Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Fill in the blanks:If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ……..

Answer»

Let z1 = x1 + iy1 and z2 = x2 + iy2

⇒ z1 + z2 = (x1 + x2) + i (y1 + y2) which is real

⇒ y1 + y2 = 0

⇒ y1 = - y2

Assuming x1 = x2

Since z2 = x1 – iy1

∴ z2 = z̅ 1

102.

Evaluate: √−16 + 3√−25 + √−36 − √−625

Answer»

√−16 + 3√−25 + √−36 − √−625

= i√16 + 3i√25 + i√36 −i√625 

= 4i+ 15i + 6i - 25i 

= 25i - 25i 

= 0

103.

If the area of the triangle formed by the vertices z, iz, and z + iz is 50 square units, find the value of |z|.

Answer»

The given vertices are z, iz, z + iz ⇒ z, iz are ⊥r to each other. 

Area of triangle = (1/2) bh = 50 

⇒ (1/2) |z| |iz| = 50 

⇒ (1/2) |z| |z| = 50 

⇒ |z|2 = 100 

⇒ |z| = 10

104.

Evaluate:i √−16 + i√−25 + √49 − i√−49+14

Answer»

i√−16 + i√−25 + √49 − i√−49+14

=i2 √16 + i2√25 + √49 − i2√49 + 14 

= 4i2 + 5i2 + 7 − 7i2 + 14

 = -4 – 5 + 7 + 7 + 14 

= -9 + 28 

= 19

105.

If |z1| = |z2|, is it necessary that z1 = z2?

Answer»

Given |z1| = |z2|

If |z1| = |z2| then z1 and z2 are at the same distance from origin.

But if arg (z1) ≠ arg (z2) then z1 and z2 are different.

So, if |z1| = |z2|, then it is not necessary that z1 = z2.

For example: z1 = 3 + 4i and z2 = 4 + 3i

Here |z1| = |z2| = 5 but z1 ≠ z2.

106.

The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argand’s diagrams is ___(a) (1/2) |z|(b) |z|2(c) (3/2)|z|2(d) 2|z|2

Answer»

(a) (1/2) |z|

Area of triangle = (1/2) bh

= (1/2) |z| |iz|

= (1/2) |z|2

107.

Evaluate: (i77 + i70+i87 + i414)3

Answer»

(i77 + i70+i87 + i414)3

= [(i4 )19i + (i4 )17 i2 + (i4 )21i3 + (i4 )103i2 ]3

 = [ i+i2 + i3 + i2 ] 3    [∵i4 = 1] 

= [ i− 1 − i − 1] 3      [∵ i2 = −1and i3 = −]

 = [-2]3 = -8

108.

Find the real values of x and y, if(i) (x + iy) (2 – 3i) = 4 + i(ii) (3x – 2i y) (2 + i)2 = 10(1 + i)

Answer»

(i) (x + iy) (2 – 3i) = 4 + i

Given as

(x + iy) (2 – 3i) = 4 + i

Now let us simplify the expression we get,

x(2 – 3i) + iy(2 – 3i) = 4 + i

2x – 3xi + 2yi – 3yi= 4 + i

2x + (-3x + 2y)i – 3y(-1) = 4 + i [since, i= -1]

2x + (-3x + 2y)i + 3y = 4 + i [since, i= -1]

(2x + 3y) + i(-3x + 2y) = 4 + i

By equating real and imaginary parts on both sides, we get

2x + 3y = 4… (i)

And -3x + 2y = 1… (ii)

Now multiply (i) by 3 and (ii) by 2 and add

By solving we get,

6x – 6x – 9y + 4y = 12 + 2

13y = 14

y = 14/13

Then substitute the value of y in (i) we get,

2x + 3y = 4

2x + 3(14/13) = 4

2x = 4 – (42/13)

= (52 - 42)/13

2x = 10/13

x = 5/13

x = 5/13, y = 14/13

Thus the real values of x and y are 5/13, 14/13

(ii) (3x – 2i y) (2 + i)2 = 10(1 + i)

Given as

(3x – 2i y) (2 + i)= 10(1 + i)

