InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
Find the value of following expression: (1 + i)6 + (1 – i)3 |
|
Answer» (1 + i)6 + (1 – i) 3 = {(1 + i)2 }3 + (1 – i)2 (1 – i) = {1 + i2 + 2i}3 + (1 + i2 – 2i)(1 – i) = {1 – 1 + 2i} 3 + (1 – 1 – 2i)(1 – i) = (2i)3 + (– 2i)(1 – i) = 8i3 + (– 2i) + 2i2 [since i3 = – i, i2 = – 1] = – 8i – 2i – 2 = – 10 i – 2 = – 2(1 + 5i) |
|
| 52. |
Find the value of following expression: 1 + i2 + i4 + i6 + i8 + ... + i20 |
|
Answer» 1+ i2 + i4 + i6 + i8 + ... + i20 = 1 + (– 1) + 1 + (– 1) + 1 + ... + 1 = 1 |
|
| 53. |
Find the value of following expression: i5 + i10 + i15 |
|
Answer» i5 + i10 + i15 = i (4 + 1) + i (8 + 2) + i (12 + 3) = (i4)1×i + (i4)2×i2 + (i4)3×i3 = (i4)1×i + (i4)2×i2 + (i4)3×i2×i = 1×i + 1×(– 1) + 1×(– 1)×i = i – 1 – i = – 1 |
|
| 54. |
Find the value of following expression: i + i2 + i3 + i4 |
|
Answer» i + i2 + i3 + i4 = i + i2 + i2×i + i4 = i – 1 + (– 1)×i + 1 since i4 = 1, i2 = – 1 = i – 1 – i + 1 = 0 |
|
| 55. |
Find the value of following expression: i30 + i80 + i120 |
|
Answer» i30 + i80 + i120 = i(28 + 2) + i80 + i120 = (i4)7 × i2 + (i4)20 + (i4)30 = – 1 + 1 + 1 = 1 [since i4 = 1, i2 = – 1] i30 + i80 + i120 = 1 |
|
| 56. |
Find the value of following expression: i49 + i68 + i89 + i110 |
|
Answer» i49 + i68 + i89 + i110 = i(48 + 1) + i68 + i(88 + 1) + i(108 + 2) = (i4)12 × i + (i4)17 + (i4)11 × i + (i4)27 × i2 = i + 1 + i – 1 = 2i [since i4 = 1, i2 = – 1] i49 + i68 + i89 + i110 = 2i |
|
| 57. |
Show that 1 + i10 + i20 + i30 is a real number ? |
|
Answer» 1 + i10 + i20 + i30 = 1 + i (8 + 2) + i20 + i (28 + 2) = 1 + (i4)2 × i2 + (i4)5 + (i4)7 × i2 = 1 – 1 + 1 – 1 = 0 [since i4 = 1, i2 = – 1] Hence , 1 + i10 + i20 + i30 is a real number. |
|
| 58. |
For z = 2 + 3i, verify the following: \(\overline{(\bar z)}\) = z |
|
Answer» z = 2 + 3i ∴ \(\bar z\) = 2 – 3i ∴ \(\bar z\) = 2 + 3i = z |
|
| 59. |
For z = 2 + 3i, verify the following: \(\overline{z(\bar z)}\) = |z|2 |
|
Answer» z \(\bar z\)= (2 + 3i) (2 – 3i) = 4 – 9i2 = 4 – 9(-1) …..[∵ i = -1] = 13 |z|2 = \((\sqrt{2^2+3^2})^2\) = 22 + 32 = 4 + 9 = 13 |
|
| 60. |
For z = 2 + 3i, verify the following: z - \(\bar z\) = 6i |
|
Answer» z – \(\bar z\)= (2 + 3i) – (2 – 3i) = 2 + 3i – 2 + 3i = 6i |
|
| 61. |
Find a and b ifabi = 3a – b + 12i |
|
