InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
If cos A = –12/13 and cot B = 24/7, where A lies in the second quadrant and B in the third quadrant, find the values of the following:(i) sin (A + B) (ii) cos (A + B) (iii) tan (A + B) |
|
Answer» Given as cos A = -12/13 and cot B = 24/7 As we know that, A lies in second quadrant, B in the third quadrant. Since, in the second quadrant sine function is positive. Since, in the third quadrant, both sine and cosine functions are negative. On using the formulas, sin A = √(1 – cos2 A), sin B = – 1/√(1 + cot2 B) and cos B = -√(1 – sin2 B), Therefore let us find the value of sin A and sin B sin A = √(1 – cos2 A) = √(1 – (-12/13)2) = √(1 – 144/169) = √((169 - 144)/169) = √(25/169) = 5/13 sin B = – 1/√(1 + cot2 B) = – 1/√(1 + (24/7)2) = – 1/√(1 + 576/49) = -1/√((49 + 576)/49) = -1/√(625/49) = -1/(25/7) = -7/25 cos B = -√(1 – sin2 B) = -√(1 - (-7/25)2) = -√(1 - (49/625)) = -√((625 - 49)/625) = -√(576/625) = -24/25 Therefore, now let us find (i) sin (A + B) As we know that sin (A + B) = sin A cos B + cos A sin B Therefore, sin (A + B) = sin A cos B + cos A sin B = 5/13 × (-24/25) + (-12/13) × (-7/25) = -120/325 + 84/325 = -36/325 (ii) cos (A + B) As we know that cos (A + B) = cos A cos B – sin A sin B Therefore, cos (A + B) = cos A cos B – sin A sin B = -12/13 × (-24/25) – (5/13) × (-7/25) = 288/325 + 35/325 = 323/325 (iii) tan (A + B) As we know that tan (A + B) = sin (A + B)/cos (A + B) = (-36/325)/(323/325) = -36/323 |
|
| 152. |
If tan θ =-4/3, then sinθ is(A) -4/5 but not 4/5(B) -4/5 or 4/5(C) 4/5 but not -4/5(D) None of these |
|
Answer» Correct choice is B. Since tan θ = -4/3 is negative, θ lies either in second quadrant or in fourth quadrant. Thus sin θ =4/5 if θ lies in the second quadrant or sin θ = -4/5, if θ lies in the fourth quadrant |
|
| 153. |
Find extreme value of cosx + cosy + cos(x+y) |
|
Answer» Also, we know that cos function attains its max value 1 at 0 radians. so, x = y = 0
Hence, the maximum value of cos x + cos y + cos (x+y) = 1 + (1)+1=3 Thus, the maximum value of cos x + cos y + cos (x+y) = 3 We know that the cos function attains its minimum value as -1 at π radians.
Thus, the minimum value of cos x + cos y + cos (x + y) = -1 + (-1 ) +1 = -1 Also, we know that cos function attains its max value 1 at 0 radians. so, x = y = 0
Hence, the maximum value of cos x + cos y + cos (x + y) = 1 + (1 )+1 = 3 Thus, the maximum value of cos x + cos y + cos (x + y) = 3 and minimum value = -1 |
|
| 154. |
In ∆ ABC, Prove that: a2 = (b + c)2 − 4bc \(cos^2\frac{A}{2}\). |
|
Answer» RHS = (b + c)2 − 4bc cos2\(\frac{A}{2}\). = b2 + c2 + 2bc − 4bc \((\frac{cos\,A + 1}{2})\) = b2 + c2 + 2bc – 2bc (cos A + 1) = b2 + c2 − 2bc .\(\frac{b^2+c^2-a^2}{2bc}\) = b2 + c2 – (b2 + c2 – a2) = b2 + c2 – b2 – c2 + a2 = a2 = LHS ∴ LHS = RHS |
|
| 155. |
Prove that : \(\frac{b^2-c^2}{a^2}=\frac{sin(B-C)}{sin(B+C)}\) |
