Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

If `(dx)/(dy)=(e^(y)-x)`, where y(0)=0, then y is expressed explicitly asA. `(1)/(2)ln(1+x^(2))`B. `ln(1+x^(2))`C. `ln(x-sqrt(1+x^(2)))`D. `ln(x+sqrt(1-x^(2)))`

Answer» Correct Answer - C
We have,
`(dx)/(dy)=e^(y)-x rArr(dx)/(dy)+x=e^(y)" ...(i)"`
This is a linear differential equation with I.F. `=e^(y)`.
Multiplying both sides of (i) by `"I.F."=e^(y)` and integrating with respect to y, we obtain
`xe^(y)=(1)/(2)e^(2y)+C`
It is given y = 0 when x = 0. Putting these values in (ii), we obtain `C=-(1)/(2)`. Substituting `C=-(1)/(2)` in (ii), we obtain
`xe^(y)=(1)/(2)e^(2y)-(1)/(2)`
`rArr" "e^(2y)-2xe^(y)-1=0`
`rArr" "e^(y)=x+sqrt(x^(2)+1)rArry=ln(x+sqrt(x^(2)+1))`
352.

Solve the differential equation `y e^(x/y)dx=(x e^(x/y)+y^2)dy(y!=0)`A. `e^(x//y)=cosy+C`B. `e^(x//y)=-siny+C`C. `e^(y//x)=-cosy+C`D. `e^(x//y)=-cosy+C`

Answer» Correct Answer - C
We have,
`ye^(x//y)dx=(xe^(x//y)+y^(2)siny)dy`
`rArr" "(ydx-xdy)e^(x//y)=y^(2)sinydy`
`rArr" "e^(x//y){(ydx-xdy)/(y^(2))}=sin ydy`
`rArr" "e^(x//y)d((x)/(y))=-d(cosy)`
On integrating, we obtain
`e^(x//y)=-cosy+C`, as the required solution.
353.

The family of curves represented by `(dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1)` and the family represented by `(dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0`A. `2(x^(3)-y^(3))+3(x^(2)-y^(2))+6(x-y)=c`B. `2(x^(3)-y^(3))+3(x^(2)+y^(2))+6(x-y)=c`C. `2(x^(3)-y^(3))+3(y^(2)-x^(2))+6(y-x)=c`D. `2(x^(3)-y^(3))-3(x^(2)-y^(2))+6(x-y)=c`

Answer» Correct Answer - A
354.

Solution of the differential equation `(xdy)/(x^(2)+y^(2))=((y)/(x^(2)+y^(2))-1)dx`, isA. `tan^(-1)((y)/(x))=-x+C`B. `tan^(-1)((y)/(x))=x+C`C. `tan^(-1)((x)/(y))=-x+C`D. `tan^(-1)((y)/(x))=-y+C`

Answer» Correct Answer - A
The given differential equation can be written as
`(xdy-ydx)/(x^(2)+y^(2))=-dxrArrd{tan^(-1)((y)/(x))}=-dx`
On integrating, we obtain
`tan^(-1)((y)/(x))=-x+fC`, which is the required solution.
355.

The solution of differential equation `xdx+ydy=a(x^(2)+y^(2))dy`,isA. `x^(2)+y^(2)=Ce^(ay)`B. `x^(2)+y^(2)=Ce^(2ay)`C. `x^(@)+y^(2)=e^(2Cay)`D. none of these

Answer» Correct Answer - B
We have,
`xdx+ydy=a(x^(2)+y^(2))dy`
`rArr" "(2xdx+2ydy)/(x^(2)+y^(2))=2adyrArr(d(x^(2)+y^(2)))/(x^(2)+y^(2))=2ady`
On integrating, we obtain
`log(x^(2)+y^(2))=2ay+logC`
`rArr" "x^(2)+y^(2)=Ce^(2ay)` is the required solution.
356.

The general solution of the differential equation `(dy)/(dx)+(2)/(x)y=x^(2)`, isA. `y=cx^(2)+(x^(3))/(5)`B. `y=cx^(-2)+(x^(3))/(5)`C. `y=cx^(3)-(x^(3))/(4)`D. `y=cx^(-3)(x^(2))/(4)`

Answer» Correct Answer - B
The general solution of the differential equation `(dy)/(dx)+Py=Q`, where `P=(2)/(x) and Q=x^(2)`.
I.E. `=e^(intPdx)=e^(int(2)/(x)dx)=e^(2logx)+x^(2)`
Multiplying both sides of the differential equation by I.E. `=x^(2)` and integrating with respect to x, we get
`yx^(2)=(x^(5))/(5)+c or, y=(x^(3))/(5)+cx^(-2)`
357.

