac{\pi}{4}\) ) Using the half angle formulae, \(tan(\frac{\alpha}{8})=\frac{sin\alpha}{1+cos\alpha}\) \(tan(\frac{\pi}{8})=\frac{sin(\frac{\pi}{4})}{1+cos(\frac{\pi}{4})}\) \(=\frac{\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}}=\frac{1}{1+\sqrt{2}}\) Given, \(secβ=\frac{-5}{3},\frac{\pi}{2}<β<\pi\) ∴ \(tan^2β=1-sec^2β\) \(=1-\frac{25}{9}=\frac{-16}{9}\) ⇒ \(tanβ=\frac{-4}{3}\) (∵ \(\frac{p}{2}<β<p\)) And \(cot\alpha=\frac{1}{2},\) \(\frac{\pi}{2}<\alpha<\frac{3\pi}{2}\) |
|
| 100. |
A circular wire of radius 7.5 cm is cut and bent so as to tie along the circumference of a hoop whose radius is 120 cm. Find in degrees the angle which is subtended at the centre of the hoop. |
|
Answer» Radius of the circular wire = 7.5 cm ∴ Length of the circular wire = 2π × 7.5 = \(\frac{1}{2}\) 15 π cm [∴ Circumference = 2πr] Radius of the hoop = 120 cm Let θ be the angle subtended by the wire at the centre of the hoop, Then, \(θ=\frac{arc}{radius}\Rightarrow θ = (\frac{15\pi}{120})°\) \(=(\frac{\pi}{8})°=(\frac{\pi}{8}\times\frac{180}{\pi})°=22°30'\) |
|