|
Answer» LHS = \(\frac{b^2-c^2}{a^2}\) = \(\frac{k^2\,sin^2\,B -k^2sin^2\,C}{k^2\,sin^2A}\) = \(\frac{sin^2\,B -sin^2\,C}{sin^2A}\) = \(\frac{sin\,(B+C) -sin(B-C)}{sin^2[180°-(B+C)]}\) = \(\frac{sin\,(B+C) -sin(B-C)}{sin^2(B+C)}\) = \(\frac{sin(B-C)}{sin(B+C)}\) = RHS ∴ LHS = RHS |
|
| 156. |
In a Δ ABC, a = 3, b = 5 and c = 7, find the values of cos A, cos B, cos C. |
|
Answer» cos A = \(\frac{b^2+c^2-a^2}{2bc}\) \(=\frac{5^2+7^2-3^2}{2.5.7}\) \(=\frac{25+49-9}{70}\) \(=\frac{65}{70}\) \(=\frac{13}{14}\) cos B = \(\frac{a^2+c^2-b^2}{2bc}\) \(=\frac{3^2+7^2-5^2}{2.3.7}\) \(=\frac{9+49-25}{42}\) \(=\frac{33}{42}\) \(=\frac{11}{14}\) cos C = \(\frac{a^2+b^2-c^2}{2ab}\) \(=\frac{3^2+5^2-7^2}{2.3.5}\) \(=\frac{9+25-49}{30}\) \(=-\frac{15}{30}\) \(=-\frac{1}{2}\) |
|
| 157. |
In ABC, ac cos B – bc cos A = ____________. (a) a2 – b2 (b) b2 – c2 (c) c2 – a2 (d) a2 – b2 – c2 |
|
Answer» Correct option is: (a) a2 – b2 |
|
| 158. |
In a Δ ABC, if cos C = \(\frac{sin\,A}{2sin\,B},\) Prove that triangle is isosceles. |
|
Answer» \(\frac{sin\,A}{2sin\,{B}}\) = cos C Sin A = 2 sin B cos C ka= 2kb \(\frac{a^2+b^2-c^2}{2ab}\) a = \(\frac{a^2+b^2-c^2}{2ab}\) a2 = a2 + b2 – c2 ⇒ b2 – c2 = 0 ⇒ b2 = c2 ⇒ b = c Hence, the triangle is isosceles. |
|
| 159. |
In any ∆ ABC, Prove that :\(\frac{a+b}{c}=\frac{cos(\frac{A-B}{2})}{sin\frac{c}{2}}\) |
|
Answer» \(\frac{a}{sin\,A}=\frac{b}{sin\,B}=\frac{c}{sin\,C}=k\) ⇒ k sin A, b = k sin B and c = k sin C LHS = \(\frac{a+b}{c}=\frac{k\,sin\,A+k\,sin\,B}{k\,sin\,C}\) \(=\frac{k(sin\,A+sin\,B)}{k\,sin\,C}\) \(=\frac{sin\,A+sin\,B}{sin\,C}\) \(=\frac{2sin\,\frac{A+B}{2}\,cos\frac{A-B}{2}}{2\,sin\frac{C}{2}cos\frac{C}{2}}\) \(=\frac{sin\,(90°-\frac{C}{2})cos\frac{A-B}{2}}{\,sin\frac{C}{2}cos\frac{C}{2}}\) [∴ \(\frac{A+B}{2}\)= 90° − \(\frac{C}{2}\)] \(=\frac{cos\frac{C}{2}cos\frac{A-B}{2}}{\,sin\frac{C}{2}cos\frac{C}{2}}\) \(=\frac{cos\frac{A-B}{2}}{\,sin\frac{C}{2}}\) = RHS ∴ LHS = RHS |
|
| 160. |
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is _______. |
|
Answer» x2 - 2x/(sin2A) + 1 |
|
| 161. |
In ∆ ABC, if a = 18, b = 24, c = 30 and ∠C = 90°, find sin A and sin B. |
|
Answer» \(\frac{sin\,A}{a}=\frac{sin\,B}{b}=\frac{sin\,C}{c}\) \(\frac{sin\,A}{18}=\frac{sin\,B}{24}=\frac{sin\,90°}{30}\) \(\frac{sin\,A}{18}=\frac{sin\,B}{24}=\frac{1}{30}\) \(sin\,A=\frac{18}{30}=\frac{3}{5}\) \(sin\,B=\frac{24}{30}=\frac{4}{5}\) |
|
| 162. |
Prove that : \(a\,cos\,(\frac{B-C}{2})=(b\,+\,c)\,sin\frac{A}{2}.\) |
|
Answer» LHS = \(a\,cos\frac{B-C}{2}\) \(=k\,sin\,A\,cos\frac{B-C}{2}\) \(=k\,sin\,(B+C)\,cos\frac{B-C}{2}\) [ ∴ A + B +C = 180° ∴ sin A = sin [180° − (B + C) ] \(=\frac{cos\frac{C}{2}cos\frac{A-B}{2}}{sin\frac{C}{2}cos\frac{C}{2}}\) \(=\frac{cos\frac{A-B}{2}}{sin\frac{C}{2}}\) = RHS ∴ LHS = RHS |
|
| 163. |
If tan A = \(\frac{a}{a+1}\) and tan B = \(\frac{1}{2a+1}\), then find the value of A + B. |