Answer» abi = 3a – b + 12i ∴ 0 + abi = (3a – b) + 12i Equating real and imaginary parts, we get 3a – b = 0 ∴ 3a = b …..(i) and ab = 12 ∴ b = 12/a……..(ii) Substituting b = 12/a in (i), we get 3a = 12/a 3a2= 12 a2 = 4 a = ±2 When a = 2, b = 12/a = 12/2 = 6 When a = -2, b = 12/a = 12/-2 = -6 ∴ a = 2 and b = 6 or a = -2 and b = -6 |
|
| 62. |
For z = 2 + 3i, verify the following: (z + \(\bar z\)) is real |
|
Answer» (z + \(\bar z\)) = (2 + 3i) + (2 – 3i) = 2 + 3i + 2 – 3i = 4, which is a real number. ∴ z + \(\bar z\) is real. |
|
| 63. |
If ∣z + 4∣ ≤ 3, then the greatest and the least value of ∣z + 1∣ are |
|
Answer» ∣z + 4∣ ≤ 3 ⇒−3 ≤ z + 4 ≤ 3 ⇒−6 ≤ z + 1 ≤ 0 ⇒0 ≤ −(z + 1) ≤ 6 ⇒0 ≤ ∣z + 1∣ ≤ 6 Hence, the greatest and least values are 6 and 0. |
|
| 64. |
Find the real value of a for which 3i3 - 2ai2 + (1 – a)i + 5 is real. |
|
Answer» we have, 3i3 - 2ai2 + (1 – a)i+ 5 ⟹ -3i+ 2a + (1 – a)i + 5 ⟹ (2a + 5) + i(1 – a – 3) ⟹ (2a + 5) – i(2 + a) |
|
| 65. |
Find a and b if(a + ib) (1 + i) = 2 + i |
|
Answer» (a + ib)(1 + i) = 2 + i a + ai + bi + bi2 = 2 + i a + (a + b)i + b(-1) = 2 + i ……(∵ i2 = -1) (a – b) + (a + b)i = 2 + i Equating real and imaginary parts, we get a – b = 2 ……(i) a + b = 1 …….(ii) Adding equations (i) and (ii), we get 2a = 3 ∴ a = 3/2 Substituting a = 3/2 in (ii), we get 3/2 + b = 1 ∴ b = 1 - 3/2 = -1/2 ∴ a = 3/2 and b = -1/2 |
|
| 66. |
Find a and b ifa + 2b + 2ai = 4 + 6i |
|
Answer» a + 2b + 2ai = 4 + 6i Equating real and imaginary parts, we get a + 2b = 4 …..(i) 2a = 6 ……(ii) ∴ a = 3 Substituting, a = 3 in (i), we get 3 + 2b = 4 ∴ b = 1/2 ∴ a = 3 and b = 1/2 Check: For a = 3 and b = 1/2 Consider, L.H.S. = a + 2b + 2ai = 3 + 2(1/2) + 2(3)i = 4 + 6i = R.H.S. |
|
| 67. |
Find a and b if (a + b) (2 + i) = b + 1 + (10 + 2a)i |
|
Answer» (a + b) (2 + i) = b + 1 + (10 + 2a)i 2(a + b) + (a + b)i = (b + 1) + (10 + 2a)i Equating real and imaginary parts, we get 2(a + b) = b + 1 ∴ 2a + b = 1 ……(i) and a + b = 10 + 2a -a + b = 10 …….(ii) Subtracting equation (ii) from (i), we get 3a = -9 ∴ a = -3 Substituting a = – 3 in (ii), we get -(-3) + b = 10 ∴ b = 7 ∴ a = -3 and b = 7 |
|
| 68. |
Find a and b if(a – b) + (a + b)i = a + 5i |
|
Answer» (a – b) + (a + b)i = a + 5i Equating real and imaginary parts, we get a – b = a ……(i) a + b = 5 ……(ii) From (i), b = 0 Substituting b = 0 in (ii), we get a + 0 = 5 ∴ a = 5 ∴ a = 5 and b = 0 |