(3x – 2yi) (2+ i+ 2(2)(i)) = 10 + 10i

(3x – 2yi) (4 + (-1) + 4i) = 10 + 10i [since, i= -1]

(3x – 2yi) (3 + 4i) = 10 + 10i

Now let us divide with 3 + 4i on both sides we get,

(3x – 2yi) = (10 + 10i)/(3 + 4i)

Then multiply and divide with (3 - 4i)

= [10(3 - 4i) + 10i(3 - 4i)]/(32 – (4i)2)

= [30 - 40i + 30i - 40i2]/(9 – 16i2)

= [30 - 10i - 40(-1)]/(9 - 16(-1))

= [70 - 10i]/25

Then, equating real and imaginary parts on both sides we get

3x = 70/25 and -2y = -10/25

x = 70/75 and y = 1/5

x = 14/15 and y = 1/5

Thus the real values of x and y are 14/15, 1/5

109.

Find x and y if (x+ iy) (2 - 3i) = 4 + i

Answer»

Given, (x + iy) (2 − 3i) = 4 + i 

⟹ (2x + 3y) + i(−3x + 2y) = 4 + i

⟹ 2x + 3y = 4 and − 3x + 2y = 1 

On solving, we get,

x = \(\frac{5}{13}\) and y = \(\frac{14}{13}\)

110.

Solve the following equations for x, y ∈ R. \(\frac{x+iy}{2+3i}=7-i\)(x + iy)/(2 + 3i) = 7 - i

Answer»

\(\frac{x+iy}{2+3i}=7-i\) 

x + iy = (7 – i)(2 + 3i)

x + iy = 14 + 21i – 2i – 3i2

x + iy = 14 + 19i – 3(-1)

x + iy = 17 + 19i

Equating real and imaginary parts, we get

∴ x = 17 and y = 19

111.

Find the real values of x and y for which:\(\frac{(x+3i)}{(2+iy)}\) = (1 - i)(x+3i)/(2+iy)

Answer»

Given:  \(\frac{(x+3i)}{(2+iy)}\) = (1 - i)

⇒ x + 3i = (1 – i)(2 + iy)

⇒ x + 3i = 1(2 + iy) – i(2 + iy)

⇒ x + 3i = 2 + iy – 2i – i 2y

⇒ x + 3i = 2 + i(y – 2) – (-1)y [i2 = -1]

⇒ x + 3i = 2 + i(y – 2) + y

⇒ x + 3i = (2 + y) + i(y – 2)

Comparing the real parts, we get

x = 2 + y

⇒ x – y = 2 …(i)

Comparing the imaginary parts, we get

3 = y – 2

⇒ y = 3 + 2

⇒ y = 5

Putting the value of y = 5 in eq. (i), we get

x – 5 = 2

⇒ x = 2 + 5

⇒ x = 7

Hence, the value of x = 7 and y = 5

112.

If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2+ 4z1z3+ z2z3| = 12, then the value of |z1+ z2 + z3| is ___(a) 1 (b) 2 (c) 3 (d) 4

Answer»

(b) 2

|z1 + z2 + z3| = 2

113.

Show that the following equations represent a circle, and, find its centre and radius. (i) |z – 2 – i| = 3 (ii) |2z + 2 – 4i| = 2 (iii) |3z – 6 + 12i| = 8

Answer»

(i) Let z = x + iy 

|z – 2 – i| = 3 

⇒ |x + iy – 2 – i| = 3 

⇒ |(x – 2) + i(y – 1)| = 3

= √((x - 2)2 + (y -1)2) = 3

Squaring on both sides

(x – 2)2 + (y – 1)2 = 9 

⇒ x2 – 4x + 4 + y2 – 2y + 1 – 9 = 0 

⇒ x2 + y2 – 4x – 2y – 4 = 0 represents a circle 

2g = -4 ⇒ g = -2

2f = -2 ⇒ f = -1 

c = -4 

(a) Centre (-g, -f) = (2, 1) = 2 + i (b) 