|
Answer» We know that, tan (A + B) = \(\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}\) ∴ tan(A + B) = \(\frac{\frac{a}{a+1}+\frac{1}{2a+1}}{1-(\frac{a}{a+1})(\frac{1}{2a+1})}\) ⇒ tan(A + B) = \(\frac{a(2a+1)+(a+1)}{(a+1)(2a+1)-a}\) ⇒ tan(A + B) = \(\frac{2a^2+2a+1}{2a^2+2a+1}\) ⇒ tan(A + B) = 1 ⇒ tan(A + B) = tan \((\frac{x}{4})\) ⇒ A + B = \(\frac{x}{4}\) |
|
| 164. |
Prove that : a (cos C − cos B) = 2 (b − C) cos2\(\frac{A}{2}.\) |
|
Answer» LHS = a [cos C – cos B] = \(a[2\,sin{\frac{B+C}{2}sin\frac{B-C}{2}}]\) \(= a[2\,cos{\frac{A}{2}sin\frac{B-C}{2}}]\) \(= 2k\,sin\,A[cos{\frac{A}{2}sin\frac{B-C}{2}}]\) \(= 2k\,2\,sin\,\frac{A}{2}\,cos\frac{A}{2}[cos{\frac{A}{2}sin\frac{B-C}{2}}]\) \(= 2k\,cos^2\frac{A}{2}[2\,sin{\frac{A}{2}sin\frac{B-C}{2}}]\) \(= 2k\,cos^2\frac{A}{2}k[sin\{90°-(\frac{B+C}{2})\}sin\frac{B-C}{2}]\) \(= 2\,cos^2\frac{A}{2}k[cos(\frac{B+C}{2})sin(\frac{B-C}{2})]\) \(= 2\,cos^2\frac{A}{2}k[sin\,B\,-sin\,C]\) \(= 2\,cos^2\frac{A}{2}[k\,sin\,B\,-k\,sin\,C]\) \(= 2\,cos^2\frac{A}{2}[b \,-\,c]\) = RHS ∴ LHS = RHS |
|
| 165. |
The value of cos (36° – A) cos (36° + A) + cos (54° + A) cos (54° – A) is A. sin 2 A B. cos 2A C. cos 3A D. sin 3A |
|
Answer» cos(54° + A) = sin(36° – A) cos(54° - A) = sin(36° + A) cos (36° – A) cos (36° +A)+ sin(36° - A)sin(36° + A) = cos(2A) |
|
| 166. |
The value of cos4 x + sin4 x – 6 cos2 x sin2 x isA. cos 2xB. sin 2xC. cos 4xD. None of these |
|
Answer» Correct answer is A. Given expression is cos4 x + sin4 x – 6 cos2 x sin2 x = [(cos2x)2 + (sin2x)2 - 2 cos2x sin2x] - 4 cos2x sin2x [using the formula a2 + b2 = (a + b)2 - 2ab] = (cos2x - sin2x)2 - 4 cos2x sin2x [using the formula cos 2x = cos2 x – sin2 x] = (cos2x)2 – (2 sinx cosx )2 [ using the formula sin 2x = 2 sin x cos x ] = (cos 2x)2 – (sin 2x)2 [ using the formula cos 2x = cos2 x – sin2 x ] = cos 4x Therefore cos4 x + sin4 x – 6 cos2 x sin2 x = cos 4x |
|
| 167. |
The value of cos2 \((\frac{π}6+x)\) - sin2 \((\frac{π}6-x)\) isA. \(\frac{1}2\) cos 2xB. 0 C. -\(\frac{1}2\)cos2xD.\(\frac{1}2\) |
|
Answer» cos2 A – sin2 B = cos(A + B)cos(A - B) = cos \((\frac{π}3)\) cos (2x) = \(\frac{1}2\) cos(2x) |
|
| 168. |
If in a ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C = A. 6 B. 1 C. 1/6 D. None of these |
|
Answer» A + B = π - C \(\frac{tanA+tanB}{1-tanAtanB}\) = - tan c tan A + tan B + tan C = tanA tanB tanC cot A cot B cot C = \(\frac{1}6\) |
|
| 169. |
If 3 sin x + 4 cos x = 5, then 4 sin x – 3 cos x = A. 0 B. 5 C. 1 D. None of these |
|
Answer» 3sin(x) + 4cos(x) = 5 \(\frac{3}5\) sin x + \(\frac{4}5\) cos x = 1 cos(37°- x) = cos 0° (∵ x = 37°) 4sin(x) - 3cos(x) = k \(4\times\frac{3}5-3\times\frac{4}5\) = 0 |
|
| 170. |
If A + B = C, then write the value of tan A tan B tan C. |
|
Answer» A + B = C tan A + tan B = tan C(1- tan A tan B) tan C – tan A – tan B = tan A tan B tan C. |
|
| 171. |
