InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 501. |
यदि `a/b` और इसके व्युत्क्रम का योग 1 है और `a!=0, b!=0` है तो `a^(3)+b^(3)` का मान ज्ञात करें।A. 2B. -1C. 0D. 1 |
|
Answer» Correct Answer - C `a/b+b/a=1` `:. a^(2)+b^(2)=ab` `:. a^(2)+b^(2)-ab=0` `:. a^(3)+b^(3)=(a+b)(a^(2)-ab+b^(2))` `=(a+b)xx0=0` |
|
| 502. |
यदि `x+y=z` है तो व्यंजक `x^(3)+y^(3)-z^(3)+3xyz` किसके बराबर है? |
|
Answer» Correct Answer - A `x+y=z` `x+y-z=0` If `a+b+c=0` then `a^(3)+b^(3)+c^(3)-3abc=0` `:. x^(3)+y^(3)-z^(3)=-3xyz` `:. x^(3)+y^(3)-z^(3)+3xyz=0` `=3xyz-3xyz=0` |
|
| 503. |
यदि `x=2-2^(1//3)+2^(2//3)` है तो `x^(3)-6x^(2)+18x+18` का मान ज्ञात करें।A. 22B. 33C. 40D. 45 |
|
Answer» Correct Answer - C `x=2-2^(1//3)+2^(2//3)` `x-2=2^(2//3)-2^(1//3)`………….i Take cube both sides `(x-2)^(3)=(2^(2//3)-2^(1//3))^(3)` `x^(3)-8-6x(x-2)-(2^(2//3))^(3)-(2^(1//3))^(3)` `-3xx2^(2//3).2^(1//3)(2^(2//3)-2^(1//3))` `x^(3)-8-6x^(2)+12x` `=2^(2)-2-3xx2(2+1)/3(x-2)` From equation i `:. x^(3)-8-6x^(2)+12x` `=4-2-2x2(x-2)` `x^(3)-8-6x^(2)+12x=2-6x+12` `x^(3)+18x-6x^(2)-8-14=0` `x^(3)+18x-6x^(2)-22=0` `:. x^(3)-6x^(2)+18x+18=22+18=40` |
|
| 504. |
यदि `x^(2)-3x+1=0` है तो `x^(3)+1/(x^(3))` का मान क्या होगा?A. 9B. 18C. 27D. 1 |
|
Answer» Correct Answer - B `x^(2)=3x+1=0` `x^(2)+1=3x` Divide by `x` `=(x^(2))/x+1/x` `implies(3x)/x` `x+1/x=3` Cubing both sides `impliesx^(3)+1/(x^(3))+3x xx 1/x(x+1/x)=27` `implies x^(3)+1/(x^(3))+3 xx 3=27` `x^(3)+1/(x^(3))=18` |
|
| 505. |
यदि `x^(4)+1/(x^(4))=119` और `xlt1` है तो `x^(3)+1/(x^(3))` का मान ज्ञात करें।A. `6sqrt(13)`B. `8sqrt(13)`C. `13sqrt(13)`D. `10sqrt(13)` |
|
Answer» Correct Answer - D `x^(4)+1/(x^(4))=119, xgt1` `:. x^(4)+1/(x^(4))+2=119+2=121` `(x^(2)+1/(x^(2)))^(2)=(11)^(2)` `x^(2)+1/(x^(2))=11` `x^(2)+1/(x^(2))+2=11+2` `(x+1/x)^(2)=13` `x+1/x=sqrt(13)` `implies` Taking cube both sides `x^(3)+1/(x^(3))+3sqrt(13)=(sqrt(13))^(3)` `x^(3)+1/(x^(3))+3sqrt(13)=13sqrt(13)` `x^(3)+1/(x^(3))=10sqrt(13)` |
|
| 506. |
यदि `x+1/(4x)=3/2` है तो `8x^(3)+1/(8x^(3))` का मान ज्ञात करें।A. 18B. 36C. 24D. 16 |
|
Answer» Correct Answer - A `x+1/(4x)=3/2` Multiply by 2 both sides `:. 2x+1/(2x)=3` Take cube both sides `=(2x+1/(2x))^(3)=(3)^(3)` `=8x^(3)+1/(8x^(3))+3xx 2x xx 1/(2x) (2x+1/(2x))` `=27` `=8x^(3)+1/(8x^(3))+3xx3=27` `8x^(3)+1/(8x^(3))=27-9=18` |