(b) Radius = √(g2 + f2 - c) = √(4 + 1 + 4) = 3

Aliter: |z – (2 + i)| = 3 

Centre = 2 + i 

Radius = 3

(ii) |2(x + iy) + 2 – 4i| = 2 

⇒ |2x + i2y + 2 – 4i| = 2 

⇒ |(2x + 2) + i(2y – 4)| = 2 

⇒ |2(x + 1) + 2i(y – 2)| = 2 

⇒ |(x + 1) + i(y – 2)| = 1

= √((x + 1)2 + (y - 2)2) = 1

Squaring on both sides, 

x2 + 2x + 1 + y2 + 4 – 4y – 1 = 0

⇒ x2 + y2 + 2x – 4y + 4 = 0 represents a circle 

2g = 2 ⇒ g = 1 

2f = -4 ⇒ f = -2 

c = 4 

(a) Centre (-g, -f) = (-1, 2) = -1 + 2i 

(b) Radius = √(g2 + f2 - c) = √(1 + 4 - 4) = 1

Aliter: 2|(z + 1 – 2i)| 

= 2 |z – (-1 + 2i)| = 1 

Centre = -1 + 2i 

Radius = 1

(iii) |3(x + iy) – 6 + 12i| = 8 

⇒ |3x + i3y – 6 + 12i| = 8 

⇒ |3(x – 2) + i3 (y + 4)| = 8 

⇒ 3|(x – 2) + i (y + 4)| = 8

= 3√((x - 2)2 + (y + 4)2) = 8

Squaring on both sides, 9[(x – 2)2 + (y + 4)2] = 64 

⇒ x2 – 4x + 4 + y2 + 8y + 16 = 64/9

⇒ x2 + y2 – 4x + 8y + 20 – (64/9) = 0

x2 + y2 – 4x + 8y + (116/9) = 0 represents a circle. 

2g = -4 ⇒ g = -2 

2f = 8 ⇒ f = 4 

c = 116/9

(a) Centre (-g, -f) = (2, -4) = 2 – 4i 

(b) Radius = √(g2 + f2 - c) = √(4 + 16 - (116/9)) = √(180 - 116)/9 = 8/3

Aliter: |z – 2 + 4i| = 8/3

⇒ |z – (2 – 4i)| = 8/3

Centre = 2 – 4i, Radius = 8/3

114.

Given z1 = 1 + i, z2 = 4 – 3i and z3 = 2 + 5i verify that. Z1 (Z2 Z3) = Z1 Z2 – z1 z3

Answer»

Z1 = 1 + i, 

z2 = 4 – 3i, 

z3 = 2 + 5i 

Z1 (z2 – z3) = 1 + i[(4 – 3i) – (2 + 5i)] = 1 + i[2 – 8i] 

= 2 – 8i + 2i + 8 

= 10 – 6i …(1) 

Z1 z2 = (1 + i) (4 – 3i) = 4 – 3i + 4i + 3 = 7 + i 

Z1 Z= (1 + i) (2 + 5i) = 2 + 5i + 2i – 5 = 7i – 3 

Z1 Z2 – Z1 z= 7 + i – (7i – 3) = 7 + i – 7i + 3 

= 10 – 6i …(2) 

From (1) and (2) we get, 

Z1 (Z2 Z3) = Z1 Z2 – z1 z3

115.

If z1 = 4 – 7i, z2 = 2 + 3i and z3 = 1 + i show that. (i) z1 + (z2 + z3) = (Z1 + z2) + Z3(ii) (Z1 z2) z3 = Z1 (z2 z3)

Answer»

(i) Z1 + (z2 + z3

= 4 – 7i + (2 + 3i + 1 + i) 

= 4 – 7i + (3 + 4i) 

= 7 – 3i 

(z1 + z2) + z3 = (4 – 7i + 2 + 3i) + (1 + i) 

= (6 – 4i) + (1 + i) 

= 7 – 3i …(2) 

From (1) and (2) we get, z1 + (z2 + z3) = (z1 + z2) + z3

(ii) (zz2) z3 = (4 – 7i) + (2 + 3i) (1 + i) 

= (8 + 12i – 14 i + 21) (1 + i) 

= (29 – 2i)(1 + i) = 29 + 29i – 2i + 2 

= 31 + 27i ….(1) 

Z1 (z2 z3) = (4 – 7i) [(2 + 3i) (1 + i)] 

= 4 – 7i [2 + 2i + 3i – 3] 

= 4 – 7i[5i – 1] = 20i – 4 + 35 + 7i 

= 31 + 27i …(2) 

From (1) and (2) we get, (Z1 Z2) z3 = z(z2 z3)

116.