The sum of the squares of the perpendicular drawn from the points (0,1) and `(0,-1)` to any tangent to a curve is 2. The equation of the curve, isA. `2y=C(x+2)`B. `y=C(x+1)`C. `y=C(x+2)`D. `y=C(x+2)`

Answer» Correct Answer - B
The equation of any tangent to a curve `y=f(x)` is
`y-y=(dy)/(dx)(X-x)or, X(dy)/(dx)-Y+(y-x(dy)/(dx))=0" ...(i)"`
It is given that
`|(-1+y-x(dy)/(dx))/(sqrt(((dy)/(dx))^(2)+1))|^(2)+|(1+y-x(dy)/(dx))/(sqrt(((dy)/(dx))^(2)+1))|^(2)=2`
`rArr" "2{(y-x(dy)/(dx))^(2)+1}=2{1+((dy)/(dx))^(2)}`
`rArr" "(y-x(dy)/(dx))^(2)=((dy)/(dx))^(2)`
`rArr" "y-x(dy)/(dx)=pm(dy)/(dx)`
`rArr" "(1)/(xpm1)dx=(1)/(dy)dy`
`rArr" "log(xpm1)=logy+logC`
`rArr" "log(xpm1)=logy+logC`
`rArr" "Cy=x pm1 or,y=k(x pm1)`
358.

The differential equation `(dy)/(dx)+P y=Q y^n , n >2`can be reduced to linear form y substituting`z=y^(n-1)`b. `z=y^n`c. `z=y^(n+1)`d. `z=y^(1-n)`A. `z=y^(n-1)`B. `z=y^(n)`C. `z=y^(n+1)`D. `z=y^(1-n)`

Answer» Correct Answer - D
We have, `(1)/(y^(n))(dy)/(dx)+P(1)/(y^(n-1))=Q`
It reduces to linear form by substituting `(1)/(y^(n-1))=z`
359.

The differential equation `x(dy)/(dx) -y=x^3,` has the general solutionA. `y=x^(3)=2Cx`B. `2y-x^(3)=Cx`C. `2y+x^(2)=2Cx`D. `y+x^(2)=2Cx`

Answer» Correct Answer - B
We have,
`(dy)/(dx)+(-(1)/(x))y=x^(2)`
It is a linear differential equation with integrating factor
`"I.F. "=e^(int-(1)/(x)dx)=e^(-logx)=(1)/(x)`
Multiplying (i) by `(1)/(x)` and integrating, we get
`(y)/(x)=(x^(2))/(2)+C or, 2y-x^(3)=2Cx`
360.

If integrating factor of `x(1-x^2)dy+(2x^2y-y-a x^3)dx=0`is`e^(intp dx ,)`then `P`is equal to(a)`( b ) (c) (d)(( e )2( f ) x^(( g )2( h ))( i )-a (j) x^(( k )3( l ))( m ))/( n )(( o ) x(( p ) (q)1-( r ) x^(( s )2( t ))( u ) (v)))( w ) (x) (y)`(z)(b) `( a a ) (bb)2( c c ) x^(( d d )3( e e ))( f f )-1( g g )`(hh)(c)`( d ) (e) (f)(( g )2( h ) x^(( i )2( j ))( k )-a)/( l )(( m ) a (n) x^(( o )3( p ))( q ))( r ) (s) (t)`(u)(d) `( v ) (w) (x)(( y )2( z ) x^(( a a )2( b b ))( c c )-1)/( d d )(( e e ) x(( f f ) (gg)1-( h h ) x^(( i i )2( j j ))( k k ) (ll)))( m m ) (nn) (oo)`(pp)A. `(2x^(2)-ax^(3))/(x(1-x^(2))`B. `2x^(3)-1)`C. `(2x^(2)-1)/(ax^(3))`D. `(2x^(2)-1)/(x(1-x^(2))`

Answer» Correct Answer - D
We have,
`(dy)/(dx)+((2x^(2)-1))/(x(1-x^(2)))y=(ax^(2))/(1-x^(2))`
This is a linear differential equation of the form `(dy)/(dx)+Py=Q`,
where `P=(2x^(2)-1)/(x(1-x^(2))`
361.

