Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Find the value of following expression: (1 + i)6 + (1 – i)3

Answer»

(1 + i)6 + (1 – i) 3 = {(1 + i)2 }3 + (1 – i)2 (1 – i) 

= {1 + i2 + 2i}3 + (1 + i2 – 2i)(1 – i) 

= {1 – 1 + 2i} 3 + (1 – 1 – 2i)(1 – i) 

= (2i)3 + (– 2i)(1 – i) 

= 8i3 + (– 2i) + 2i2 

[since i3 = – i, i2 = – 1] 

= – 8i – 2i – 2 

= – 10 i – 2 

= – 2(1 + 5i)

52.

Find the value of following expression: 1 + i2 + i4 + i6 + i8 + ... + i20

Answer»

1+ i2 + i4 + i6 + i8 + ... + i20

= 1 + (– 1) + 1 + (– 1) + 1 + ... + 1 

= 1

53.

Find the value of following expression: i5 + i10 + i15

Answer»

i5 + i10 + i15 = i (4 + 1) + i (8 + 2) + i (12 + 3) 

= (i4)1×i + (i4)2×i2 + (i4)3×i3 

= (i4)1×i + (i4)2×i2 + (i4)3×i2×i 

= 1×i + 1×(– 1) + 1×(– 1)×i 

= i – 1 – i = – 1

54.

Find the value of following expression: i + i2 + i3 + i4

Answer»

i + i2 + i3 + i4 = i + i2 + i2×i + i4 

= i – 1 + (– 1)×i + 1 

since i4 = 1, i2 = – 1 

= i – 1 – i + 1 = 0

55.

Find the value of following expression: i30 + i80 + i120

Answer»

i30 + i80 + i120 = i(28 + 2) + i80 + i120 

= (i4)7 × i2 + (i4)20 + (i4)30 

= – 1 + 1 + 1 = 1

[since i4 = 1, i2 = – 1] 

i30 + i80 + i120 = 1

56.

Find the value of following expression: i49 + i68 + i89 + i110

Answer»

i49 + i68 + i89 + i110 = i(48 + 1) + i68 + i(88 + 1) + i(108 + 2) 

= (i4)12 × i + (i4)17 + (i4)11 × i + (i4)27 × i2

= i + 1 + i – 1 = 2i 

[since i4 = 1, i2 = – 1] 

i49 + i68 + i89 + i110 = 2i

57.

Show that 1 + i10 + i20 + i30 is a real number ?

Answer»

1 + i10 + i20 + i30 = 1 + i (8 + 2) + i20 + i (28 + 2

= 1 + (i4)2 × i2 + (i4)5 + (i4)7 × i2 

= 1 – 1 + 1 – 1 = 0 

[since i4 = 1, i2 = – 1] 

Hence , 1 + i10 + i20 + i30 is a real number.

58.

For z = 2 + 3i, verify the following: \(\overline{(\bar z)}\) = z 

Answer»

z = 2 + 3i

\(\bar z\) = 2 – 3i

\(\bar z\) = 2 + 3i = z

59.

For z = 2 + 3i, verify the following: \(\overline{z(\bar z)}\) = |z|2 

Answer»

z \(\bar z\)= (2 + 3i) (2 – 3i)

= 4 – 9i2

= 4 – 9(-1) …..[∵ i = -1]

= 13

|z|2 = \((\sqrt{2^2+3^2})^2\) 

= 22 + 32

= 4 + 9

 = 13
\(\overline{z\bar z}\) = |z|2

60.

For z = 2 + 3i, verify the following: z - \(\bar z\) = 6i

Answer»

z – \(\bar z\)= (2 + 3i) – (2 – 3i)

= 2 + 3i – 2 + 3i

= 6i

61.

Find a and b ifabi = 3a – b + 12i

Answer»

abi = 3a – b + 12i

∴ 0 + abi = (3a – b) + 12i

Equating real and imaginary parts, we get

3a – b = 0

∴ 3a = b …..(i)

and ab = 12

∴ b = 12/a……..(ii)

Substituting b = 12/a in (i), we get

3a = 12/a 

3a2= 12

a2 = 4

a = ±2

When a = 2, b = 12/a = 12/2 = 6

When a = -2, b = 12/a = 12/-2 = -6

∴ a = 2 and b = 6 or a = -2 and b = -6

62.

For z = 2 + 3i, verify the following: (z + \(\bar z\)) is real

Answer»

(z + \(\bar z\)) = (2 + 3i) + (2 – 3i)

= 2 + 3i + 2 – 3i

= 4, which is a real number.

