InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
Fill in the blanks:If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = …….. |
|
Answer» Let z1 = x1 + iy1 and z2 = x2 + iy2 ⇒ z1 + z2 = (x1 + x2) + i (y1 + y2) which is real ⇒ y1 + y2 = 0 ⇒ y1 = - y2 Assuming x1 = x2 Since z2 = x1 – iy1 ∴ z2 = z̅ 1 |
|
| 102. |
Evaluate: √−16 + 3√−25 + √−36 − √−625 |
|
Answer» √−16 + 3√−25 + √−36 − √−625 = i√16 + 3i√25 + i√36 −i√625 = 4i+ 15i + 6i - 25i = 25i - 25i = 0 |
|
| 103. |
If the area of the triangle formed by the vertices z, iz, and z + iz is 50 square units, find the value of |z|. |
|
Answer» The given vertices are z, iz, z + iz ⇒ z, iz are ⊥r to each other. Area of triangle = (1/2) bh = 50 ⇒ (1/2) |z| |iz| = 50 ⇒ (1/2) |z| |z| = 50 ⇒ |z|2 = 100 ⇒ |z| = 10 |
|
| 104. |
Evaluate:i √−16 + i√−25 + √49 − i√−49+14 |
|
Answer» i√−16 + i√−25 + √49 − i√−49+14 =i2 √16 + i2√25 + √49 − i2√49 + 14 = 4i2 + 5i2 + 7 − 7i2 + 14 = -4 – 5 + 7 + 7 + 14 = -9 + 28 = 19 |
|
| 105. |
If |z1| = |z2|, is it necessary that z1 = z2? |
|
Answer» Given |z1| = |z2| If |z1| = |z2| then z1 and z2 are at the same distance from origin. But if arg (z1) ≠ arg (z2) then z1 and z2 are different. So, if |z1| = |z2|, then it is not necessary that z1 = z2. For example: z1 = 3 + 4i and z2 = 4 + 3i Here |z1| = |z2| = 5 but z1 ≠ z2. |
|
| 106. |
The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argand’s diagrams is ___(a) (1/2) |z|(b) |z|2(c) (3/2)|z|2(d) 2|z|2 |
|
Answer» (a) (1/2) |z| Area of triangle = (1/2) bh = (1/2) |z| |iz| = (1/2) |z|2 |
|
| 107. |
Evaluate: (i77 + i70+i87 + i414)3 |
|
Answer» (i77 + i70+i87 + i414)3 = [(i4 )19i + (i4 )17 i2 + (i4 )21i3 + (i4 )103i2 ]3 = [ i+i2 + i3 + i2 ] 3 [∵i4 = 1] = [ i− 1 − i − 1] 3 [∵ i2 = −1and i3 = −] = [-2]3 = -8 |
|
| 108. |
Find the real values of x and y, if(i) (x + iy) (2 – 3i) = 4 + i(ii) (3x – 2i y) (2 + i)2 = 10(1 + i) |
|
Answer» (i) (x + iy) (2 – 3i) = 4 + i Given as (x + iy) (2 – 3i) = 4 + i Now let us simplify the expression we get, x(2 – 3i) + iy(2 – 3i) = 4 + i 2x – 3xi + 2yi – 3yi2 = 4 + i 2x + (-3x + 2y)i – 3y(-1) = 4 + i [since, i2 = -1] 2x + (-3x + 2y)i + 3y = 4 + i [since, i2 = -1] (2x + 3y) + i(-3x + 2y) = 4 + i By equating real and imaginary parts on both sides, we get 2x + 3y = 4… (i) And -3x + 2y = 1… (ii) Now multiply (i) by 3 and (ii) by 2 and add By solving we get, 6x – 6x – 9y + 4y = 12 + 2 13y = 14 y = 14/13 Then substitute the value of y in (i) we get, 2x + 3y = 4 2x + 