The solution of differential equation `(dy)/(dx)=(1+y^(2))/(1+x^(2))"is"`A. `y=tan^(-1)x`B. `y=x=k(1+xy)`C. `x=tan^(-1)y`D. `tan(xy)=k`

Answer» Given that, `" "(dy)/(dx)=(1+y^(2))/(1+x^(2))`
`rArr" "(dy)/(1+y^(2))=(dx)/(1+x^(2))`
On integrating both sides, we get
`" "tan^(-1)y=tan^(-1)x+C`
`rArr" "tan^(-1)y-tan^(-1)x=C`
`rArr" "tan^(-1)((y-x)/(1+xy))=C`
`rArr" "(y-x)/(1+xy)=tanC`
`rArr" "y-x=tanc(1+xy)`
`rArr" "y-x=K(1+xy)`
where, `" "k=tanC`
362.

The differential equation of all circles in the first quadrant which touch the coordiante axes is of orderA. 1B. 2C. 3D. none of these

Answer» Correct Answer - A
363.

The solution of `x(dy)/(dx)+y=e^(x)"is"`A. `y=(e^(x))/(x)+(k)/(x)`B. `y=(e^(x))/(x)+(k)/(x)`C. `y=xe^(x)+k`D. `x=(e^(y))/(y)+(k)/(y)`

Answer» Given, that `x(dy)/(dx)+y=e^(x)`
`Rightarrow (dy)/(dx)+(y)/(x)=(e^(x))/(x)`
Which is linear differential equation.
`IF=e^(int(1)/(2)dx)=e^(logx)=x`
The general solution is `y=int((dx)/(x).x)dx`
`Rightarrow y.x.=inte^(x)dx`
`Rightarrow y.x=e^(x)+k`
`Rightarrow y=(e^(x))/(x)+(k)/(x)
364.

The integrating factor of differential equation `(dy)/(dx)+y=(1+y)/(x)"is"`A. `(x)/(x^(x)`B. `(e^(x))/(x)`C. `xe^(x)`D. `e^(x)`

Answer» Given that, `" "(dy)/(dx)+y=(1+y)/(x)`
`rArr" "(dy)/(dx)=(1+y)/(x)-y`
`rArr" "(dy)/(dx)=(1+y-xy)/(x)`
`rArr" "(dy)/(dx)=(1)/(x)+(y(1-x))/(x)`
`rArr" "(dy)/(dx)-((1-x)/(x))y=(1)/(x)`
Here, `" "P=(-(1-x))/(x),Q=(1)/(x)`
`" "IF=e^(intPdx)=e^(-int(1-x)/(x)dx)=e^(int(x-1)/(x)dx)`
`" "=e^(int(1-(1)/(x))dx`
`" "e^(intx-logx)`
`" "=e^(x)*e^(log((1)/(x)))`
`" "=e^(x)*(1)/(x)`
365.

The order & the degree of the differential equation whose general solution is, `y =c(x-c)^2`, are respectivelyA. 1,1B. 1,2C. 1,3D. 2,1

Answer» Correct Answer - C
366.

The solution of the differential equation `dy/dx=cos(x-y)` isA. `y+cot ((x-y)/(2)) = c`B. `x+cot ((x-y)/(2)) = c`C. `x + tan((x-y)/(2)) = c`D. `x + tan ((x+y)/(2)) = c`

Answer» Correct Answer - B
367.

The solution of the differential equation `(dy)/(dx)=e^(y+x)+e^(y-x),` isA. `e^(-y)=e^(x)-e^(-x)+C`B. `e^(-y)=e^(-x)-e^(x)+C`C. `e^(-y)=e^(x)+e^(-x)+C`D. `e^(-y)+e^(x)+e^(-x)=C`

Answer» Correct Answer - B
368.

The solution the differential equation `"cos x sin y dx" + "sin x cos y dy" =0` isA. `(sin x)/(sin y)=C`B. `sin x sin y =C`C. `sin x+sin y =C`D. `cos x cos y =C`

Answer» Given differential equation is
`cos x sin ydx+ sin x cos ydy=0`
`Rightarrow (cos x)/(sinx )dx=(cos y)/(sin y)dy`
`Rightarrow cot x dx=-cot ydy`
On integrating both sides, we get
`log sin x=-log sin y+log C`
`Rightarrow log sin x siny=logC`
`Rightarrow sinx. siny=C`
369.