∴ z + \(\bar z\) is real.

63.

If ∣z + 4∣ ≤ 3, then the greatest and the least value of ∣z + 1∣ are

Answer»

∣z + 4∣ ≤ 3 ⇒−3 ≤ z + 4 ≤ 3

⇒−6 ≤ z + 1 ≤ 0

⇒0 ≤ −(z + 1) ≤ 6

⇒0 ≤ ∣z + 1∣ ≤ 6 

Hence, the greatest and least values are 6 and 0.

64.

Find the real value of a for which 3i3 - 2ai2 + (1 – a)i + 5 is real.

Answer»

we have, 3i3 - 2ai2 + (1 – a)i+ 5 

⟹ -3i+ 2a + (1 – a)i + 5 

⟹ (2a + 5) + i(1 – a – 3) 

⟹ (2a + 5) – i(2 + a)

65.

Find a and b if(a + ib) (1 + i) = 2 + i

Answer»

(a + ib)(1 + i) = 2 + i

a + ai + bi + bi2 = 2 + i

a + (a + b)i + b(-1) = 2 + i ……(∵ i2 = -1)

(a – b) + (a + b)i = 2 + i

Equating real and imaginary parts, we get

a – b = 2 ……(i)

a + b = 1 …….(ii)

Adding equations (i) and (ii),

we get

2a = 3

∴ a = 3/2

Substituting a = 3/2 in (ii), we get

3/2 + b = 1

∴ b = 1 - 3/2 = -1/2

∴ a = 3/2 and b = -1/2

66.

Find a and b ifa + 2b + 2ai = 4 + 6i

Answer»

a + 2b + 2ai = 4 + 6i

Equating real and imaginary parts, we get

a + 2b = 4 …..(i)

2a = 6 ……(ii)

∴ a = 3

Substituting, a = 3 in (i), we get

3 + 2b = 4

∴ b = 1/2

∴ a = 3 and b = 1/2

Check:

For a = 3 and b = 1/2

Consider, L.H.S. = a + 2b + 2ai

= 3 + 2(1/2) + 2(3)i

= 4 + 6i

= R.H.S.

67.

Find a and b if (a + b) (2 + i) = b + 1 + (10 + 2a)i

Answer»

(a + b) (2 + i) = b + 1 + (10 + 2a)i

2(a + b) + (a + b)i = (b + 1) + (10 + 2a)i

Equating real and imaginary parts, we get

2(a + b) = b + 1

∴ 2a + b = 1 ……(i)

and a + b = 10 + 2a

-a + b = 10 …….(ii)

Subtracting equation (ii) from (i), we get

3a = -9 

∴ a = -3

Substituting a = – 3 in (ii), we get

-(-3) + b = 10

∴ b = 7

∴ a = -3 and b = 7

68.

Find a and b if(a – b) + (a + b)i = a + 5i

Answer»

(a – b) + (a + b)i = a + 5i

Equating real and imaginary parts, we get

a – b = a ……(i)

a + b = 5 ……(ii)

From (i), b = 0

Substituting b = 0 in (ii),

we get a + 0 = 5

∴ a = 5

∴ a = 5 and b = 0

69.

If |z – 5i| = |z + 5i|, then find the locus of z.

Answer»

z = a + ib 

|a+ib-5i| = |a+ib+5i| 

|a+ib-5i|2 = |a+ib+5i|2 

|a +i(b-5)|2 = |a + i(b+5)|2 

a2+(b-5)2 = a2+(b+5)2 

a2+b2+25-10b = a2+b2+25+10b 

20b = 0 

b = 0 

b is a imaginary part of z

Im(z) = \(\frac{z-\bar z}{2}\)

= y 

= 0 

Im (z) = 0 

So, the locus point is real axis

70.

Write the value of \(\sqrt{-25} \times \sqrt{-9}\)

Answer»

\(\sqrt{-25} \times \sqrt{-9}\) = \(\sqrt{25}\sqrt{-1}\times\sqrt{9}\sqrt{-1}\)

= 5i×3i 

= 15i2 

= -15

71.