The value of cos (36° – A) cos (36° + A) + cos(54° – A) cos (54° + A) isA. cos 2AB. sin 2AC. cos AD. 0 |
|
Answer» Correct answer is A. Given expression cos (36° – A) cos (36° + A) + cos(54° – A) cos (54° + A) In the above expression angle cos(54° + A) = sin[90° - (54° + A)] And cos(54° - A) = sin[90° - (54° + A)] [using cos θ = sin (90° - θ)] Now substituting the same in the expression = cos (36° – A) cos (36° + A) + sin[90°- (54°– A)] sin[90°- (54° + A)] = cos (36° – A) cos (36° + A) + sin (36° + A) sin (36° - A) = cos (36° + A) cos (36° – A) + sin (36° + A) sin (36° - A) [using cos (A - B) = cos A cos B + sin A sin B] = cos [(36° + A) – (36° - A)] = cos (2A) |
|
| 172. |
If tan A = \(\frac{a}{a+1}\) and tan B = \(\frac{1}{2a+1}\),then the value of A + B isA. 0 B. \(\frac{π}2\)C.\(\frac{π}3\)D.\(\frac{π}4\) |
|
Answer» put a = 0 tan(A) = 0 tan(B) =1 tan A + B = \(\frac{tanA+tanB}{1-tanAtanB}\) tan A + B = \(\frac{0+1}{1-0}\) tan A + B = 1 tan A + B = tan-11 tan A + B = \(\frac{π}4\) |
|
| 173. |
If a = b cos \(\frac{2π}3\) = c cos\(\frac{4π}3\),then write the value of ab + bc + ca. |
|
Answer» a = b cos \(\frac{2π}3\) = c cos\(\frac{4π}3\) = k a = k b—2k c=-2k ab + bc + ca.= 0 |
|
| 174. |
Prove that:2sin75°sin15° = 1/2 |
|
Answer» L.H.S = 2sin75°sin15° = 2sin(45° + 30°)sin(45° - 30°) = cos(45° - 30° - 45° - 30°) - (cos45° + 30° + 45° - 30°) = cos(-60°) - cos90° = cos60° - 0 = \(\frac{1}{2}\) |
|
| 175. |
Prove that(i) cos2 π/4 – sin2 π/12 = √3/4(ii) sin2 (n + 1) A – sin2 nA = sin(2n + 1) A sin A |
|
Answer» (i) Let us consider the LHS cos2 π/4 – sin2 π/12 As we know that, cos2A – sin2 B = cos (A + B) cos (A – B) Therefore, cos2 π/4 – sin2 π/12 = cos(π/4 + π/12) cos(π/4 – π/12) = cos 4π/12 cos 2π/12 = cos π/3 cos π/6 = 1/2 × √3/2 = √3/4 = RHS ∴ LHS = RHS Thus proved. (ii) Let us consider the LHS sin2(n + 1) A – sin2nA As we know that, sin2A – sin2 B = sin(A + B) sin(A – B) Here, A = (n + 1)A and B = nA Therefore, sin2(n + 1) A – sin2n A = sin((n + 1) A + nA) sin((n + 1) A – nA) = sin(nA + A + nA) sin(nA + A – nA) = sin(2nA + A) sin (A) = sin(2n + 1) A sin A = RHS ∴ LHS = RHS Thus proved. |
|
| 176. |
Prove that: tan 36° + tan 9° + tan 36° tan 9° = 1 |
|
Answer» We have 36° + 9° = 45° ⇒ tan(36° + 9°) = tan 45° We know that tan(A + B) = \(\frac{tanA+tanB}{1-tanAtanB}\) ⇒ \(\frac{tan36°+tan9°}{1-tan36°tan9°}\) = 1 ⇒ tan 36° + tan 9° = 1 – tan 36° tan 9° ∴ tan 36° + tan 9° + tan 36° tan 9° = 1 Hence proved. |
|
| 177. |
Prove that:\(tan\frac{π}{12}+tan\frac{π}6+tan\frac{π}{12}tan\frac{π}6\) = 1 |
|
Answer» ⇒ π/12 = 15° And π/6 = 30° We have 15° + 30° = 45° ⇒ tan(15° + 30°) = tan 45° We know that tan(A + B) = \(\frac{tanA+tanB}{1-tanAtanB}\) ⇒ \(\frac{tan15°+tan30°}{1-tan15°tan30°}\) = 1 ⇒ tan15° + tan30° = 1 – tan15° tan30° ∴ tan15° + tan30° + tan15° tan30° = 1 Hence, proved. |
|
| 178. |
If sin x = cosec x = 2, then write the value of sinn x + cosecn x. |