3(14/13) = 4 2x = 4 – (42/13) = (52 - 42)/13 2x = 10/13 x = 5/13 x = 5/13, y = 14/13 Thus the real values of x and y are 5/13, 14/13 (ii) (3x – 2i y) (2 + i)2 = 10(1 + i) Given as (3x – 2i y) (2 + i)2 = 10(1 + i) (3x – 2yi) (22 + i2 + 2(2)(i)) = 10 + 10i (3x – 2yi) (4 + (-1) + 4i) = 10 + 10i [since, i2 = -1] (3x – 2yi) (3 + 4i) = 10 + 10i Now let us divide with 3 + 4i on both sides we get, (3x – 2yi) = (10 + 10i)/(3 + 4i) Then multiply and divide with (3 - 4i) = [10(3 - 4i) + 10i(3 - 4i)]/(32 – (4i)2) = [30 - 40i + 30i - 40i2]/(9 – 16i2) = [30 - 10i - 40(-1)]/(9 - 16(-1)) = [70 - 10i]/25 Then, equating real and imaginary parts on both sides we get 3x = 70/25 and -2y = -10/25 x = 70/75 and y = 1/5 x = 14/15 and y = 1/5 Thus the real values of x and y are 14/15, 1/5 |
|
| 109. |
Find x and y if (x+ iy) (2 - 3i) = 4 + i |
|
Answer» Given, (x + iy) (2 − 3i) = 4 + i ⟹ (2x + 3y) + i(−3x + 2y) = 4 + i ⟹ 2x + 3y = 4 and − 3x + 2y = 1 On solving, we get, x = \(\frac{5}{13}\) and y = \(\frac{14}{13}\) |
|
| 110. |
Solve the following equations for x, y ∈ R. \(\frac{x+iy}{2+3i}=7-i\)(x + iy)/(2 + 3i) = 7 - i |
|
Answer» \(\frac{x+iy}{2+3i}=7-i\) x + iy = (7 – i)(2 + 3i) x + iy = 14 + 21i – 2i – 3i2 x + iy = 14 + 19i – 3(-1) x + iy = 17 + 19i Equating real and imaginary parts, we get ∴ x = 17 and y = 19 |
|
| 111. |
Find the real values of x and y for which:\(\frac{(x+3i)}{(2+iy)}\) = (1 - i)(x+3i)/(2+iy) |
|
Answer» Given: \(\frac{(x+3i)}{(2+iy)}\) = (1 - i) ⇒ x + 3i = (1 – i)(2 + iy) ⇒ x + 3i = 1(2 + iy) – i(2 + iy) ⇒ x + 3i = 2 + iy – 2i – i 2y ⇒ x + 3i = 2 + i(y – 2) – (-1)y [i2 = -1] ⇒ x + 3i = 2 + i(y – 2) + y ⇒ x + 3i = (2 + y) + i(y – 2) Comparing the real parts, we get x = 2 + y ⇒ x – y = 2 …(i) Comparing the imaginary parts, we get 3 = y – 2 ⇒ y = 3 + 2 ⇒ y = 5 Putting the value of y = 5 in eq. (i), we get x – 5 = 2 ⇒ x = 2 + 5 ⇒ x = 7 Hence, the value of x = 7 and y = 5 |
|
| 112. |
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2+ 4z1z3+ z2z3| = 12, then the value of |z1+ z2 + z3| is ___(a) 1 (b) 2 (c) 3 (d) 4 |
|
Answer» (b) 2 |z1 + z2 + z3| = 2 |
|
| 113. |
Show that the following equations represent a circle, and, find its centre and radius. (i) |z – 2 – i| = 3 (ii) |2z + 2 – 4i| = 2 (iii) |3z – 6 + 12i| = 8 |
|