|
| 69. |
If |z – 5i| = |z + 5i|, then find the locus of z. |
|
Answer» z = a + ib |a+ib-5i| = |a+ib+5i| |a+ib-5i|2 = |a+ib+5i|2 |a +i(b-5)|2 = |a + i(b+5)|2 a2+(b-5)2 = a2+(b+5)2 a2+b2+25-10b = a2+b2+25+10b 20b = 0 b = 0 b is a imaginary part of z Im(z) = \(\frac{z-\bar z}{2}\) = y = 0 Im (z) = 0 So, the locus point is real axis |
|
| 70. |
Write the value of \(\sqrt{-25} \times \sqrt{-9}\) |
|
Answer» \(\sqrt{-25} \times \sqrt{-9}\) = \(\sqrt{25}\sqrt{-1}\times\sqrt{9}\sqrt{-1}\) = 5i×3i = 15i2 = -15 |
|
| 71. |
Find the following as a single complex number x + iy:(i) (5 + 9 i) (-3 + 4 i)(ii) (-2 - 5 i) (3 - 6 i) |
|
Answer» (i) (5 + 9 i) (-3 + 4 i) = 5(-3 + 4 i ) +9 i(-3 + 4 i) = -15 + 20 i -27 i +36 i2 = -15 - 7 i - 36 = -51 - 7 i = x = -51 y = -7 (II) (-2 - 5 i) (3 - 6 i) = -2(3 - 6 i) -5 i(3 - 6 i) = -6 + 12 i - 15 i + 30 i2 = -6 -3 i +30 = 24 - 3 i = x = 24 y = -3 |
|
| 72. |
Write the value of arg(z) + arg \((\bar z)\). |
|
Answer» As we all know that, z = r(cos θ + i sin θ ) , θ = arg(z) \((\bar z)\) = r(cos(θ) - sin(θ) = r(cos(-θ)+sin(-θ) -θ = arg \((\bar z)\) So, arg(z) + arg\((\bar z)\) = θ - θ = 0 |
|
| 73. |
Find the multiplicative inverse of the following complex numbers : 1 – i |
|
Answer» Given complex number is Z=1-i We know that the multiplicative inverse of a complex number Z is Z-1 (or) \(\frac{1}{z}\) ⇒ Z-1 = \(\frac{1}{1-i}\) Multiplying and dividing with 1+i ⇒ Z-1 = \(\frac{1}{1-i}\times \frac{1+i}{1+i}\) ⇒ Z-1 = \(\frac{1+i}{1^2-(i)^2}\) We know that i2=-1 ⇒ Z-1 = \(\frac{1+i}{1-(-1)}\) ⇒ Z-1 = \(\frac{1+i}{2}\) ∴ The Multiplicative inverse of 1-i is \(\frac{1+i}{2}\) |
|
| 74. |
Find the multiplicative inverse of the following complex numbers : √5 + 3i |
|
Answer» Given complex number is Z= √5+3i We know that the multiplicative inverse of a complex number Z is Z-1 (or) \(\frac{1}{Z}\). ⇒ Z-1 = \(\frac{1}{√{5} + 3i}\) Multiplying and dividing with √5+3i ⇒ Z-1 =\(\frac{1}{√5+3i}\times\frac{√5- 3i}{√5- 3i}\) ⇒ Z-1 = \(\frac{√5 - 3i}{(√5 )^2-(3i)^2}\) ⇒ Z-1 = \(\frac{√5+3i}{5-9i^2}\) We know that i2=-1 ⇒ Z-1 = \(\frac{√5+3i}{5-9(-1)}\) ⇒ Z-1 = \(\frac{√5+3i}{14}\) ∴ The Multiplicative inverse of √5+3i is \(\frac{√5+3i}{14}\) |
|
| 75. |
If x + i y = (1 + i) (1 + 2 i) (1 + 3i), then x2 + y2 = A. 0 B. 1 C. 100 D. None of these |