|
Answer» sin x+ cosec x = 2 ⇒ sin x + \(\cfrac1{sin\,\text x}\) ⇒ sin2x +1 = 2sin x ⇒ sin2x - 2sin x+1 = 0 ⇒ (sin x - 1)2 = 0 ⇒ sin x = 1 As sin x = 1 sinnx = 1 ∴ sinn x + cosecnx ⇒ sinn x + \(\cfrac1{sin^n\,\text x}\)= 1 + 1 ⇒ 2. |
|
| 179. |
Prove that: tan 8x – tan6x – tan 2x = tan 8x tan 6x tan 2x |
|
Answer» We have 8x = 6x + 2x ⇒ tan 8x = tan(6x + 2x) We know that tan(A + B) = \(\frac{tanA+tanB}{1-tanAtanB}\) ⇒ tan 8x = \(\frac{tan\,6x+tan\,2x}{1-tan\,6x\,tan\,2x}\) ⇒ tan8x (1 – tan6x tan2x) = tan6x + tan2x ⇒ tan8x – tan8x tan 6x tan2x = tan6x + tan2x ∴ tan8x – tan6x – tan2x = tan8x tan6x tan2x Hence, proved. |
|
| 180. |
If sin x = cos2 x, then write the value of cos2 x (1 + cos2 x). |
|
Answer» Given sin x = cos2x To find the value of cos2 x (1 + cos2 x). ⇒ cos2 x (1 + cos2 x). ⇒ cos2 x + cos4 x. As cos2x = 1- sin2x the above equation becomes ⇒ 1- sin2x + sin2x ⇒ 1 |
|
| 181. |
Prove that:(i) tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x(ii) tan π/12 + tan π/6 + tan π/12 tan π/6 = 1(iii) tan 36° + tan 9° + tan 36° tan 9° = 1(iv) tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x |
|
Answer» (i) Let us consider the LHS tan 8x – tan 6x – tan 2x tan 8x = tan(6x + 2x) As we know that, tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, tan 8x = (tan 6x + tan 2x)/(1 – tan 6x tan 2x) On cross-multiplying we get, tan 8x(1 – tan 6x tan 2x) = tan 6x + tan 2x tan 8x – tan 8x tan 6x tan2x = tan 6x + tan 2x Now, upon rearranging we get, tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x = RHS ∴ LHS = RHS Thus proved. (ii) As we know, π/12 = 15° and π/6 = 30° Therefore, we have 15° + 30° = 45° tan(15° + 30°) = tan 45° As we know that, tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 15° + tan 30°)/(1 – tan 15° tan 30°) = 1 tan 15° + tan 30° = 1 – tan 15° tan 30° Now, upon rearranging we get, tan15° + tan30° + tan15° tan30° = 1 Thus proved. (iii) As we know 36° + 9° = 45° Therefore we have, tan (36° + 9°) = tan 45° As we know that, tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 36° + tan 9°)/(1 – tan 36° tan 9°) = 1 tan 36° + tan 9° = 1 – tan 36° tan 9° Now, upon rearranging we get, tan 36° + tan 9° + tan 36° tan 9° = 1 Thus proved. (iv) Let us consider the LHS tan 13x – tan 9x – tan 4x tan 13x = tan (9x + 4x) As we know that, tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, tan 13x = (tan 9x + tan 4x)/(1 – tan 9x tan 4x) On cross-multiplying we get, tan 13x (1 – tan 9x tan 4x) = tan 9x + tan 4x tan 13x – tan 13x tan 9x tan 4x = tan 9x + tan 4x Now, upon rearranging we get, tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x = RHS ∴ LHS = RHS Thus proved. |
|
| 182. |
Write the maximum value of sin (cos x) |
|
Answer» Value of cos(x) varies from -1 to 1 for all R and sin(x) is increasing in [-π/2,π/2] ∴ sin(cos x) has max value of sin1. |
|
| 183. |