Answer» (i) Let z = x + iy |z – 2 – i| = 3 ⇒ |x + iy – 2 – i| = 3 ⇒ |(x – 2) + i(y – 1)| = 3 = √((x - 2)2 + (y -1)2) = 3 Squaring on both sides (x – 2)2 + (y – 1)2 = 9 ⇒ x2 – 4x + 4 + y2 – 2y + 1 – 9 = 0 ⇒ x2 + y2 – 4x – 2y – 4 = 0 represents a circle 2g = -4 ⇒ g = -2 2f = -2 ⇒ f = -1 c = -4 (a) Centre (-g, -f) = (2, 1) = 2 + i (b) (b) Radius = √(g2 + f2 - c) = √(4 + 1 + 4) = 3 Aliter: |z – (2 + i)| = 3 Centre = 2 + i Radius = 3 (ii) |2(x + iy) + 2 – 4i| = 2 ⇒ |2x + i2y + 2 – 4i| = 2 ⇒ |(2x + 2) + i(2y – 4)| = 2 ⇒ |2(x + 1) + 2i(y – 2)| = 2 ⇒ |(x + 1) + i(y – 2)| = 1 = √((x + 1)2 + (y - 2)2) = 1 Squaring on both sides, x2 + 2x + 1 + y2 + 4 – 4y – 1 = 0 ⇒ x2 + y2 + 2x – 4y + 4 = 0 represents a circle 2g = 2 ⇒ g = 1 2f = -4 ⇒ f = -2 c = 4 (a) Centre (-g, -f) = (-1, 2) = -1 + 2i (b) Radius = √(g2 + f2 - c) = √(1 + 4 - 4) = 1 Aliter: 2|(z + 1 – 2i)| = 2 |z – (-1 + 2i)| = 1 Centre = -1 + 2i Radius = 1 (iii) |3(x + iy) – 6 + 12i| = 8 ⇒ |3x + i3y – 6 + 12i| = 8 ⇒ |3(x – 2) + i3 (y + 4)| = 8 ⇒ 3|(x – 2) + i (y + 4)| = 8 = 3√((x - 2)2 + (y + 4)2) = 8 Squaring on both sides, 9[(x – 2)2 + (y + 4)2] = 64 ⇒ x2 – 4x + 4 + y2 + 8y + 16 = 64/9 ⇒ x2 + y2 – 4x + 8y + 20 – (64/9) = 0 x2 + y2 – 4x + 8y + (116/9) = 0 represents a circle. 2g = -4 ⇒ g = -2 2f = 8 ⇒ f = 4 c = 116/9 (a) Centre (-g, -f) = (2, -4) = 2 – 4i (b) Radius = √(g2 + f2 - c) = √(4 + 16 - (116/9)) = √(180 - 116)/9 = 8/3 Aliter: |z – 2 + 4i| = 8/3 ⇒ |z – (2 – 4i)| = 8/3 Centre = 2 – 4i, Radius = 8/3 |
|
| 114. |
Given z1 = 1 + i, z2 = 4 – 3i and z3 = 2 + 5i verify that. Z1 (Z2 Z3) = Z1 Z2 – z1 z3 |
|
Answer» Z1 = 1 + i, z2 = 4 – 3i, z3 = 2 + 5i Z1 (z2 – z3) = 1 + i[(4 – 3i) – (2 + 5i)] = 1 + i[2 – 8i] = 2 – 8i + 2i + 8 = 10 – 6i …(1) Z1 z2 = (1 + i) (4 – 3i) = 4 – 3i + 4i + 3 = 7 + i Z1 Z3 = (1 + i) (2 + 5i) = 2 + 5i + 2i – 5 = 7i – 3 Z1 Z2 – Z1 z3 = 7 + i – (7i – 3) = 7 + i – 7i + 3 = 10 – 6i …(2) From (1) and (2) we get, Z1 (Z2 Z3) = Z1 Z2 – z1 z3 |
|
| 115. |
If z1 = 4 – 7i, z2 = 2 + 3i and z3 = 1 + i show that. (i) z1 + (z2 + z3) = (Z1 + z2) + Z3(ii) (Z1 z2) z3 = Z1 (z2 z3) |
|
Answer» (i) Z1 + (z2 + z3) = 4 – 7i + (2 + 3i + 1 + i) = 4 – 7i + (3 + 4i) = 7 – 3i (z1 + z2) + z3 = (4 – 7i + 2 + 3i) + (1 + i) = (6 – 4i) + (1 + i) = 7 – 3i …(2) From (1) and (2) we get, z1 + (z2 + z3) = (z1 + z2) + z3 (ii) (z1 z2) z3 = (4 – 7i) + (2 + 3i) (1 + i) = (8 + 12i – 14 i + 21) (1 + i) = (29 – 2i)(1 + i) = 29 + 29i – 2i + 2 = 31 + 27i ….(1) Z1 (z2 z3) = (4 – 7i) [(2 + 3i) (1 + i)] = 4 – 7i [2 + 2i + 3i – 3] = 4 – 7i[5i – 1] = 20i – 4 + 35 + 7i = 31 + 27i …(2) From (1) and (2) we get, (Z1 Z2) z3 = z1 (z2 z3) |
|
| 116. |