|
Answer» Given that (1 + i) (1 + 2i) (1 + 3i) = x + i y …(1) We can also say that (1 - i) (1 - 2i) (1 - 3i) = x - i y …(2) Multiply and divide the eq no. 2 with eq no. 1 \(\frac{ (1 + i) (1 - i)(1 + 2i)(1 - 2i)(1 + 3i)(1 - 3i)}{(1 - i) (1 - 2i) (1 - 3i)}\) = \(\frac{(x + i y)(x - i y)}{x - i y}\) ((1)2 – (i)2)((1)2 – (2i)2)((1)2 – (3i)2) = ((x)2 – (iy)2) x2 + y2 = 2 × 5 × 10 = 100 |
|
| 76. |
If z = 1 – cos θ + i sin θ, then |z| = A. 2sin \(\frac{θ}{2}\)B. 2cos \(\frac{θ}{2}\)C. \(2|sin\frac{θ}{2}|\)D. \(2|cos\frac{θ}{2}|\) |
|
Answer» |z| = \(\sqrt{(1-cosθ)^2 + (sinθ)^2}\) =\(\sqrt{2-2cosθ}\) = \(2|sin\frac{θ}{2}|\) |
|
| 77. |
If a = cos θ + i sin θ, then \(\frac{1+a}{1-a}\) =A. cot \(\frac{θ}{2}\)B. cot θC. i cot \(\frac{θ}{2}\)D. i tan \(\frac{θ}{2}\) |
|
Answer» \(\frac{1+a}{1-a}\) = \(\frac{1+(cosθ + isinθ)}{1-(cosθ + isinθ)}\) = \(\frac{1+(cosθ + isinθ)}{1-(cosθ - isinθ)}\times \frac{(1-(cosθ )+ isinθ}{(1-cosθ )+ isinθ}\) = \(\frac{2isinθ}{2-2cosθ}\) = 0 + \(i\frac{sinθ}{1-cosθ}\) = \(icot\frac{θ}{2}\) |
|
| 78. |
State True of False:Multiplication of a non zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction. |
|
Answer» False Explanation: Let z = x + iy, where x, y > 0 i.e. z or point A (x, y) lies in first quadrant. Now, -iz = -I (x + iy) = -ix – i2y = y – ix Now, point B (y, -x) lies in fourth quadrant. Also ∠AOB = 90° Thus, B is obtained by rotating A in clockwise direction about origin. |
|
| 79. |
Express sin π/5 + i(1 – cos π/5) in polar form. |
|
Answer» Given as Z = sin π/5 + i(1 – cos π/5) On using the formula, sin 2θ = 2 sin θ cos θ 1 - cos 2θ = 2 sin2 θ Therefore, Z = 2 sin π/10 cos π/10 + i(2 sin2 π/10) = 2 sin π/10 (cos π/10 + i sin π/10) Thus, the polar form of sin π/5 + i(1 – cos π/5) is 2 sin π/10(cos π/10 + i sin π/10) |
|
| 80. |
Simplify: (-i)4n + 1, where n is a positive integer. |
|
Answer» (-i)4n + 1 = (i2. i)4n + 1 = (i3)4n + 1 = i12n + 3 = i12n. i3 = (i4)3n. i2. i = 1. (-1). i = -i. Can be written as (--i)^4n.(-i)=(-i^2)^2n . (-i) =(-1)^2n.(-i) =1. (-i)=-- i |
|
| 81. |
Find the number of solutions of z2 + |z|2 = 0. |
|
Answer» Given: ⇒ z2+|z|2=0 Let us assume z=x+iy ⇒ (x+iy)2 + \(\sqrt{(x^2+y^2)^2}\) = 0 ⇒ x2+(iy)2+2(x)(iy)+x2+y2=0 ⇒ 2x2+y2+i2y2+i2xy=0 We know that i2=-1 ⇒ 2x2+y2-y2+i2xy=0 ⇒ 2x2+i2xy=0 Equating Real and Imaginary parts on both sides we get, ⇒ 2x2=0 and 2xy=0 ⇒ x=0 and y\(\varepsilon\)R ∴ z=0+iy where y\(\varepsilon\)R. i.e, Infinite solutions. |