|
| 507. |
यदि `3x+1/(2x)=5` है तो `8x^(3)+1/(27x^(3))` का मान ज्ञात करें।A. `118 1/2`B. `30 10/27`C. `0`D. `1` |
|
Answer» Correct Answer - B `3+1/(2x)=5` `implies` Multiply both sides by `2/3` `:. 3x xx 2/3+1/2x xx 2/3=5xx 2/3` `2x+1/(3x)=10/3` `:.` Taking cube on the both sides `8x^(3)+1/(27x^(3))+3xx 2x xx 1/(3x)` `(2x+1/(3x))=(10/3)^(3)` `8x^(3)+1/(27x^(3))+2xx10/3=1000/27` `8x^(3)+1/(27x^(3))=1000/27-20/3` `=(1000/180)/27=820/27=30 10/27` |
|
| 508. |
यदि `a+b+c=15` और `a^(2)+b^(2)+c^(2)=83` है तो `a^(3)+b^(3)=83` है तो `a^(3)+b^(3)+c^(3)-3abc` का मान ज्ञात करें।A. 200B. 180C. 190D. 210 |
|
Answer» Correct Answer - B `a+b+c=15` `a^(2)+b^(2)+c^(2)=83` `:.(a+b+c)^(2)=(15)^(2)` `implies a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=225` `implies 83+2(ab+bc+ca)=225` `implies 2(ab+bc+ca)=225-83=142` `ab+bc+ca=71` `implies a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)` `implies a^(3)+b^(3)+c^(3)-3abc=15(83-71)=` `15xx12=180` |
|
| 509. |
यदि `x/3=3/4` है तो `6/7+(y-x)/(y+x)` का मान क्या है?A. 0.01B. `2/7`C. `3/7`D. `1 3/7` |
|
Answer» Correct Answer - A `x/y=3/4, 6/7+(y-x)/(y+x)=?` `=6/7+(y(1-x/y))/(y(1+x/y))` `= 6/7+((1-3/4))/((1+3/4))` `=6/7+[(4-3)/4 xx4/((4+3))]` `=6/7+1/7=7/7=1` Alternate: `6/7+(y-x)/(y+x)=6/7+(4-3)/(4+3)` `=6/7+1/7=7/7=1` |
|
| 510. |
यदि `x=7-4sqrt(3)` है तो `sqrt(x)+1/(sqrt(x))` किसके बराबर है?A. `1`B. `2`C. `3`D. `4` |
|
Answer» Correct Answer - D `x=7-4sqrt(3)` `=4+3-sqrt(3)` `=(2)^(2)+(sqrt(3))^(2)-2xx2sqrt(3)` `=(2-sqrt(3))^(2)` `:. [(a^(2)+b)^(2)-2ab=(a-b)^(2)]` `impliesx=(2-sqrt(3))^(2)` `sqrt(x)=2-sqrt(3)` `1/(sqrt(x))=1/(2-sqrt(3))xx(2+sqrt(3))/(2+sqrt(3))` `=2+sqrt(3)` `:. sqrt(x)+1/(sqrt(x))` `=2-sqrt(3)+2+sqrt(3)=4` |
|
| 511. |
Find the sum of the numbers which are divisible by 10 and 11 in between 100 to 300 (100 and 300 are include).1. 372. 353. 334. 31 |
|