Obtain the Cartesian equation for the locus of z = x + iy in each of the following cases. (i) |z – 4| = 16 (ii) |z – 4|2 – |z – 1|2 = 16 |
|
Answer» (i) z = x + iy |z – 4| = 16 ⇒ |x + iy – 4| = 16 ⇒ |(x – 4) + iy| = 16 = √((x - 4)2 + y2) = 16 Squaring on both sides (x – 4)2 + y2 = 256 ⇒ x2 – 8x + 16 + y2 – 256 = 0 ⇒ x2 + y2 – 8x – 240 = 0 represents the equation of circle (ii) |x + iy – 4|2 – |x + iy – 1|2 = 16 ⇒ |(x – 4) + iy|2 – |(x – 1) + iy|2 = 16 ⇒ [(x – 4)2 + y2] – [(x – 1)2 + y2] = 16 ⇒ (x2 – 8x + 16 + y2) – (x2 – 2x + 1 + y2) = 16 ⇒ x2 + y2 – 8x + 16 – x2 + 2x – 1 – y2 = 16 ⇒ -6x + 15 = 16 ⇒ 6x + 1 = 0 |
|
| 117. |
Prove that 6i50 + 5i33 – 2i15 + 6i48 = 7i. |
|
Answer» Given: 6i50 + 5i33 – 2i15 + 6i48 To prove: 6i50 + 5i33 – 2i15 + 6i48 = 7i ⇒ 6i4×12+2 + 5i4×8+1 – 2i4×3+3 + 6i4×12 ⇒ 6i2 + 5i1 – 2i3 + 6i0 ⇒ -6+5i+2i+6 ⇒ 7i ⇒ L.H.S. = R.H.S. Hence proved. |
|
| 118. |
If z = x + iy is a complex number such that |z + 2| = |z – 2|, then the locus of z is _____ (a) real axis(b) imaginary axis (c) ellipse (d) circle |
|
Answer» (b) imaginary axis |z + 2| = | z – 2| ⇒ |x + iy + 2| = |x + iy – 2| ⇒ |x + 2 + iy|2 = |x – 2 + iy|2 ⇒ (x + 2)2 + y2 = (x – 2)2 + y2 ⇒ x2 + 4 + 4x = x2 + 4 – 4x ⇒ 8x = 0 ⇒ x = 0 |
|
| 119. |
If -i + 2 is one root of the equation ax2 – bx + c = 0, then the other root is (a) – i – 2 (b) i – 2 (c) 2 + i(d) 2i + i |
|
Answer» (c) 2 + i Complex roots occur in pairs when -i + 2 is one root, i.e., when 2 – i is a root, the other root is 2 + i |
|
| 120. |
If (z - 1/z + 1) is purely imaginary, then ...(a) |z| = 1 (b) |z| > 1 (c) |z| < 1 (d) None of these. |
|
Answer» (a) The answer is |z| = 1 |
|
| 121. |
If – i + 3 is a root of x2 – 6x + k = 0, then the value of k is(a) 5(b) √5(c) √10(d) 10 |
|
Answer» (d) 10 α = -i + 3 = 3 – 7 ⇒ The other root is β = 3 + i Product of the roots = αβ = (3 – i)(3 + i) = 10 Product of the roots of x2 – 6x + k = 0 is k ⇒ k = 10 |
|
| 122. |
Express (2 – 3i)3 in the form (a + ib). |
|
Answer» We have, (2 – 3i)3 = 23 – 3 × 22 × 3i – 3 × 2 × (3i)2 – (3i)3 = 8 – 36i + 54 + 27i = 46 - 9i. |
|
| 123. |
Write –3i in polar form. |
|
Answer» Let, z = -3i Let 0 = r cosθ and -3 = r sinθ By squaring and adding, we get (0)2 + (-3)2 = (r cosθ)2 + (r sinθ)2 ⇒ 0+9 = r2(cos2θ + sin2θ) ⇒ 9 = r2 ⇒ r = 3 ∴ cosθ = 0 and sinθ = -1 Since, θ lies in fourth quadrant, we have θ = 3π/2 Thus, the required polar form is \(3[cos(3\frac{3\pi}{2})+i\,sin(\frac{3\pi}{2})]\) |
|
| 124. |