Obtain the Cartesian equation for the locus of z = x + iy in each of the following cases. (i) |z – 4| = 16 (ii) |z – 4|2 – |z – 1|2 = 16

Answer»

(i) z = x + iy 

|z – 4| = 16

⇒ |x + iy – 4| = 16 

⇒ |(x – 4) + iy| = 16

= √((x - 4)2 + y2) = 16

Squaring on both sides 

(x – 4)2 + y2 = 256 

⇒ x2 – 8x + 16 + y2 – 256 = 0 

⇒ x2 + y2 – 8x – 240 = 0 represents the equation of circle

(ii) |x + iy – 4|2 – |x + iy – 1|2 = 16 

⇒ |(x – 4) + iy|2 – |(x – 1) + iy|2 = 16 

⇒ [(x – 4)2 + y2] – [(x – 1)2 + y2] = 16 

⇒ (x2 – 8x + 16 + y2) – (x2 – 2x + 1 + y2) = 16

⇒ x2 + y2 – 8x + 16 – x2 + 2x – 1 – y2 = 16 

⇒ -6x + 15 = 16 

⇒ 6x + 1 = 0

117.

Prove that 6i50 + 5i33 – 2i15 + 6i48 = 7i.

Answer»

Given: 6i50 + 5i33 – 2i15 + 6i48

To prove: 6i50 + 5i33 – 2i15 + 6i48 = 7i

⇒ 6i4×12+2 + 5i4×8+1 – 2i4×3+3 + 6i4×12

⇒ 6i2 + 5i1 – 2i3 + 6i0

⇒ -6+5i+2i+6

⇒ 7i

⇒ L.H.S. = R.H.S.

Hence proved.

118.

If z = x + iy is a complex number such that |z + 2| = |z – 2|, then the locus of z is _____ (a) real axis(b) imaginary axis (c) ellipse (d) circle

Answer»

(b) imaginary axis

|z + 2| = | z – 2| 

⇒ |x + iy + 2| = |x + iy – 2| 

⇒ |x + 2 + iy|2 = |x – 2 + iy|2

⇒ (x + 2)2 + y2 = (x – 2)2 + y2 

⇒ x2 + 4 + 4x = x2 + 4 – 4x 

⇒ 8x = 0 

⇒ x = 0

119.

If -i + 2 is one root of the equation ax2 – bx + c = 0, then the other root is (a) – i – 2 (b) i – 2 (c) 2 + i(d) 2i + i

Answer»

(c) 2 + i

Complex roots occur in pairs when -i + 2 is one root, i.e., when 2 – i is a root, the other root is 2 + i

120.

If (z - 1/z + 1) is purely imaginary, then ...(a) |z| = 1 (b) |z| > 1 (c) |z| < 1 (d) None of these.

Answer»

(a) The answer is |z| = 1

121.

If – i + 3 is a root of x2 – 6x + k = 0, then the value of k is(a) 5(b) √5(c) √10(d) 10

Answer»

(d) 10

α = -i + 3 = 3 – 7 

⇒ The other root is β = 3 + i 

Product of the roots = αβ = (3 – i)(3 + i) = 10 

Product of the roots of x2 – 6x + k = 0 is k ⇒ k 

= 10

122.

Express (2 – 3i)3 in the form (a + ib).

Answer»

We have, (2 – 3i)3

= 23 – 3 × 22 × 3i – 3 × 2 × (3i)2 – (3i)3

= 8 – 36i + 54 + 27i

= 46 - 9i.

123.

Write –3i in polar form.