Answer» Correct Answer - Option 1 : 37 Given: Number between 100 to 300 Formula used: If a number divide by p and q so the total number Divisible by p + divisible by q – Divisible by L.C.M. of p and q Calculation: Divisible by 11 ⇒ [(297 – 110)/11] + 1 ⇒ (187/11) + 1 ⇒ 17 + 1 ⇒ 18 Divisible by 10 ⇒ [(300 – 100)/10] + 1 ⇒ (200/10) + 1 ⇒ 20 + 1 ⇒ 21 LCM of 10 and 11 is 110 Divisible by 110 ⇒ [(220 – 110)/110] + 1 ⇒ (110/110) + 1 ⇒ 1 + 1 ⇒ 2 Divisible by 10 and 11 ⇒ 18 + 21 - 2 ⇒ 37 ∴ The numbers which are divisible by 10 and 11 is 37 |
|
| 512. |
If the sum of the square of 2 positive consecutive integers is 3445.Then, find the sum of the numbers.1. 862. 783. 984. 83 |
|
Answer» Correct Answer - Option 4 : 83 Let the two consecutive integers are x and (x + 1) According to question (x)2 + (x + 1)2 = 3445 ⇒ x2 + x2 + 1 + 2x = 3445 ⇒ 2x2 + 2x + 1 = 3445 ⇒ 2x2 + 2x – 3444 = 0 ⇒ x2 + x – 1722 = 0 Using D = b2 - 4ac = (1)2 - 4(1)(-1722) = 6889 x = (- b + √D)/2a, or (-b - √D)/2a ⇒ (- 1 + √6889)/2(1), or (- 1 - √6889)/2(1) ⇒ (- 1 + 83)/2, or -1 – 83/2 ⇒ 82/2, or -84/2 ⇒ 41, or -42 x is not negative, therefore the positive numbers are 41 and 42 i.e. (41 + 1) ∴ Sum of the numbers is 83 |
|
| 513. |
If a2 + b2 + c2 = 2(6a – 8b + 12c) – 244 so find the value of a + b + c.1. 122. 143. 104. 8 |
|
Answer» Correct Answer - Option 3 : 10 Given: a2 + b2 + c2 = 2(6a – 8b + 12c) – 244 Formula used: (x + y)2 = x2 + y2 + 2xy (x – y)2 = x2 + y2 – 2xy Calculation: a2 + b2 + c2 = 2(6a – 8b + 12c) – 244 ⇒ a2 + b2 + c2 = 12a – 16b + 24c – 244 ⇒ a2 + b2 + c2 – 12a + 16b – 24c + 244 = 0 ⇒ a2 – 12a + b2 +16b + c2 – 24c + 244 = 0 ⇒ a2 – (2 × 6)a + b2 + (2 × 8)b + c2 – (2 × 12) c + 244 = 0 For perfect square add and subtract y2 ⇒ a2 – (2 × 6)a + 62 – 62 + b2 + (2 × 8)b + 82 – 64 + c2 – (2 × 12) c + 122 – 122 + 244 = 0 ⇒ (a – 6)2 + (b + 8)2 + (c – 12)2 – 244 + 244 = 0 ⇒ (a – 6)2 + (b + 8)2 + (c – 12)2 = 0 Here, a – 6 = 0 ⇒ a = 6 b + 8 = 0 ⇒ b = - 8 c – 12 = 0 ⇒ c = 12 So, a + b + c ⇒ 6 – 8 + 12 ⇒ 10 ∴ The value of a + b + c is 10 |
|
| 514. |
Find the maximum value of -2x2 + 3x + 9.1. -57/82. -81/83. 57/84. 81/8 |
|
Answer» Correct Answer - Option 4 : 81/8 Given: The polynomial is -2x2 + 3x + 9 Formula Used: If polynomial ax2 + bx + c, then Min/Max value of polynomial = c – b2/4a Calculation: For polynomial -2x2 + 3x + 9 a = -2, b = 3, and c = 9 Maximum value of the polynomial = c – b2/4a ⇒ 9 – (3)2/4 × (-2) ⇒ (9 × 8 + 9)/8 ⇒ (72 + 9)/8 ⇒ 81/8 ∴ The maximum value of -2x2 + 3x + 9 is 81/8. |