Find the maximum and minimum values of each of the following trigonometrical expressions:(i) 12 sin x – 5 cos x(ii) 12 cos x + 5 sin x + 4(iii) 5 cos x + 3 sin (π/6 – x) + 4 (iv) sin x – cos x + 1 |
|
Answer» As we know that the maximum value of A cos α + B sin α + C is C + √(A2 + B2), And here the minimum value is C – √(a2 + B2). (i) Given as f(x) = 12 sin x – 5 cos x Here, A = -5, B = 12 and C = 0 –√((-5)2 + 122) ≤ 12 sin x – 5 cos x ≤ √((-5)2 + 122) –√(25 + 144) ≤ 12 sin x – 5 cos x ≤ √(25 + 144) –√169 ≤ 12 sin x – 5 cos x ≤ √169 -13 ≤ 12 sin x – 5 cos x ≤ 13 Thus, the maximum and minimum values of f(x) are 13 and -13 respectively. (ii) 12 cos x + 5 sin x + 4 Given as f(x) = 12 cos x + 5 sin x + 4 Here, A = 12, B = 5 and C = 4 4 – √(122 + 52) ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √(122 + 52) 4 – √(144 + 25) ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √(144 + 25) 4 – √169 ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √169 -9 ≤ 12 cos x + 5 sin x + 4 ≤ 17 Thus, the maximum and minimum values of f(x) are -9 and 17 respectively. (iii) 5 cos x + 3 sin (π/6 – x) + 4 Given as f(x) = 5 cos x + 3 sin (π/6 – x) + 4 As we know that, sin (A – B) = sin A cos B – cos A sin B f(x) = 5 cos x + 3 sin (π/6 – x) + 4 = 5 cos x + 3 (sin π/6 cos x – cos π/6 sin x) + 4 = 5 cos x + 3/2 cos x – 3√3/2 sin x + 4 = 13/2 cos x – 3√3/2 sin x + 4 Therefore, here A = 13/2, B = – 3√3/2, C = 4 4 – √[(13/2)2 + (-3√3/2)2] ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + √[(13/2)2 + (-3√3/2)2] 4 – √[(169/4) + (27/4)] ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + √[(169/4) + (27/4)] 4 – 7 ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + 7 -3 ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 11 Thus, the maximum and minimum values of f(x) are -3 and 11 respectively. (iv) sin x – cos x + 1 Given as f(x) = sin x – cos x + 1 Therefore, here A = -1, B = 1 And c = 1 1 – √[(-1)2 + 12] ≤ sin x – cos x + 1 ≤ 1 + √[(-1)2 + 12] 1 – √(1 + 1) ≤ sin x – cos x + 1 ≤ 1 + √(1 + 1) 1 – √2 ≤ sin x – cos x + 1 ≤ 1 + √2 Thus, the maximum and minimum values of f(x) are 1 – √2 and 1 + √2 respectively. |
|
| 184. |
Write the maximum and minimum values of sin (sin x). |
|
Answer» sin(x) has maximum value at x = π/2 and its minimum at x = -π/2 which are 1 and -1 respectively. As 1 < π/2; so, the argument of the outer sin always lies within the interva [-π/2, π/2] So the maximum and minimum of the given function are in 1 and - sin 1. |
|
| 185. |
Write the maximum and minimum values of cos (cos x). |
|
Answer» Let cos x = t Range of t =(-1,1) ∴ Maximum and Minimum value of cos x is 1 and -1 respectively. Now, cos(-x) = cos x ∴ Range of cos(cos x) = [cos(1),cos(0)] ⇒ cos(cos x) = [cos1,0] |
|
| 186. |
Write the maximum and minimum values of 3 cos x + 4 sin x + 5. |
|