`(dy)/(dx) = (xy+y)/(xy+x)`, then the solution of differential equation isA. `y = xe^(x) + c`B. `y = e^(x) + c`C. `y = c x e^(x-y)`D. y = x+c

Answer» Correct Answer - C
370.

`y=ae^(mx)+be^(-mx)` satisfies which of the following differential equations?A. `(dy)/(dx)+my=0`B. `(dy)/(dx)-my=0`C. `(d^(2)y)/(dx^(2))-m^(2)y=0`D. `(d^(2)y)/(dx)+m^(2)=0`

Answer» Correct Answer - C
371.

`y=ae^(mx)+b^(-mx)` satisfies which of the following differential equation?A. `(dy)/(dx)+my=0`B. `(dy)/(dx)-my=0`C. `(d^(2)y)/(dx^(2))-m^(2)y=0`D. `(d^(2)y)/(dx^(2))+m^(2)y=0`

Answer» Given that, `" "y=ae^(mx)+be^(-mx)`
On differentiating both sides w.r.t. x, we get
`" "(dy)/(dx)=mae^(mx)-bme^(-mx)`
Again, differentiating both sides w.r.t. x, we get
`" "(d^(2)y)/(dx^(2))=m^(2)ae^(mx)+bm^(2)e^(-mx)`
`rArr" "(d^(2)y)/(dx^(2))=m^(2)(ae^(mn)+be^(-mn))`
`rArr" "(d^(2)y)/(dx^(2))=m^(2)y`
`rArr" "(d^(2)y)/(dx^(2))-m^(2)y=0`
372.

The differential equation ydy+xdx = dx representsA. A set of circles with centre on x axisB. A set of concentric circlesC. A set of ellipseD. A set of circles with centre on y axis

Answer» Correct Answer - A
373.

Find the degree of the differential equation `((d^(3)y)/(dx^(3))) + 2 ((d^(2)y)/(dx^(2))) + (dy)/(dx) + y = 0`.

Answer» The highest power of the highest order derivative i.e., `(d^(3)y)/(dx^(3))` is one, therefore its degree is one.
374.

`y=ae^(mx)+be^(-mx)` satisfies which of the following differential equations?A. `(dy)/(dx)-my=0`B. `(dy)/(dx)+xy=0`C. `(d^(2)y)/(dx^(2))+m^(2)y=0`D. `(d^(2)y)/(dx^(2))m^(2)y=0`

Answer» Correct Answer - D
We have, `y=ae^(mx)+be^(-mx)`
`rArr" "(dy)/(dx)=mae^(mx)-mbe^(-mx)`
`rArr" "(d^(2)y)/(dx^(2))=m^(2)(ae^(mx)+be^(-mx))`
`rArr" "(d^(2)y)/(dx^(2))=m^(2)yrArr (d^(2)y)/(dx^(2))-m^(2)y=0`
Hence, option (d) is correct
375.

Find the degree of the differential equation `((d^(2)y)/(dx^(2)))^((2)/(3))-(dy)/(dx) - y = 0`

Answer» `((d^(2)y)/(dx^(2)))^((2//3)) = (dy)/(dx) + y`
`rArr ((d^(2)y)/(dx^(2)))^(2) = ((dy)/(dx) + y)^(3)`
The degree of the differential equation is two.
376.

If f (x) and g (x) are two solutions of the differential equation `(a(d^2y)/(dx^2)+x^2(dy)/(dx)+y=e^x, then `f(x)-g(x)` is the solution ofA. `a^(2)(d^(2)y)/(dx^(2))+(dy)/(dx)+y=e^(x)`B. `a^(2)(d^(2)y)/(dx^(2))+y=e^(x)`C. `a(d^(2)y)/(dx^(2))+y=e^(x)`D. `a(d^(2)y)/(dx^(2))+x^(2)(dy)/(dx)+y=0`

Answer» Correct Answer - D
It is given that f(x) and g(x) are solutions of the differential equation
`a(d^(2)y)/(dx^(@))+x^(2)(dy)/(dx)+y=e^(x)`
`therefore" "a(d^(2))/(dx^(2)){f(x)}+x^(2)(d)/(dx){f(x)}+f(x)=e^(x)`
and, `(d^(2))/(dx^(2)){g(x)}+x^(2)(d)/(dx){g(x)}+g(x)e^(x)`
`rArra(d^(2))/(dx^(2)){f(x)-g(x)}+x^(2)(d)/(dx){f(x)-g(x)}+{f(x)-g(x)}=0`
`rArr" "f(x)-g(x)` is a solution of the differential equation
`a(d^(2)y)/(dx^(2))+x^(2)(dy)/(dx)+y=0`
377.