If ω ≠ 1 is a cube root of unity, show that (i) (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128 (ii) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)……(1 + ω2n) = 1 |
|
Answer» (i) ω is a cube root of unity ω3 = 1; 1 + ω + ω2 = 0 (1 – ω + ω2)6 + (1 + ω – ω2)6 = (-ω – ω)6 + (-ω2– ω 2)6 = (-2ω)6 + (-2ω2)6 = (-2)6 (ω6 + ω12) = (64)(1 + 1) = 128 (ii) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8) …… (1 + ω2n) = (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8) ……. 2n factors = (-ω2)(-ω)(-ω2)(-ω) …… 2n factors = ω3 . ω3 = 1 |
|
| 125. |
Find the modulus and amplitude for following complex number: 1 + i√3 |
|
Answer» Let z = 1 + i√3 a = 1, b = √3, i.e. a > 0, b > 0 |z| = \(\sqrt{a^2+b^2}=\sqrt{162+(\sqrt3)^2}=\sqrt{1+3}=2\) Here, (1, √3) lies in 1st quadrant. amp(z) = tan-1\((\frac{b}a)\) = tan-1√3 = \(\frac{\pi}3\) |
|
| 126. |
Write z = (–1 + i√3) in polar form. |
|
Answer» We have, z = (–1 + i√3) Let -1 = r cosθ and √3 = r sinθ By squaring and adding, we get (-1)2 + (√3)2 = (r cosθ)2 + (r sinθ)2 ⇒ 1+3 = r2 (cos2θ + sin2θ) ⇒ 4 = r2 ⇒ r = 2 ∴ cosθ = -1/2 and sinθ = √3/2 Since, θ lies in second quadrant, we have θ = π - π/3 = 2π/3 Thus, the required polar form is 2[cos\(\frac{2\pi}{3}\)+i sin\(\frac{2\pi}{3}\)] |
|
| 127. |
State True of False:If z is a complex number such that z ≠ 0 and Re (z) = 0, then Im (z2) = 0. |
|
Answer» False Explanation: Given z ≠ 0 and Re (z) = 0 Let z = x + iy Then x = 0 ∴ z = iy ⇒ Im (z2) = i2y2 = -y2 ≠ 0 |
|
| 128. |
The argument of \(\frac{1-i}{1+i}\) isA. \(-\frac{\pi}{2}\)B. \(\frac{\pi}{2}\)C. \(\frac{3\pi}{2}\)D. \(\frac{5\pi}{2}\) |
|
Answer» \(\frac{1-i}{1+i} = \frac{(1-i)}{(1+i)}\times\frac{(1-i)}{(1-i)}\) =0 + i(-1) arg = tan-1 \(\frac{-1}{0}\) = \(\frac{-\pi}{2}\) |
|
| 129. |
The amplitude of \(\frac{1}{i}\) is equal toA. 0B. \(\frac{\pi}{2}\)C. \(-\frac{\pi}{2}\)D. π |
|
Answer» \(\frac{1}{i}=\frac{1}{i}\times\frac{i}{i}\) = \(\frac{i}{-1}\) = 0+i(-1) amp = tan-1\(\frac{-1}{0}\) = \(\frac{-\pi}{2}\) |
|
| 130. |
Find the values of x and y which satisfy the following equations (x, y ∈ R)(x + 2y) + (2x – 3y)i + 4i = 5 |
|
Answer» (x + 2y) + (2x – 3y)i + 4i = 5 (x + 2y) + (2x – 3y)i = 5 – 4i Equating real and imaginary parts, we get x + 2y = 5 ……(i) and 2x – 3y = -4 …..(ii) Equation (i) x 2 – equation (ii) gives 7y = 14 ∴ y = 2 Substituting y = 2 in (i), we get x + 2(2) = 5 x + 4 = 5 ∴ x = 1 ∴ x = 1 and y = 2 Check: For x = 1 and y = 2 Consider, L.H.S. = (x + 2y) + (2x – 3y)i + 4i = (1 + 4) + (2 – 6)i + 4i = 5 – 4i + 4i = 5 = R.H.S. |