Answer» the maximum value of (a cosx + bsinx) = \(\sqrt{a^2+b^2}\) So maximum value = \(\sqrt{9+16}\) = 5 the minimum value of (a cosx + b sinx) = - \(\sqrt{a^2+b^2}\) minimum value = - 5 |
|
| 187. |
Write the maximum values of 12 sin x – 9 sin2 x. |
|
Answer» f(x) = 12sin x - 9(sinx)2 f(x) = - (3sin x - 2)2 + 4 - 1 ≤ sin x ≤ 1 f(x)ϵ-(3[-1,1]-2)2+4 f(x)ϵ-([-3,3]-2)2+4 f(x)ϵ-([-5,1])2+4 f(x)ϵ-[0,25]+4 f(x)ϵ[-25,0]+4 f(x)ϵ[-21,4] |
|
| 188. |
If 12 sin x – 9 sin2 x attains its maximum value at x = α, then write the value of sin α. |
|
Answer» f(x) =12sin(x) - 9sin 2(x) f’(x) = 12cos(x) -18sin(x)cos(x) f’(x) = 0 for the maximum value of f(x) 12cos(x) -18sin(x)cos(x) = 0 ⇒ sinx = \(\frac{2}3\) |
|
| 189. |
If tan (A + B) = p and tan (A – B) = q, then write the value of tan 2B. |
|
Answer» tan (x - y) = \(\frac{tanx-tany}{1+tanxtany}\) tan[(A + B) - (A - B)] = \(\frac{tan(A+B)-tan(A-B)}{1+tan(A-B)tan(A+B)}\) tan (2B) = \(\frac{p-q}{1+pq}\) |
|
| 190. |
If x = sin14x + cos20 x, then write the smallest interval in which the value of x lie. |
|
Answer» We know the range of sin x is -1 ≤ sin x ≤ 1 ∴ 0 ≤ sin 14x ≤ 1 We know the range of cos x is -1 ≤ cos x ≤ 1 ∴ 0 ≤ cos 20x ≤ 1 0 < sin14x + cos20x ≤ 2 which means that the value of x lies in the interval [0,2] But there's a problem, when sine is 0 cosine is 1, they might even be 0 and -1 at particular points (not in this case, since they are even powers), so the minimum we would get should be more than 0. Hence the value of x lies in (0,1] |
|
| 191. |
If sin x = 12/13 and lies in the second quadrant, find the value of sec x + tan x. |
|
Answer» Given as sin x = 12/13 and x lies in the second quadrant. As we know, in second quadrant, sin x and cosec x are positive and all other ratios are negative. On using the formulas, cos x = √(1 - sin2 x) = – √(1 - (12/13)2) = – √(1 - (144/169)) = – √(169 - 144)/169 = – 5/13 As we know, tan x = sin x/cos x sec x = 1/cos x Then, tan x = (12/13)/(-5/13) = -12/5 sec x = 1/(-5/13) = -13/5 sec x + tan x = -13/5 + (-12/5) = (-13 - 12)/5 = -25/5 = -5 Thus, sec x + tan x = -5 |
|
| 192. |
If sin x = 3/5, tan y = 1/2 and π/2 < x < π < y < 3π/2 find the value of 8 tan x - √5 sec y. |
|
Answer» Given as sin x = 3/5, tan y = 1/2 and π/2 < x< π< y< 3π/2 As we know that, x is in second quadrant and y is in third quadrant. Since, in second quadrant, cos x and tan x are negative. Since, in third quadrant, sec y is negative. On using the formula, cos x = – √(1 - sin2 x) tan x = sin x/cos x Then, cos x = – √(1 - sin2 x) = – √(1 – (3/5)2) = – √(1 – 9/25) = – √((25 - 9)/25) = – √(16/25) = – 4/5 tan x = sin x/cos x = (3/5)/(-4/5) = 3/5 × -5/4 = -3/4 As we know that sec y = – √(1 + tan2 y) = – √(1 + (1/2)2) = – √(1 + 1/4) = – √((4 + 1)/4) = – √(5/4) = – √5/2 Then, 8 tan x – √5 sec y = 8(-3/4) – √5(-√5/2) = -6 + 5/2 = (-12 + 5)/2 = -7/2 Thus, 8 tan x – √5 sec y = -7/2 |
|
| 193. |
Which of the following is not correct?A. sin θ = – 1/5B. cos θ = 1C. sec θ = ½D. tan θ = 20 |