Find the following as a single complex number x + iy:(i) (5 + 9 i) (-3 + 4 i)(ii) (-2 - 5 i) (3 - 6 i)

Answer»

(i)  (5 + 9 i) (-3 + 4 i)

= 5(-3 + 4 i ) +9 i(-3 + 4 i)

= -15 + 20 i -27 i +36 i2

= -15 - 7 i - 36

= -51 - 7 i

x = -51 y = -7

(II) (-2 - 5 i) (3 - 6 i)

 = -2(3 - 6 i) -5 i(3 - 6 i)

= -6 + 12 i - 15 i + 30 i2

= -6 -3 i +30

= 24 - 3 i

= x = 24 y = -3

72.

Write the value of arg(z) + arg \((\bar z)\).

Answer»

As we all know that,

z = r(cos θ + i sin θ ) , θ = arg(z) 

\((\bar z)\)  = r(cos(θ) - sin(θ) 

= r(cos(-θ)+sin(-θ)

-θ = arg \((\bar z)\)    

So, arg(z) + arg\((\bar z)\) = θ - θ

= 0

73.

Find the multiplicative inverse of the following complex numbers : 1 – i

Answer»

Given complex number is Z=1-i 

We know that the multiplicative inverse of a complex number Z is Z-1 (or) \(\frac{1}{z}\)

⇒ Z-1 = \(\frac{1}{1-i}\)

Multiplying and dividing with 1+i

⇒ Z-1 = \(\frac{1}{1-i}\times \frac{1+i}{1+i}\) 

⇒ Z-1 = \(\frac{1+i}{1^2-(i)^2}\) 

We know that i2=-1

⇒ Z-1 = \(\frac{1+i}{1-(-1)}\) 

⇒ Z-1 = \(\frac{1+i}{2}\) 

∴ The Multiplicative inverse of 1-i is \(\frac{1+i}{2}\)

74.

Find the multiplicative inverse of the following complex numbers : √5 + 3i

Answer»

Given complex number is Z= √5+3i

We know that the multiplicative inverse of a complex number Z is Z-1 (or) \(\frac{1}{Z}\).

⇒ Z-1 =  \(\frac{1}{√{5} + 3i}\)

Multiplying and dividing with  √5+3i

⇒ Z-1  =\(\frac{1}{√5+3i}\times\frac{√5- 3i}{√5- 3i}\)

⇒ Z-1  = \(\frac{√5 - 3i}{(√5 )^2-(3i)^2}\)

⇒ Z-1  =  \(\frac{√5+3i}{5-9i^2}\)

We know that i2=-1

⇒ Z-1  = \(\frac{√5+3i}{5-9(-1)}\)

⇒ Z-1  = \(\frac{√5+3i}{14}\)

∴ The Multiplicative inverse of √5+3i is \(\frac{√5+3i}{14}\)

75.

If x + i y = (1 + i) (1 + 2 i) (1 + 3i), then x2 + y2 = A. 0 B. 1 C. 100 D. None of these

Answer»

Given that (1 + i) (1 + 2i) (1 + 3i) = x + i y …(1) 

We can also say that

(1 - i) (1 - 2i) (1 - 3i) = x - i y …(2) 

Multiply and divide the eq no. 2 with eq no. 1

\(\frac{ (1 + i) (1 - i)(1 + 2i)(1 - 2i)(1 + 3i)(1 - 3i)}{(1 - i) (1 - 2i) (1 - 3i)}\) = \(\frac{(x + i y)(x - i y)}{x - i y}\) 

((1)2 – (i)2)((1)2 – (2i)2)((1)2 – (3i)2) = ((x)2 – (iy)2

x2 + y2 = 2 × 5 × 10 = 100

76.

If z = 1 – cos θ + i sin θ, then |z| = A. 2sin \(\frac{θ}{2}\)B. 2cos \(\frac{θ}{2}\)C. \(2|sin\frac{θ}{2}|\)D. \(2|cos\frac{θ}{2}|\)

Answer»

|z| = \(\sqrt{(1-cosθ)^2 + (sinθ)^2}\) 

=\(\sqrt{2-2cosθ}\) 

=  \(2|sin\frac{θ}{2}|\) 

77.

If a = cos θ + i sin θ, then  \(\frac{1+a}{1-a}\) =A. cot \(\frac{θ}{2}\)B. cot θC. i cot \(\frac{θ}{2}\)D. i tan \(\frac{θ}{2}\)

Answer»

\(\frac{1+a}{1-a}\) = \(\frac{1+(cosθ + isinθ)}{1-(cosθ + isinθ)}\) = \(\frac{1+(cosθ + isinθ)}{1-(cosθ - isinθ)}\times \frac{(1-(cosθ )+ isinθ}{(1-cosθ )+ isinθ}\)

\(\frac{2isinθ}{2-2cosθ}\) 

= 0 + \(i\frac{sinθ}{1-cosθ}\) 

\(icot\frac{θ}{2}\) 

78.