The solution of the differential equation `(1+x^(2))(dy)/(dx)+1+y^(2)=0`, isA. `tan^(-1)x-tan^(-1)y=tan^(-1)C`B. `tan^(-1)y-tan^(-1)x=tan^(-1)C`C. `tan^(-1)y pm tan^(-1)x=tanC`D. `tan^(-1)y+tan^(-1)x=tan^(-1)C`

Answer» Correct Answer - D
If `tan^(-1)y+tan^(-1)x=tan^(-1)C`, then
`(d)/(dx)(tan^(-1)y)+(d)/(dx)(tan^(-1)x)=0`
`rArr" "(1)/(1+y^(2))(dy)/(dx)+(1)/(1+x^(2))=0rArr(1+x^(2))(dy)/(dx)+(1)/(1+y^(2))=0`
Hence, `tan^(-1)x+tan^(-1)y=tan^(-1)C` is the solution of the given differential.
378.

The solution of the differential equation `(1+x^(2))(dy)/(dx)+1+y^(2)=0`, isA. `tan^(-1)x-tan^(-1)y=tan^(-1)C`B. `tan^(-1)y-tan^(-1)x=tan^(-1)C`C. `tan^(-1)y pm tan^(-1)x=tanC`D. `tan^(-1)y+tan^(-1)x=tan^(-1)C`

Answer» Correct Answer - D
If `tan^(-1)y+tan^(-1)x=tan^(-1)C`, then
`(d)/(dx)(tan^(-1)y)+(d)/(dx)(tan^(-1)x)=0`
`rArr" "(1)/(1+y^(2))(dy)/(dx)+(1)/(1+x^(2))=0rArr(1+x^(2))(dy)/(dx)+(1)/(1+y^(2))=0`
Hence, `tan^(-1)x+tan^(-1)y=tan^(-1)C` is the solution of the given differential.
379.

The solution of the differential equation`((dy)/(dx))^2-x(dy)/(dx)+y=0`is(a)`( b ) (c) y=2( d )`(e)(b) `( f ) (g) y=2x (h)`(i)(c)`( d ) (e) y=2x-4( f )`(g)(d) `( h ) (i) y=2( j ) x^(( k )2( l ))( m )-4( n )`(o)A. y = 2B. y = 2xC. y = `2x-4`D. `y=2x^(2)-4`

Answer» Correct Answer - C
If, `y=2x-4,` then `(dy)/(dx)=2`.
Clearly, these values satisfy the differential equation.
380.

Solve the differential equation (2 + x) dy = (1 + y) dx`

Answer» `(dy)/(1+y) = (dx)/(2 + x)`
Integrating both sides, we get,
`rArr In|1+y| = In|2+x| + InC`
`rArr (1+y) = C(2+x)`
381.

Solve the differential equation `(1 + cos 2x) + (1- cos 2y) (dx)/(dy) = 0`

Answer» `(1+cos 2x) dy + (1- cos 2y) dx = 0`
`rArr (dy)/(1-cos 2y) + (dx)/(1+cos 2x) = 0`
Integrating both sides
`rArr (1)/(2)int (1)/(sin^(2)y) dx + (1)/(2) int (1)/(cos^(2)x)dx = C_(1)`
`rArr int cosec^(2) y dy + int sec^(2) x dx = C_(1)`
`rArr -cot y + tan x = C`
`rArr tan x - cot y = C`
which is the general solution of the given differential equation.
382.

Verify that`y=c e^(t a n-1_x)`is a solution of differential equation`(1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=0.`

Answer» `y=c*e^(tan^(-1)x)` …………`(1)`
Differentiate with respect to `x`
`(dy)/(dx)=c*e^(tan^(-1)x)*(1)/(1+x^(2))`
`implies (1+x^(2))(dy)/(dx)=c*e^(tan^(-1)x)`
`implies (1+x^(2))(dy)/(dx)=y` [From eq. `(1)`]
Again differentiate with respect to `x`
`(1+x^(2))(d^(2)y)/(dx^(2))+(dy)/(Dx)*2x=(dy)/(dx)`
`implies (1+x^(2))(d^(2)y)/(dx^(2))+(2x-1)(dy)/(dx)=0`
`:. y=c*e^(tan^(-1)x)` is a solution of the given differential eqaution.
383.