Answer»

Let, z = -3i

Let 0 = r cosθ and -3 = r sinθ

By squaring and adding, we get

(0)2 + (-3)2 = (r cosθ)2 + (r sinθ)2

⇒ 0+9 = r2(cos2θ + sin2θ)

⇒ 9 = r2

⇒ r = 3

∴ cosθ = 0 and sinθ = -1

Since, θ lies in fourth quadrant, we have

θ = 3π/2

Thus, the required polar form is \(3[cos(3\frac{3\pi}{2})+i\,sin(\frac{3\pi}{2})]\)

124.

If ω ≠ 1 is a cube root of unity, show that (i) (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128 (ii) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)……(1 + ω2n) = 1

Answer»

(i) ω is a cube root of unity ω3 = 1; 

1 + ω + ω2 = 0 

(1 – ω + ω2)6 + (1 + ω – ω2)

= (-ω – ω)6 + (-ω2– ω 2)6 

= (-2ω)6 + (-2ω2)6 

= (-2)66 + ω12

= (64)(1 + 1) 

= 128

(ii) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8) …… (1 + ω2n

= (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8) ……. 2n factors 

= (-ω2)(-ω)(-ω2)(-ω) …… 2n factors 

= ω3 . ω3 

= 1

125.

Find the modulus and amplitude for following complex number: 1 + i√3

Answer»

Let z = 1 + i√3

a = 1, b = √3, i.e. a > 0, b > 0

|z| = \(\sqrt{a^2+b^2}=\sqrt{162+(\sqrt3)^2}=\sqrt{1+3}=2\)

Here, (1, √3) lies in 1st quadrant.

amp(z) = tan-1\((\frac{b}a)\) = tan-1√3 = \(\frac{\pi}3\)

126.

Write z = (–1 + i√3) in polar form.

Answer»

We have, z = (–1 + i√3)

Let -1 = r cosθ and √3 = r sinθ

By squaring and adding, we get

(-1)2 + (√3)2 = (r cosθ)2 + (r sinθ)2

⇒ 1+3 = r2 (cos2θ + sin2θ)

⇒ 4 = r2

⇒ r = 2

∴ cosθ = -1/2 and sinθ = √3/2

Since, θ lies in second quadrant, we have

θ = π - π/3 = 2π/3

Thus, the required polar form is 2[cos\(\frac{2\pi}{3}\)+i sin\(\frac{2\pi}{3}\)]

127.

State True of False:If z is a complex number such that z ≠ 0 and Re (z) = 0, then Im (z2) = 0.

Answer»

False

Explanation:

Given z ≠ 0 and Re (z) = 0

Let z = x + iy

Then x = 0

∴ z = iy

⇒ Im (z2) = i2y2 = -y2 ≠ 0

128.

The argument of \(\frac{1-i}{1+i}\) isA. \(-\frac{\pi}{2}\)B.  \(\frac{\pi}{2}\)C. \(\frac{3\pi}{2}\)D. \(\frac{5\pi}{2}\)

Answer»

\(\frac{1-i}{1+i} = \frac{(1-i)}{(1+i)}\times\frac{(1-i)}{(1-i)}\) 

=0 + i(-1)

arg = tan-1 \(\frac{-1}{0}\) 

= \(\frac{-\pi}{2}\) 

129.

The amplitude of \(\frac{1}{i}\) is equal toA. 0B. \(\frac{\pi}{2}\)C. \(-\frac{\pi}{2}\)D. π

Answer»

\(\frac{1}{i}=\frac{1}{i}\times\frac{i}{i}\)

\(\frac{i}{-1}\) 

= 0+i(-1)

amp = tan-1\(\frac{-1}{0}\) ​

= \(\frac{-\pi}{2}\)​​​​​​

130.