State True of False:Multiplication of a non zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.

Answer»

False

Explanation:

Let z = x + iy, where x, y > 0

i.e. z or point A (x, y) lies in first quadrant.

Now, -iz = -I (x + iy)

= -ix – i2y

= y – ix

Now, point B (y, -x) lies in fourth quadrant.

Also ∠AOB = 90°

Thus, B is obtained by rotating A in clockwise direction about origin.

79.

Express sin π/5 + i(1 – cos π/5) in polar form.

Answer»

Given as

Z = sin π/5 + i(1 – cos π/5)

On using the formula,

sin 2θ = 2 sin θ cos θ

1 - cos 2θ = 2 sin2 θ

Therefore,

Z = 2 sin π/10 cos π/10 + i(2 sin2 π/10)

= 2 sin π/10 (cos π/10 + i sin π/10)

Thus, the polar form of sin π/5 + i(1 – cos π/5) is 2 sin π/10(cos π/10 + i sin π/10)

80.

Simplify: (-i)4n + 1, where n is a positive integer.

Answer»

(-i)4n + 1 

= (i2. i)4n + 1 

= (i3)4n + 1

= i12n + 3

= i12n. i3

= (i4)3n. i2. i

= 1. (-1). i

= -i.

Can be written as (--i)^4n.(-i)

=(-i^2)^2n . (-i)

=(-1)^2n.(-i)

=1. (-i)=-- i
81.

Find the number of solutions of z2 + |z|2 = 0.

Answer»

Given: 

⇒ z2+|z|2=0 

Let us assume z=x+iy 

⇒ (x+iy)2 + \(\sqrt{(x^2+y^2)^2}\) = 0

⇒ x2+(iy)2+2(x)(iy)+x2+y2=0 

⇒ 2x2+y2+i2y2+i2xy=0 

We know that i2=-1 

⇒ 2x2+y2-y2+i2xy=0 

⇒ 2x2+i2xy=0 

Equating Real and Imaginary parts on both sides we get, 

⇒ 2x2=0 and 2xy=0 

⇒ x=0 and y\(\varepsilon\)

∴ z=0+iy where y\(\varepsilon\)R. i.e, Infinite solutions.

82.

What are the value of x and y given that x/1 + i + y/2 - i = 1 - 5i/ 3 - 2i.\(\frac{x}{1+i}+\frac{y}{2-i}=\frac{1-5i}{3-2i}\)

Answer»

 \(\frac{x}{1+i}+\frac{y}{2-i}=\frac{1-5i}{3-2i}\) 

⇒ \(\frac{x}{1+i}\times\frac{1-i}{1-i}+\frac{y}{2-i}\times\frac{2+i}{2+i}\) = \(\frac{1-5i}{3-2i}\times\frac{3+2i}{3+2i}\)

\(\frac{x-xi}{1-i^2}+\frac{2y+yi}{4-i^2}\) = \(\frac{3-15i+2i-10i^2}{9-4i^2}\) 

(∵ (a + b)(a - b) = a2 - b2)

\(\frac{1}{2}\) (x - xi) + \(\frac{1}{5}\)(2y + yi) = \(\frac{1}{13}\) (13 - 13i) (∵i2 = -i)

⇒ \(\Big(\frac{x}{2}+\frac{2y}{5}\Big)\) + i\(\Big(\frac{-x}{2}+\frac{y}{5}\Big)\) = 1 - i

⇒ \(\frac{x}{2}+\frac{2y}{5}\) = 1 and \(\frac{-x}{2}+\frac{y}{5}\) = -1  (By comparing real & imaginary part of complex numbers)

⇒ \(\frac{5y}{5}\) = 1 - 1 = 0 (By adding both equations)

⇒ y = 0

Put y = 0 in \(\frac{x}{2}+\frac{2y}{5}\)= 1, we get

\(\frac{x}{2}\) = 1 

⇒ x = 2

Hence, solution of given complex equation is x = 2, y = 0

83.

√-3 √-6 is equal to(A) -3√2(B) 3√2(C) 3√2 i(D) -3√2 i

Answer»

(A) -3√2

√-3 √-6 

= (√3 i) (√6 i)

= 3√2 (-1)

= -3√2

84.