|
| 131. |
Find the real values of x and y for which:x + 4yi = ix + y + 3 |
|
Answer» Given: x + 4yi = ix + y + 3 or x + 4yi = ix + (y + 3) Comparing the real parts, we get x = y + 3 Or x – y = 3 …(i) Comparing the imaginary parts, we get 4y = x …(ii) Putting the value of x = 4y in eq. (i), we get 4y – y = 3 ⇒ 3y = 3 ⇒ y = 1 Putting the value of y = 1 in eq. (ii), we get x = 4(1) = 4 Hence, the value of x = 4 and y = 1 |
|
| 132. |
Find the values of x and y which satisfy the following equations (x, y ∈ R),If x(1 + 3i) + y(2 – i) – 5 + i3= 0, find x + y |
|
Answer» x(1 + 3i) + y(2 – i) – 5 + i3 = 0 x + 3xi + 2y – yi – 5 – i = 0 ……[∵ i3 = -i] (x + 2y – 5) + (3x – y – 1)i = 0 + 0i Equating real and imaginary parts, we get x + 2y – 5 = 0 …..(i) and 3x – y – 1 = 0 ……(ii) Equation (i) + equation (ii) × 2 gives 7x – 7 = 0 7x = 1 ∴ x = 1 Substituting x = 1 in (i), we get 1 + 2y – 5 = 0 2y = 4 y = 2 ∴ x = 1 and y = 2 ∴ x + y = 1 + 2 = 3 |
|
| 133. |
√-7+24i |
|
Answer» Let, (a + ib)2 = - 7 + 24i Now using, (a + b)2 = a2 + b2 + 2ab a2 + (bi)2 + 2abi = -7 + 24i Since i2 = -1 a2 - b2 + 2abi = -7 + 24i Now, separating real and complex parts, we get ⇒ a2 - b2 = - 7…………..eq.1 ⇒ 2ab = 24…….. eq.2 ⇒ a = 12/b Now, using the value of a in eq.1, we get ⇒ (12/b)2 – b2 = - 7 ⇒ 144 – b4 = -7b2 ⇒ b4 - 7b2 - 144 = 0 Simplify and get the value of b2, we get, ⇒ b2 = - 9 or b2 = 16 As b is real no. so, b2 = 16 b = 4 or b = - 4 Therefore, a = 3 or a = - 3 Hence the square root of the complex no. is 3 + 4i and - 3 - 4i. |
|
| 134. |
Find the equation in cartesian coordinates of the locus of z if |z - 3| = 2 |
|
Answer» Let z = x + iy |z – 3| = 2 |x + iy – 3| = 2 |(x – 3) + iy| = 2 \(\sqrt{(x-3)^2+y^2}=2\) \(\therefore\) (x - 3)2 + y2 = 4 |
|
| 135. |
Find the equation in cartesian coordinates of the locus of z if |z| = 10 |
|
Answer» Let z = x + iy |z| = 10 |x + iy| = 10 \(\sqrt{x^2+y^2}\) = 10 \(\therefore\) x2 + y2 = 100 |
|
| 136. |
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i | = |z + 2 + 2i| |
|
Answer» Let z = x + iy |z – 2 – 2i| = |z + 2 + 2i| |x + iy – 2 – 2i | = |x + iy + 2 + 2i | |(x – 2) + i(y – 2)| = |(x + 2) + i(y + 2)| \(\sqrt{(x-2)^2+(y-2)^2}=\sqrt{(x+2)^2 + (y+2)^2}\) (x – 2)2 + (y – 2)2 = (x + 2)2 + (y + 2)2 x2 – 4x + 4 + y2 – 4y + 4 = x2 + 4x + 4 + y2 + 4y + 4 - 4x – 4y = 4x + 4y 8x + 8y = 0 x + y = 0 y = -x |
|
| 137. |
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4| |
|