|
Answer» C. sec θ = ½ Explanation: According to the question, We know that, a) sin θ = – 1/5 is correct since Sin θ ∈ [-1,1] b) cos θ = 1 is correct since Cos θ ∈ [-1,1] c) sec θ = ½ ⇒ (1/cos θ) = ½ ⇒cos θ=2 is incorrect since Cos θ ∈ [-1,1] d) tan θ = 20 is correct since tan θ ∈ R. Thus, option (C) sec θ = ½ is the correct answer. |
|
| 194. |
The value of tan 1° tan 2° tan 3°… tan 89° isA. 0B. 1C. ½D. Not defined |
|
Answer» B. 1 Explanation: According to the question, tan 1° tan 2° tan 3°… tan 89° = tan 1° tan 2° … tan 45° tan (90-44°) tan(90-43°)…tan (90-1°) = tan 1°tan 2° … tan 45°cot 44°cot 43°…cot 1° [∵tan (90-θ)=cot θ] = tan 1° cot 1° tan 2° cot 2°…tan45°… tan 89° cot 89° =1.1….1 = 1 Thus, option (B) 1 is the correct answer. |
|
| 195. |
The value of tan 1° tan 2° tan 3° ... tan 89° is(A) 0 (B) 1(C)1/2 (D) Not defined |
|
Answer» Answer is (B) tan 1° tan 2° tan 3° … tan 89° = [tan 1° tan 2° … tan 44°] tan 45°[tan (90° – 44°) tan (90° – 43°)… tan (90° – 1°)] = [tan 1° tan 2° … tan 44°] [cot 44° cot 43°……. cot 1°] =[tan 1°*cot 1°* tan 2°*cot 2°.....] (tan 1°*cot 1° = 1) = 1*1… 1*1 = 1 |
|
| 196. |
The value of sin (45° + θ) – cos (45° – θ) is(A) 2 cosθ (B) 2 sinθ (C) 1 (D) 0 |
|
Answer» Answer is (D) sin (45° + ) – cos (45° – ) = sin (45° + ) – sin (90° – (45° – )) = sin (45° + ) – sin (45°+ ) = 0 |
|
| 197. |
Prove that sinx + sin3x + sin5x + sin7x = 4cos x cos2x sin4x |
|
Answer» LHS = (sin7x + sin x) + (sin5x + sin3x) = 2sin4xcos3x + 2sin4xcosx = 2sin4x(cos3x + cosx) = 2sin4x2cos2x cos x = 4cosxcos2xsin4x = RHS. |
|
| 198. |
Prove that cos4x = 1 – 8sin2x cos2x. |
|
Answer» LHS = cos2(2x) = 1- 2sin22x = 1 - 2(2sinx cosx)2 = 1- 8sin2xcos2x = RHS |
|
| 199. |
Prove that: sin \(\cfrac{13\pi}3\) sin \(\cfrac{2\pi}3\) + cos \(\cfrac{4\pi}3\) sin \(\cfrac{13\pi}6\) = \(\cfrac12\) |
|
Answer» LHS = sin \(\cfrac{13\pi}3\) sin \(\cfrac{2\pi}3\) + cos \(\cfrac{4\pi}3\) sin \(\cfrac{13\pi}6\) = sin 780° sin 120° + cos 240° sin 390° = sin (90° × 8 + 60°) sin (90° × 1 + 30°) + cos (90° × 2 + 60°) sin (90° × 4 + 30°) We know that when n is odd, sin → cos. = sin 60° cos 30° + [-cos 60°] sin 30° = sin 60° cos 30° - sin 30° cos 60° We know that sin A cos B – cos A sin B = sin (A – B) = sin (60° - 30°) = sin 30° = 1/2 = RHS Hence proved. |
|
| 200. |
Prove that:sin \(\cfrac{13\pi}3\) sin \(\cfrac{8\pi}3\) + cos \(\cfrac{2\pi}3\) sin \(\cfrac{5\pi}6\) = \(\cfrac12\) |
|
Answer» LHS = sin \(\cfrac{13\pi}3\) sin \(\cfrac{8\pi}3\) + cos \(\cfrac{2\pi}3\) sin \(\cfrac{5\pi}6\) = sin 780° sin 480° + cos 120° sin 150° = sin (90° × 8 + 60°) sin (90° × 5 + 30°) + cos (90° × 1 + 30°) sin (90° × 1 + 60°) We know that when n is odd, cos → sin and sin → cos. = sin 60° cos 30° + [-sin 30°] cos 60° = sin 60° cos 30° - sin 30° cos 60° We know that sin A cos B – cos A sin B = sin (A – B) = sin (60° - 30°) = sin 30° = 1/2 = RHS Hence proved. |
|