|
| 82. |
What are the value of x and y given that x/1 + i + y/2 - i = 1 - 5i/ 3 - 2i.\(\frac{x}{1+i}+\frac{y}{2-i}=\frac{1-5i}{3-2i}\) |
|
Answer» \(\frac{x}{1+i}+\frac{y}{2-i}=\frac{1-5i}{3-2i}\) ⇒ \(\frac{x}{1+i}\times\frac{1-i}{1-i}+\frac{y}{2-i}\times\frac{2+i}{2+i}\) = \(\frac{1-5i}{3-2i}\times\frac{3+2i}{3+2i}\) ⇒\(\frac{x-xi}{1-i^2}+\frac{2y+yi}{4-i^2}\) = \(\frac{3-15i+2i-10i^2}{9-4i^2}\) (∵ (a + b)(a - b) = a2 - b2) ⇒\(\frac{1}{2}\) (x - xi) + \(\frac{1}{5}\)(2y + yi) = \(\frac{1}{13}\) (13 - 13i) (∵i2 = -i) ⇒ \(\Big(\frac{x}{2}+\frac{2y}{5}\Big)\) + i\(\Big(\frac{-x}{2}+\frac{y}{5}\Big)\) = 1 - i ⇒ \(\frac{x}{2}+\frac{2y}{5}\) = 1 and \(\frac{-x}{2}+\frac{y}{5}\) = -1 (By comparing real & imaginary part of complex numbers) ⇒ \(\frac{5y}{5}\) = 1 - 1 = 0 (By adding both equations) ⇒ y = 0 Put y = 0 in \(\frac{x}{2}+\frac{2y}{5}\)= 1, we get \(\frac{x}{2}\) = 1 ⇒ x = 2 Hence, solution of given complex equation is x = 2, y = 0 |
|
| 83. |
√-3 √-6 is equal to(A) -3√2(B) 3√2(C) 3√2 i(D) -3√2 i |
|
Answer» (A) -3√2 √-3 √-6 = (√3 i) (√6 i) = 3√2 (-1) = -3√2 |
|
| 84. |
If z1 and z2 are two complex number such that |z1| = |z2| and arg (z1) + arg (z2) = π, then show that z1 = - bar z2 |
|
Answer» Given as |z1| = |z2| and arg (z1) + arg (z2) = π Let us assume that arg (z1) = θ arg (z2) = π – θ As we know that in the polar form, z = |z| (cos θ + i sin θ) z1 = |z1| (cos θ + i sin θ) …………. (i) z2 = |z2| (cos (π – θ) + i sin (π – θ)) = |z2| (-cos θ + i sin θ) = – |z2| (cos θ – i sin θ) Then let us find the conjugate of bar z2 = – |z2| (cos θ + i sin θ) …… (ii) (since, |bar z2 = |z2|) Then, z1/bar z2 = [|z1| (cos θ + i sin θ)]/[-|z2| (cos θ + i sin θ)] = – |z1|/|z2| [since, |z1| = |z2|] = -1 Then, when we cross multiply we get, z1 = – bar z2 |
|
| 85. |
If z = x + iy and |z – zi| = 1, then(A) z lies on X-axis(B) z lies on Y-axis(C) z lies on a rectangle(D) z lies on a circle |
|
Answer» (D) z lies on a circle |z – zi | = |z| |1 – i| = 1 \(\therefore\) |z| = 1/√2 \(\therefore\) x2 + y2 = 1/2 |
|
| 86. |
Express the following complex number in polar form and exponential form. -i |
|