If z1 and z2 are two complex number such that |z1| = |z2| and arg (z1) + arg (z2) = π, then show that z1 = - bar z2

Answer»

Given as

|z1| = |z2| and arg (z1) + arg (z2) = π

Let us assume that arg (z1) = θ

arg (z2) = π – θ

As we know that in the polar form, z = |z| (cos θ + i sin θ)

z= |z1| (cos θ + i sin θ) …………. (i)

z= |z2| (cos (π – θ) + i sin (π – θ))

= |z2| (-cos θ + i sin θ)

= – |z2| (cos θ – i sin θ)

Then let us find the conjugate of

bar z2 = – |z2| (cos θ + i sin θ) …… (ii) (since, |bar z2 = |z2|)

Then,

z1/bar z= [|z1| (cos θ + i sin θ)]/[-|z2| (cos θ + i sin θ)]

= – |z1|/|z2| [since, |z1| = |z2|]

= -1

Then, when we cross multiply we get,

z1 = – bar z2
Thus proved.

85.

If z = x + iy and |z – zi| = 1, then(A) z lies on X-axis(B) z lies on Y-axis(C) z lies on a rectangle(D) z lies on a circle

Answer»

(D) z lies on a circle

|z – zi | = |z| |1 – i| = 1

\(\therefore\) |z| = 1/√2

\(\therefore\) x2 + y2 = 1/2

86.

Express the following complex number in polar form and exponential form. -i

Answer»

Let z = -i = 0 – i

a = 0, b = -1

z lies on negative imaginary Y-axis.

|z| = r = \(\sqrt{a^2+b^2}=\sqrt{0^2+(-1)^2}=1\) and 

θ = amp z = 270° = \(\frac{3\pi}2\) 

 The polar form of z = r (cos θ + i sin θ)

= 1 (cos 270° + i sin 270°)

= 1\((cos\frac{3\pi}2+i sin\frac{3\pi}2)\)

The exponential form of z = re = e\(\frac{3\pi}2i\)

87.

Write the conjugates of the following complex number√(-5) - √7i

Answer»

Conjugate of (√(-5) – √7 i) is (√(-5) + √7i).

88.

If p + iq = (a + ib/a - ib) then p2 + q2 = ...

Answer»

Answer: 1

p + iq = (a + ib/a - ib) then p2 + q2 = 1

89.

Write the conjugates of the following complex number 5i

Answer»

Conjugate of (5i) is (-5i).

90.

Write the conjugates of the following complex number -√(-5)

Answer»

-√(-5) = -√5 × √(-1) = -√5 i

Conjugate of (-√(-5)) is √5 i

91.

The least positive integer n such that \(\Big(\frac{2i}{1+i}\Big)^n\) is a positive integer, is A. 16 B. 8 C. 4D. 2

Answer»

\(\frac{2i}{1+i}\) = \(\frac{2i}{(1+i)}\times\frac{(1-i}{1-i}\) = 1+i

\(\Big(\frac{2i}{1+i}\Big)^n\) n= (1+i)

Let check the value of (1 + i)n for different value of n 

at n =1 , 1+ i (no) 

at n =2 , (1 + i)2 = 1 + i2 + 2i = 2i (no) 

at n =3 , (1 + i)2(1 + i) = (1 + i)(2i) = 2i – 2 (no) 

at n =4 , (1 + i)2(1 + i)2 = (2i)2 = -4 (no) 

at n =5 , (1 + i)4(1 + i) = -4(1 + i) (no) 

at n =6 , (1 + i)4(1 + i)2 = -4(2i) (no) 

at n =7 , (1 + i)6(1 + i) = -8i(1 + i) = -8i + 8 (no) 

at n =8 , (1 + i)4(1 + i)4 = (-4)(-4) = 8 (yes) 

So, we can say that n = 8 is the least positive integer for which \(\Big(\frac{2i}{1+i}\Big)^n\) is positive integer

92.

√(3+4√-7)

Answer»

Let, (a + ib)2 = 3 + 4√7 i

Now using, (a + b)2 = a2 + b2 + 2ab

⇒ a2 + (bi)2 + 2abi = 3 + 4√7 i

Since i2 = -1

⇒ a2 - b2 + 2abi = 3 + 4√7 i

Now, separating real and complex parts, we get

⇒ a2 - b2 = 3 …………..eq.1

⇒ 2ab = 4√7 …….. eq.2

⇒ a = 2√7/b

Now, using the value of a in eq.1, we get

⇒ \((\frac{2\sqrt7}{b})^2\) – b2 = 3

⇒ 12 – b4 = 3b2

⇒ b4 + 3b2 - 28 = 0

Simplify and get the value of b2, we get,

⇒ - b2 = -7 or b2 = 4

as b is real no. so, b2 = 4

b = 2 or b = - 2

Therefore, a = √7 or a = -√7

Hence the square root of the complex no. is √7 + 2i and -√7 - 2i.