Answer» Let z = x + iy |z + 8| = |z – 4| |x + iy + 8| = |x + iy – 4| |(x + 8) + iy | = |(x – 4) + iy| \(\sqrt{(x+8)^2+y^2}=\sqrt{(x-4)^2+y^2}\) (x + 8)2 + y2 = (x - 4)2 + y2 x2 + 16x + 64 + y2 = x2 – 8x + 16 + y2 16x + 64 = -8x + 16 24x + 48 = 0 ∴ x + 2 = 0 |
|
| 138. |
Find the equation in cartesian coordinates of the locus of z if |z – 5 + 6i| = 5 |
|
Answer» Let z = x + iy |z – 5 + 6i| = 5 |x + iy – 5 + 6i| = 5 |(x – 5) + i(y + 6)| = 5 \(\sqrt{(x-5)^2+(y+6)^2}=5\) \(\therefore\) (x - 5)2 + (y + 6)2 = 25 |
|
| 139. |
The value of (1 + i)4 + (1 – i)4 is A. 8 B. 4C. -8 D. -4 |
|
Answer» (1 + i)4 + (1 - i)4 = ((1 + i)2)2 + ((1 - i)2)2 = (2i)2 + (-2i)2 = -4 + -4 = -8 |
|
| 140. |
Find the number of non-zero integral solutions of the equation |1 - i|x = 2x. |
|
Answer» Given |1 - i|x = 2x ⇒ √(1 + 1)x = 2x 2x/2 = 2x ∴ x/2 = x ⇒ x = 0 ∴ There is no non-zero integral solution |
|
| 141. |
The value of (1 + i) (1 + i2) (1 + i3)(1 + i4) is A. 2 B. 0 C. 1 D. i |
|
Answer» We know that i= √(-1) i2= i × i =\(\sqrt{-1}\times\sqrt{-1}\) = -1 (1+i)(1+i2)(1+i3)(1+i4) = (1+i)(1+(-1))(1+i3)(1+i4) = (1+i)(0)(1+i3)(1+i4) = 0 |
|
| 142. |
If (x – 1)4 –16 = 0, then the sum of non real complex roots of the equation is(a) 2(b) 0(c) 4(d) None of these |
|
Answer» Correct option (a) 2 Explanation: (x – 1)4 = 16 x – 1 = (16)1/4 x – 1 = ± 2, ± 2i x = 1 ± 2, 1 ± 2i Sum of non-real roots is (1 + 2i) + (1 – 2i) = 2 |
|
| 143. |
If z is a non-real root of 7√ –1, then z86 + z175 + z289 is equal to (a) 0(b) –1(c) 3(d) 1 |
|
Answer» Correct option (b) –1 Explanation: z = 7√ –1 z7 = –1 ∴ z86 + z175 + z289 = (z7 )12 z2 + (z7 )25 + (z7 ) 41.z2 = z2 – 1 – z2 = –1 |
|
| 144. |
If z = x + iy, then show that zz̅ + 2(z + z̅) + b = 0 where bϵR, representing z in the complex plane is a circle. |
|
Answer» According to the question, We have, z = x + iy ⇒ z̅ = x – iy Now, we also have, z z̅ + 2 (z + z̅) + b = 0 ⇒ (x + iy) (x – iy) + 2 (x + iy + x – iy) + b = 0 ⇒ x2 + y2 + 4x + b = 0 The equation obtained represents the equation of a circle. |
|
| 145. |
√-11-60i |
|
Answer» Let, (a + ib)2 = -11 - 60i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = -11 - 60i Since i2 = -1 ⇒ a2 - b2 + 2abi = -11 - 60i Now, separating real and complex parts, we get ⇒ a2 - b2 = -11…………..eq.1 ⇒ 2ab = - 60…….. eq.2 ⇒ a = -30/b Now, using the value of a in eq.1, we get ⇒ \((-\frac{30}{b})^2\) – b2 = -11 ⇒ 900 – b4 = -11b2 ⇒ b4 - 11b2 - 900 = 0 Simplify and get the value of b2 , we get, ⇒ b2 = 36 or b2 = -25 as b is real no. so, b2 = 36 b = 6 or b = -6 Therefore , a = - 5 or a = 5 Hence the square root of the complex no. is - 5 + 6i and 5 – 6i. |