Answer» Let z = -i = 0 – i a = 0, b = -1 z lies on negative imaginary Y-axis. |z| = r = \(\sqrt{a^2+b^2}=\sqrt{0^2+(-1)^2}=1\) and θ = amp z = 270° = \(\frac{3\pi}2\) The polar form of z = r (cos θ + i sin θ) = 1 (cos 270° + i sin 270°) = 1\((cos\frac{3\pi}2+i sin\frac{3\pi}2)\) The exponential form of z = reiθ = e\(\frac{3\pi}2i\) |
|
| 87. |
Write the conjugates of the following complex number√(-5) - √7i |
|
Answer» Conjugate of (√(-5) – √7 i) is (√(-5) + √7i). |
|
| 88. |
If p + iq = (a + ib/a - ib) then p2 + q2 = ... |
|
Answer» Answer: 1 p + iq = (a + ib/a - ib) then p2 + q2 = 1 |
|
| 89. |
Write the conjugates of the following complex number 5i |
|
Answer» Conjugate of (5i) is (-5i). |
|
| 90. |
Write the conjugates of the following complex number -√(-5) |
|
Answer» -√(-5) = -√5 × √(-1) = -√5 i Conjugate of (-√(-5)) is √5 i |
|
| 91. |
The least positive integer n such that \(\Big(\frac{2i}{1+i}\Big)^n\) is a positive integer, is A. 16 B. 8 C. 4D. 2 |
|
Answer» \(\frac{2i}{1+i}\) = \(\frac{2i}{(1+i)}\times\frac{(1-i}{1-i}\) = 1+i \(\Big(\frac{2i}{1+i}\Big)^n\) n= (1+i) Let check the value of (1 + i)n for different value of n at n =1 , 1+ i (no) at n =2 , (1 + i)2 = 1 + i2 + 2i = 2i (no) at n =3 , (1 + i)2(1 + i) = (1 + i)(2i) = 2i – 2 (no) at n =4 , (1 + i)2(1 + i)2 = (2i)2 = -4 (no) at n =5 , (1 + i)4(1 + i) = -4(1 + i) (no) at n =6 , (1 + i)4(1 + i)2 = -4(2i) (no) at n =7 , (1 + i)6(1 + i) = -8i(1 + i) = -8i + 8 (no) at n =8 , (1 + i)4(1 + i)4 = (-4)(-4) = 8 (yes) So, we can say that n = 8 is the least positive integer for which \(\Big(\frac{2i}{1+i}\Big)^n\) is positive integer |
|
| 92. |
√(3+4√-7) |
|
Answer» Let, (a + ib)2 = 3 + 4√7 i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = 3 + 4√7 i Since i2 = -1 ⇒ a2 - b2 + 2abi = 3 + 4√7 i Now, separating real and complex parts, we get ⇒ a2 - b2 = 3 …………..eq.1 ⇒ 2ab = 4√7 …….. eq.2 ⇒ a = 2√7/b Now, using the value of a in eq.1, we get ⇒ \((\frac{2\sqrt7}{b})^2\) – b2 = 3 ⇒ 12 – b4 = 3b2 ⇒ b4 + 3b2 - 28 = 0 Simplify and get the value of b2, we get, ⇒ - b2 = -7 or b2 = 4 as b is real no. so, b2 = 4 b = 2 or b = - 2 Therefore, a = √7 or a = -√7 Hence the square root of the complex no. is √7 + 2i and -√7 - 2i. |
|
| 93. |
Find the conjugate of each of the following : √2 |
|
Answer» Given: z = √2 The above can be re – written as z = √2 + 0i Here, the imaginary part is zero So, the conjugate of z = √2 + 0i is \(\bar z\) = √2 - 0i Or \(\bar z\) = √2 |