Find the values of x and y which satisfy the following equations (x, y ∈ R)(x + 2y) + (2x – 3y)i + 4i = 5

Answer»

(x + 2y) + (2x – 3y)i + 4i = 5

(x + 2y) + (2x – 3y)i = 5 – 4i

Equating real and imaginary parts, we get

x + 2y = 5 ……(i)

and 2x – 3y = -4 …..(ii)

Equation (i) x 2 – equation (ii) gives

7y = 14

∴ y = 2

Substituting y = 2 in (i), we get

x + 2(2) = 5

x + 4 = 5

∴ x = 1

∴ x = 1 and y = 2

Check:

For x = 1 and y = 2

Consider, L.H.S. = (x + 2y) + (2x – 3y)i + 4i

= (1 + 4) + (2 – 6)i + 4i

= 5 – 4i + 4i

= 5

= R.H.S.

131.

Find the real values of x and y for which:x + 4yi = ix + y + 3

Answer»

Given: x + 4yi = ix + y + 3

or x + 4yi = ix + (y + 3)

Comparing the real parts, we get

x = y + 3 Or x – y = 3 …(i)

Comparing the imaginary parts, we get

4y = x …(ii)

Putting the value of x = 4y in eq. (i), we get

4y – y = 3

⇒ 3y = 3

⇒ y = 1

Putting the value of y = 1 in eq. (ii), we get

x = 4(1) = 4

Hence, the value of x = 4 and y = 1

132.

Find the values of x and y which satisfy the following equations (x, y ∈ R),If x(1 + 3i) + y(2 – i) – 5 + i3= 0, find x + y

Answer»

x(1 + 3i) + y(2 – i) – 5 + i3 = 0

x + 3xi + 2y – yi – 5 – i = 0 ……[∵ i3 = -i]

(x + 2y – 5) + (3x – y – 1)i = 0 + 0i

Equating real and imaginary parts, we get

x + 2y – 5 = 0 …..(i)

and 3x – y – 1 = 0 ……(ii)

Equation (i) + equation (ii) × 2 gives

7x – 7 = 0

7x = 1

∴ x = 1

Substituting x = 1 in (i), we get

1 + 2y – 5 = 0

2y = 4

y = 2

∴ x = 1 and y = 2

∴ x + y = 1 + 2 = 3

133.

√-7+24i

Answer»

Let, (a + ib)2 = - 7 + 24i

Now using, (a + b)2 = a2 + b2 + 2ab

a2 + (bi)2 + 2abi = -7 + 24i

Since i2 = -1

a2 - b2 + 2abi = -7 + 24i

Now, separating real and complex parts, we get

⇒ a2 - b2 = - 7…………..eq.1

⇒ 2ab = 24…….. eq.2

⇒ a = 12/b

Now, using the value of a in eq.1, we get

⇒ (12/b)2 – b2 = - 7

⇒ 144 – b4 = -7b2

⇒ b4 - 7b2 - 144 = 0

Simplify and get the value of b2, we get,

⇒ b2 = - 9 or b2 = 16

As b is real no. so, b2 = 16

b = 4 or b = - 4

Therefore, a = 3 or a = - 3

Hence the square root of the complex no. is 3 + 4i and - 3 - 4i.

134.

Find the equation in cartesian coordinates of the locus of z if |z - 3| = 2

Answer»

Let z = x + iy

|z – 3| = 2

|x + iy – 3| = 2

|(x – 3) + iy| = 2

\(\sqrt{(x-3)^2+y^2}=2\) 

\(\therefore\) (x - 3)2 + y2 = 4

135.

Find the equation in cartesian coordinates of the locus of z if |z| = 10

Answer»

Let z = x + iy

|z| = 10

|x + iy| = 10

\(\sqrt{x^2+y^2}\) = 10

\(\therefore\) x2 + y2 = 100

136.

Find the equation in cartesian coordinates of the locus of z if  |z – 2 – 2i | = |z + 2 + 2i|

Answer»

Let z = x + iy

|z – 2 – 2i| = |z + 2 + 2i|

|x + iy – 2 – 2i | = |x + iy + 2 + 2i |

|(x – 2) + i(y – 2)| = |(x + 2) + i(y + 2)|

\(\sqrt{(x-2)^2+(y-2)^2}=\sqrt{(x+2)^2 + (y+2)^2}\) 

(x – 2)2 + (y – 2)2 = (x + 2)2 + (y + 2)2

x2 – 4x + 4 + y2 – 4y + 4

= x2 + 4x + 4 + y2 + 4y + 4

- 4x – 4y = 4x + 4y

8x + 8y = 0

x + y = 0 

y = -x

137.

Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|

Answer»

Let z = x + iy

|z + 8| = |z – 4|

|x + iy + 8| = |x + iy – 4|

|(x + 8) + iy | = |(x – 4) + iy|

\(\sqrt{(x+8)^2+y^2}=\sqrt{(x-4)^2+y^2}\)

(x + 8)2 + y2 = (x - 4)2 + y2

x2 + 16x + 64 + y2 = x2 – 8x + 16 + y2

16x + 64 = -8x + 16

24x + 48 = 0

∴ x + 2 = 0

138.

Find the equation in cartesian coordinates of the locus of z if |z – 5 + 6i| = 5

Answer»

Let z = x + iy

|z – 5 + 6i| = 5

|x + iy – 5 + 6i| = 5

|(x – 5) + i(y + 6)| = 5

\(\sqrt{(x-5)^2+(y+6)^2}=5\) 

\(\therefore\) (x - 5)2 + (y + 6)2 = 25

139.

The value of (1 + i)4 + (1 – i)4 is A. 8 B. 4C. -8 D. -4

Answer»

(1 + i)4 + (1 - i)4 = ((1 + i)2)2 + ((1 - i)2)2 

= (2i)2 + (-2i)2 

= -4 + -4 

= -8

140.

Find the number of non-zero integral solutions of the equation |1 - i|x = 2x.

Answer»

Given |1 - i|x = 2x

⇒ (1 + 1)x = 2x

2x/2 = 2x

∴ x/2 = x ⇒ x = 0

∴ There is no non-zero integral solution

141.

The value of (1 + i) (1 + i2) (1 + i3)(1 + i4) is A. 2 B. 0 C. 1 D. i

Answer»

We know that 

i= √(-1) 

i2= i × i 

=\(\sqrt{-1}\times\sqrt{-1}\)

= -1 

(1+i)(1+i2)(1+i3)(1+i4) = (1+i)(1+(-1))(1+i3)(1+i4

= (1+i)(0)(1+i3)(1+i4

= 0

142.

If (x – 1)4 –16 = 0, then the sum of non real complex roots of the equation is(a)  2(b)  0(c)  4(d)  None of these 

Answer»

Correct option (a) 2

Explanation:

(x – 1)4 = 16

x – 1 = (16)1/4

x – 1 = ± 2, ± 2i

x = 1 ± 2, 1 ± 2i

Sum of non-real roots is (1 + 2i) + (1 – 2i) = 2

143.

If z is a non-real root of 7√ –1, then z86  + z175 +  z289 is equal to (a)   0(b)   –1(c)   3(d)   1

Answer»

Correct option (b) –1

Explanation:

z = 7 –1 

z7 = –1

∴ z86  +  z175  +  z289 = (z7 )12 z2 + (z7 )25 + (z7 ) 41.z2 

 = z– 1 – z2 = –1

144.

If z = x + iy, then show that zz̅ + 2(z + z̅) + b = 0 where bϵR, representing z in the complex plane is a circle.

Answer»

According to the question,

We have,

z = x + iy

⇒ z̅ = x – iy

Now, we also have,

z z̅ + 2 (z + z̅) + b = 0

⇒ (x + iy) (x – iy) + 2 (x + iy + x – iy) + b = 0

⇒ x2 + y2 + 4x + b = 0

The equation obtained represents the equation of a circle.

145.

√-11-60i

Answer»

Let, (a + ib)2 = -11 - 60i

Now using, (a + b)2 = a2 + b2 + 2ab

⇒ a2 + (bi)2 + 2abi = -11 - 60i

Since i2 = -1

⇒ a2 - b2 + 2abi = -11 - 60i

Now, separating real and complex parts, we get

⇒ a2 - b2 = -11…………..eq.1

⇒ 2ab = - 60…….. eq.2

⇒ a = -30/b

Now, using the value of a in eq.1, we get

⇒ \((-\frac{30}{b})^2\) – b2 = -11

⇒ 900 – b4 = -11b2

⇒ b4 - 11b2 - 900 = 0

Simplify and get the value of b2 , we get,

⇒ b2 = 36 or b2 = -25

as b is real no. so, b2 = 36

b = 6 or b = -6

Therefore , a = - 5 or a = 5

Hence the square root of the complex no. is - 5 + 6i and 5 – 6i.