Solve the differential equation `e^(x) tan y dx + (1-e^(x))sec^(2) y dy = 0`

Answer» Integrating the equation, we get
`int (e^(x))/(1-e^(x))dx + int(sec^(2)y)/(tan y)dy = 0`
Put `1-e^(x) = t` for `1^(st)` integral and tan y = u for `2^(nd)` integral
`rArr -e^(x)dx = dt` and `sec^(2) y dy = du`
`rArr int (-dt)/(t) + int(d u)/(u) = 0`
`rArr -In|t| + In|u| = InC`
`rArr u = Ct`
`rArr tan y = C(1-e^(x))`
384.

The equation of the curve whose subnormal is constant isA. `y=ax+b`B. `y^(2)=2ax+b`C. `ay^(2)-x^(2)=a`D. none of these

Answer» Correct Answer - B
385.

The solution of `(dy)/(dx)+y=e^(-x),y(0)=0`, isA. `y = e^(-x)(x-1)`B. `y = xe^(x)`C. `y = xe^(-x) + 1`D. `y = xe^(-x)`

Answer» Correct Answer - D
386.

The solution of the differential equation `(x)/(x^(2)_y^(2))dy+((y)/(x^(2)+y^(2))-1)dx`, isA. `y=x cos(C-x)`B. `cos^(-1).(y)/(x)=(-x+C)`C. `y=x tan(C-x)`D. `(y^(2))/(x^(2))=x tan (C-x)`

Answer» Correct Answer - C
387.

The equation of the curve whose subnormal is twice the abscissa, isA. a circleB. a parabolaC. an ellipseD. a hyperbola

Answer» Correct Answer - D
388.

Which of the following is general solution of `(d^(2)y)/(dx^(2)) - 2(dy)/(dx) + y = 0` ?A. `y = (Ax + B)e^(x)`B. `y = (Ax + B)e^(-x)`C. `y = A cos x + B sin x`D. `y = Ae^(x) + Be^(-x)`

Answer» Correct Answer - A
389.

The solution of the differential equation `ydx+ (x +x^2 y) dy =0` isA. `logy=Cx`B. `-(1)/(xy)+logy=C`C. `(1)/(xy)+logy=C`D. `-(1)/(xy)=C`

Answer» Correct Answer - B::D
We have,
`ydx+(x+x^(2)y)dy=0`
`rArr" "ydx+xdy+x^(2)ydy=0`
`rArr" "(d(xy))/((xy)^(2))+(1)/(y)dy=0" "["Dividing throughout by "(xy)^(2)]`
On integrating, we get `-(1)/(xy)+logy=C`
390.

Find the general solution of the differential equation `(dy)/(dx)+sqrt((1-y^2)/(1-x^2))=0`.A. `tan^(-1)x+cot^(-1)x=C`B. `sin^(-1)x+sin^(-1)y=C`C. `sec^(-1)x+"cosec"^(-1)x=C`D. none of these

Answer» Correct Answer - B
We have,
`(dy)/(dx)+sqrt((1-y^(2))/(1-x^(2)))=0rArr (1)/(sqrt(1-y^(2)))dy+(1)/(sqrt(1-x^(2)))dx=0`
On integration, we have
`sin^(-1)y+sin^(-1)x=+C`
391.

Solution of the differential equation `xdy-ydx=0` representsA. A rectangular hyperbolaB. Parabola whose vertex is at originC. Straight line passing through originD. A circle whose centre is at origin

Answer» Correct Answer - C
392.

Solution of the differential equation `xdy-ydx=0` representsA. a parabola whose vertax is at the originB. a circle whose centre is at the originC. a rectangular hyperbolaD. straight lines passing through the origin

Answer» Correct Answer - D
393.

Solution of the differential equation `xdy-ydx=0` representsA. a rectangular hyperbolaB. a straight line passing through the originC. parabola whose vertex is at the originD. circle whose centre is at the origin

Answer» Correct Answer - B
We have,
`xdy-ydx=0`
`rArr" "(1)/(y)dy-(1)/(x)dx=0`
`rArr" "logy-logx=logC" [On integrating]"`
`rArr" "(y)/(x)=C rArr y=Cx`
Clearly, it represents a straight line passing through the origin.
394.