|
| 94. |
Write the conjugates of the following complex number3 + i |
|
Answer» Conjugate of (3 + i) is (3 – i). |
|
| 95. |
Find the conjugate of each of the following : (2 – 5i)2 |
|
Answer» Given: z = (2 – 5i)2 First we calculate (2 – 5i)2 and then we find the conjugate (2 – 5i)2 = (2)2 + (5i)2 – 2(2)(5i) = 4 + 25i2 – 20i = 4 + 25(-1) – 20i [∵ i2 = -1] = 4 – 25 – 20i = -21 – 20i Now, we have to find the conjugate of (-21 – 20i) So, the conjugate of (- 21 – 20i) is (-21 + 20i) |
|
| 96. |
If (x + iy)1/3 = a + ib, then \(\frac{x}{a}+\frac{y}{b}\) =A. 0 B. 1 C. -1 D. None of these |
|
Answer» x + iy)1/3 = a + ib x + iy = (a + ib)3 = a3 + (ib)3 + 3a2(ib) + 3a(ib)2 = a3 – ib3 + i3a2b – 3ab2 = (a3 – 3ab2) + i(3a2b – b3) x = a3 – 3ab2 and y = 3a2b – b3 \(\frac{x}{a}+\frac{y}{b}\) = \(\frac{a^3-3ab^2}{a}+\frac{3a^2b-b^3}{b}\) = a3 – 3b2 + 3a2 – b3 = 4(a2 – b2) |
|
| 97. |
If \(\sqrt{a+ib}\) = x+iy, then possible value of\(\sqrt{a-ib}\) is A. x2 + y2B. \(\sqrt{x^2 + y^2}\)C. x + iy D. x – iy E. \(\sqrt{x^2 - y^2}\) |
|
Answer» \(\sqrt{a+ib}\) = x+iy Square both sides a + ib = (x + iy)2 = x2 + i2xy - y2 So, we can say that a = x2 – y2 and b = 2xy a – ib = (x2 – y2) – i(2xy) = (x)2 + 2(x)(-iy) + (-iy)2 = (x + (-iy))2 = (x – iy)2 \(\sqrt{a-ib}\) = x-iy |
|
| 98. |
Simplify :4√(-4) + 5√(-9) – 3√(-16) |
|
Answer» \(4\sqrt{-4}+5\sqrt{-9}-3\sqrt{-16}\) = \(4\sqrt{4\times-1}+5\sqrt{9\times-1}-3\sqrt{16\times-1}\) = 4(2i) + 5(3i) - 3(4i) = 8i + 15i - 12i = 11i |
|
| 99. |
Simplify:(i) √(-16) + 3√(-25) + √(-36) - √(- 625) |
|
Answer» \(\sqrt{-16}+3\sqrt{-25}+\sqrt{-36}-\sqrt{-625}\) = \(\sqrt{16\times-1}+3\sqrt{25\times-1}+\sqrt{36\times-1}-\sqrt{625\times-1}\) = 4i + 3(5i) + 6i - 25i = 25i - 25i = 0 |
|
| 100. |
Evaluate:(i) \((\sqrt{-1})^{192}\)(ii) \((\sqrt{-1})^{93}\)(iii) \((\sqrt{-1})^{30}\) |
|
Answer» Since i = \((\sqrt{-1})\) so (i) L.H.S. = \((\sqrt{-1})^{192}\) ⇒ i192 ⇒ i4 x 48 = 1 Since it is of the form i4n = 1 so the solution would be 1 (ii) L.H.S.= \((\sqrt{-1})^{93}\) ⇒ i4 x 23 + 1 ⇒ i4n + 1 ⇒ i1 = i Since it is of the form of i4n + 1 = i so the solution would be simply i. (iii) L.H.S = \((\sqrt{-1})^{30}\) ⇒ i4 x 7 + 2 ⇒ i4n + 2 ⇒ i2 = -1 Since it is of the form i4n + 2 so the solution would be -1 |
|