146.

√-4-3i

Answer»

Let, (a + ib)2 = - 4 - 3i

Now using, (a + b)2 = a2 + b2 + 2ab

⇒ a2 + (bi)2 + 2abi = -4 -3i

Since i2 = -1

⇒ a2 - b2 + 2abi = - 4 - 3i

Now, separating real and complex parts, we get

⇒ a2 - b2 = - 4…………..eq.1

⇒ 2ab = - 3…….. eq.2

⇒ a = - 3/2b

Now, using the value of a in eq.1, we get

⇒ \((-\frac{3}{2b})^2\) – b2 = - 4

⇒ 9 – 4b4 = -16b2

⇒ 4b4 - 16b2 - 9 = 0

Simplify and get the value of b2, we get,

⇒ b2 = 9/2 or b2 = - 2

As b is real no. so, b2 = 9/2

b = \(\frac{3}{\sqrt2}\) or b = -\(\frac{3}{\sqrt2}\)

Therefore, a = -\(\frac{1}{\sqrt2}\) or a = \(\frac{1}{\sqrt2}\)

Hence the square root of the complex no. is -\(\frac{1}{\sqrt2}\) + \(\frac{3}{\sqrt2}\)i and \(\frac{1}{\sqrt2}\) - \(\frac{3}{\sqrt2}\)i.

147.

√-15-8i

Answer»

Let, (a + ib)2 = -15 - 8i

Now using, (a + b)2 = a2 + b2 + 2ab

⇒ a2 + (bi)2 + 2abi = -15 - 8i

Since i2 = -1

⇒ a2 - b2 + 2abi = -15 - 8i

Now, separating real and complex parts, we get

⇒ a2 - b2 = -15…………..eq.1

⇒ 2ab = -8…….. eq.2

⇒ a = - 4/b

Now, using the value of a in eq.1, we get

⇒ \((-\frac{4}{b})^2\) – b2 = -15

⇒ 16 – b4 = -15b2

⇒ b4 - 15b2 - 16 = 0

Simplify and get the value of b2, we get,

⇒ b2 = 16 or b2 = -1

As b is real no. so, b2 = 16

b = 4 or b = - 4

Therefore, a = -1 or a = 1

Hence the square root of the complex no. is -1 + 4i and 1 - 4i.

148.

Write the value of the square root of i.

Answer»

Let 

\(\sqrt{i}\)  = \(\sqrt{a+ib}\) .........….1 

Squaring both sides, we get 

i2 = (a2- b2) +2aib 

By comparing real and imaginary term, we get 

2ab = 1 and a2- b2 = 0 

By solving these we get 

a = b = \(\frac{1}{\sqrt{2}}\)   

By putting value of a and b in 1, we get

\(\sqrt{i}\)  = ±  \(\frac{1}{\sqrt{2}}\) + \(\frac{1}{\sqrt{2}}\)i    

\(\sqrt{i}\) = ±  \(\frac{1}{\sqrt{2}}\) (1+i)

149.

State True of False:The order relation is defined on the set of complex numbers.

Answer»

False

Explanation:

We can compare two complex numbers when they are purely real. Otherwise comparison of complex numbers is not possible or has no meaning.

150.

Simplify the following and express in the form a + ib.(1 + 3i)2 (3 + i)

Answer»

(1 + 3i)2 (3 + i)

= (1 + 6i + 9i2)(3 + i)

= (1 + 6i – 9)(3 + i) ……[∵ i2 = -1]

= (-8 + 6i)(3 + i)

= -24 – 8i + 18i + 6i2

= -24 + 10i + 6(-1)

= -24 + 10i – 6

= -30 + 10i