|
| 146. |
√-4-3i |
|
Answer» Let, (a + ib)2 = - 4 - 3i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = -4 -3i Since i2 = -1 ⇒ a2 - b2 + 2abi = - 4 - 3i Now, separating real and complex parts, we get ⇒ a2 - b2 = - 4…………..eq.1 ⇒ 2ab = - 3…….. eq.2 ⇒ a = - 3/2b Now, using the value of a in eq.1, we get ⇒ \((-\frac{3}{2b})^2\) – b2 = - 4 ⇒ 9 – 4b4 = -16b2 ⇒ 4b4 - 16b2 - 9 = 0 Simplify and get the value of b2, we get, ⇒ b2 = 9/2 or b2 = - 2 As b is real no. so, b2 = 9/2 b = \(\frac{3}{\sqrt2}\) or b = -\(\frac{3}{\sqrt2}\) Therefore, a = -\(\frac{1}{\sqrt2}\) or a = \(\frac{1}{\sqrt2}\) Hence the square root of the complex no. is -\(\frac{1}{\sqrt2}\) + \(\frac{3}{\sqrt2}\)i and \(\frac{1}{\sqrt2}\) - \(\frac{3}{\sqrt2}\)i. |
|
| 147. |
√-15-8i |
|
Answer» Let, (a + ib)2 = -15 - 8i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = -15 - 8i Since i2 = -1 ⇒ a2 - b2 + 2abi = -15 - 8i Now, separating real and complex parts, we get ⇒ a2 - b2 = -15…………..eq.1 ⇒ 2ab = -8…….. eq.2 ⇒ a = - 4/b Now, using the value of a in eq.1, we get ⇒ \((-\frac{4}{b})^2\) – b2 = -15 ⇒ 16 – b4 = -15b2 ⇒ b4 - 15b2 - 16 = 0 Simplify and get the value of b2, we get, ⇒ b2 = 16 or b2 = -1 As b is real no. so, b2 = 16 b = 4 or b = - 4 Therefore, a = -1 or a = 1 Hence the square root of the complex no. is -1 + 4i and 1 - 4i. |
|
| 148. |
Write the value of the square root of i. |
|
Answer» Let \(\sqrt{i}\) = \(\sqrt{a+ib}\) .........….1 Squaring both sides, we get i2 = (a2- b2) +2aib By comparing real and imaginary term, we get 2ab = 1 and a2- b2 = 0 By solving these we get a = b = \(\frac{1}{\sqrt{2}}\) By putting value of a and b in 1, we get \(\sqrt{i}\) = ± \(\frac{1}{\sqrt{2}}\) + \(\frac{1}{\sqrt{2}}\)i \(\sqrt{i}\) = ± \(\frac{1}{\sqrt{2}}\) (1+i) |
|
| 149. |
State True of False:The order relation is defined on the set of complex numbers. |
|
Answer» False Explanation: We can compare two complex numbers when they are purely real. Otherwise comparison of complex numbers is not possible or has no meaning. |
|
| 150. |
Simplify the following and express in the form a + ib.(1 + 3i)2 (3 + i) |
|
Answer» (1 + 3i)2 (3 + i) = (1 + 6i + 9i2)(3 + i) = (1 + 6i – 9)(3 + i) ……[∵ i2 = -1] = (-8 + 6i)(3 + i) = -24 – 8i + 18i + 6i2 = -24 + 10i + 6(-1) = -24 + 10i – 6 = -30 + 10i |
|