The solution of the differential equation `sinxcosy dy + cosx siny dx= 0` isA. `(sinx)/(siny)=C`B. `cosx+cosy=C`C. `sinx+siny=C`D. `sinxsiny=C`

Answer» Correct Answer - D
We have,
`cosx sinydx +sinx cosy dy =0`
`rArr" "sinyd(sinx)+sinxd(siny)=0`
`rArr" "d(sin x siny)=0`
On integrating, we get `sin x sin y =C`.
395.

The order of the differential equation of ellipse whose major and minor axes are along x-axis and y-axis respectively, isA. `xy y_(2) - xy_(1)^(2) + y y_(1) = 0`B. `xy y_(2) + xy_(1)^(2) - y y_(1) = 0`C. `xy y_(2) + xy_(1)^(2) + y y_(1) = 0`D. `xy y_(2) + xy_(1)^(2) = 0`

Answer» Correct Answer - B
396.

Let F be the family of ellipse whose centre is the origin and major axis is the y-axis. Then the differential equation of family F isA. `(d^(2)y)/(dx^(2))+(dy)/(dx)(x(dy)/(dx)-y)=0`B. `xy(d^(2)y)/(dx^(2))-(dy)/(dx)(x(dy)/(dx)-y)=0`C. `xy(d^(2)y)/(dx^(2))+(dy)/(dx)(x(dy)/(dx)-y)=0`D. `(d^(2)y)/(dx^(2))-(dy)/(dx)(x(dy)/(dx)-y)=0`

Answer» Correct Answer - A
Let the equation of the family F of required ellipses be
`Ax^(2)+By^(2)=1" …(i)"`
It is a two parameter family of curves.
Differentiating (i) with respect to x, we get
`ax+Byy_(1)=0" …(ii)"`
Differentiating (ii) with respect to x, we get
`A+By_(1)^(2)+Byy_(2)=0" ...(iii)"`
Multiplying (iii) by x and subtracting from (ii), we get
`B[yy_(1)-xy_(1)^(2)-xyy_(2)]=0`
`rArr" "xyy_(2)+y_(1)(xy_(1)-y)=0rArrxy(d^(2)y)/(dx^(2))+(dy)/(dx)(x(dy)/(dx)-y)=0`
This is the required differential equation.
397.

The family of curves represented by `(dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1)` and the family represented by `(dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0`A. touch each otherB. are orthogonalC. are one and the differentialD. none of these

Answer» Correct Answer - B
398.

The differential equation of the family of parabola with focus at the origin and the x-axis an axis, isA. `y((dy)/(dx))^(2)+4x(dy)/(dx)=4y`B. `y((dy)/(dx))^(2)=2x(dy)/(dx)-y`C. `y((dy)/(dx))^(2)+y=2xy(dy)/(dx)`D. `y((dy)/(dx))^(2)+2xy(dy)/(dx)+y-0`

Answer» Correct Answer - B
The equation of the family of parabolas with focus at the origin and the x-axis as axis is
`y^(2)=2a(x-1)`, where a is parameter.`" …(i)"`
Differentiating with respect to x, we get
`2y(dy)/(dx)=4arArr a=(y)/(2)(dy)/(dx)`
Sunstituting the value of a in (i), we get
`y^(2)=2y(dy)/(dx)(x-(y)/(2)(dy)/(dx))`
`rArr" "y^(2)=y(dy)/(dx)(2x-y(dy)/(dx))rArry((dy)/(dx))^(2)-2x(dy)/(dx)+y=0`
This is the required differential equation.
399.

The differential equation of all conics whose centre lie at the origin is of orderA. 2B. 3C. 4D. none of these

Answer» Correct Answer - B
The general equation of all conics whose centre lie at the origin is
`ax^(2)+2hxy+by^(2)=1`
Clearly, it has three arbitrary constants. So, the differential equation will be of order 3.
400.

The form of the differential equation of the central conics, isA. `x=y(dy)/(dx)`B. `x+y(dy)/(dx)=0`C. `x((dy)/(dx))^(2)+xy(d^(2)y)/(dx^(2))=y(dy)/(dx)`D. none of these

Answer» Correct Answer - C