93.

Find the conjugate of each of the following : √2

Answer»

Given: z = √2

The above can be re – written as

z = √2 + 0i

Here, the imaginary part is zero

So, the conjugate of z = √2 + 0i is

\(\bar z\) = √2 - 0i

Or \(\bar z\) = √2

94.

Write the conjugates of the following complex number3 + i 

Answer»

Conjugate of (3 + i) is (3 – i).

95.

Find the conjugate of each of the following : (2 – 5i)2

Answer»

Given: z = (2 – 5i)2

First we calculate (2 – 5i)2 and then we find the conjugate

(2 – 5i)2 = (2)2 + (5i)2 – 2(2)(5i) = 4 + 25i2 – 20i

= 4 + 25(-1) – 20i [∵ i2 = -1]

= 4 – 25 – 20i = -21 – 20i

Now, we have to find the conjugate of (-21 – 20i)

So, the conjugate of (- 21 – 20i) is (-21 + 20i)

96.

If (x + iy)1/3 = a + ib, then \(\frac{x}{a}+\frac{y}{b}\) =A. 0 B. 1 C. -1 D. None of these

Answer»

x + iy)1/3 = a + ib 

x + iy = (a + ib)3 

= a3 + (ib)3 + 3a2(ib) + 3a(ib)2 

= a3 – ib3 + i3a2b – 3ab2 

= (a3 – 3ab2) + i(3a2b – b3) 

x = a– 3ab2 and y = 3a2b – b3

\(\frac{x}{a}+\frac{y}{b}\)  = \(\frac{a^3-3ab^2}{a}+\frac{3a^2b-b^3}{b}\)

= a– 3b2 + 3a2 – b3

= 4(a2 – b2)

97.

If \(\sqrt{a+ib}\) = x+iy, then possible value of\(\sqrt{a-ib}\) is A. x2 + y2B.  \(\sqrt{x^2 + y^2}\)C. x + iy D. x – iy E. \(\sqrt{x^2 - y^2}\)

Answer»

\(\sqrt{a+ib}\) = x+iy

Square both sides 

a + ib = (x + iy)2 = x2 + i2xy - y2 

So, we can say that a = x2 – y2 and b = 2xy 

a – ib = (x2 – y2) – i(2xy) 

= (x)2 + 2(x)(-iy) + (-iy)2 

= (x + (-iy))

= (x – iy)2

\(\sqrt{a-ib}\) = x-iy

98.

Simplify :4√(-4) + 5√(-9) – 3√(-16)

Answer»

\(4\sqrt{-4}+5\sqrt{-9}-3\sqrt{-16}\) 

\(4\sqrt{4\times-1}+5\sqrt{9\times-1}-3\sqrt{16\times-1}\) 

= 4(2i) + 5(3i) - 3(4i)

= 8i + 15i - 12i

= 11i

99.

Simplify:(i) √(-16) + 3√(-25) + √(-36) - √(- 625)

Answer»

\(\sqrt{-16}+3\sqrt{-25}+\sqrt{-36}-\sqrt{-625}\)

\(\sqrt{16\times-1}+3\sqrt{25\times-1}+\sqrt{36\times-1}-\sqrt{625\times-1}\) 

= 4i + 3(5i) + 6i - 25i

= 25i - 25i

= 0

100.

Evaluate:(i) \((\sqrt{-1})^{192}\)(ii) \((\sqrt{-1})^{93}\)(iii) \((\sqrt{-1})^{30}\)

Answer»

Since i = \((\sqrt{-1})\) so

(i) L.H.S. = \((\sqrt{-1})^{192}\)

⇒ i192

⇒ i4 x 48 = 1

Since it is of the form i4n = 1 so the solution would be 1

(ii) L.H.S.= \((\sqrt{-1})^{93}\)

⇒ i4 x 23 + 1

⇒ i4n + 1

⇒ i1 = i

Since it is of the form of i4n + 1 = i so the solution would be simply i.

(iii) L.H.S = \((\sqrt{-1})^{30}\)

⇒ i4 x 7 + 2

⇒ i4n + 2

⇒ i2 = -1

Since it is of the form i4n + 2 so the solution would be -1