|
| 515. |
If a + b + c = 0, then the value of \(\frac{{{a^3}\; + \; {b^3}\; + \;{c^3}}}{{abc}}\) is:1. 12. 03. -14. 3 |
|
Answer» Correct Answer - Option 4 : 3 Given: a + b + c = 0 Formula Used: If a + b + c = 0 then a3 +b3 + c3 = 3abc Calculation: Substitute the value a3 +b3 + c3 = 3abc in the given expression \(\Rightarrow \frac{{{a^3}\; + \; {b^3}\; + \;{c^3}}}{{abc}} = \frac{{3abc}}{abc}\) \(\Rightarrow \frac{{{a^3} + {b^3} + {c^3}}}{{abc}} = 3\) ∴ The correct answer is 3 |
|
| 516. |
`(sqrt(3+x)+sqrt(3-x))/(sqrt(3+x)-sqrt(3-x))=2` तो `x` का मान क्या होगा?A. `5/12`B. `12/5`C. `5/7`D. `7/5` |
|
Answer» Correct Answer - B `(sqrt(3+x)+sqrt(3-x))/(sqrt(3+x)-sqrt(3-x))=2/1` (by c-d rule) `implies(sqrt(3+x))/(sqrt(3-x))=(2+1)/(2-1)=3/1` `((A/B=C/D),((A+B)/(A-B)=(C+D)/(C-D)))` `(sqrt(3+x))/(sqrt(3-x))=3` Squaring both sides `(3+x)/(3-x)=9` `3+x=27-9x` `10x=24` `x=24/10=12/5` |
|
| 517. |
Solve: x2 + 8x + 15 = 01. (x - 5) (x + 3)2. (x + 5) (x - 3)3. (x + 5) (x + 3)4. (x - 5) (x - 3) |
|
Answer» Correct Answer - Option 3 : (x + 5) (x + 3) Calculation: x2 + 8x + 15 = 0 ⇒ x2 + 5x + 3x + 15 = 0 ⇒ x(x + 5) + 3(x + 5) = 0 ⇒ (x + 5) (x + 3) = 0 ∴ The required answer is (x + 5) (x + 3) |
|
| 518. |
यदि `4b^(2)+1/(b^(2))=2` है तो `8b^(3)+1/(b^(3))` का मान क्या है? |
|
Answer» Correct Answer - A `4b^(2)+1/(b^(2))=2` `(2b)^(2)+(1/b)^(2)+4-4=2` `(2b+1/b)^(2)-4=2` `(2b+1/b)^(2)=6` `2b+1/b=sqrt(6)` Take cube both sides `(2b+1/b)^(3)=(sqrt(6))^(3)` `8b^(3)+1/(b^(3))+3xx2bxx1/b(2b+1/b)=6sqrt(6)` `8b^(3)+1/(b^(3))+6sqrt(6)=6sqrt(6)` `8b^(3)+1/(b^(3))=0` |
|
| 519. |
If α and β are the roots of the equation x2 – 8x + k = 0 and α – β = 2, then what is the value of k?1. 102. 153. 124. 16 |
|
Answer» Correct Answer - Option 2 : 15 Given: Our quadratic equation is x2 – 8x + k = 0 And α – β = 2 ----(1) Formula used: General form of quadratic equation in terms of roots is x2 – (α + β)x + αβ = 0 Calculation: Our quadratic equation is x2 – 8x + k = 0 By comparing with the general form of quadratic equation, We get α + β = 8 ----(2) From eq (1) and eq(2) we get, α = 5 and β = 3 Now, k = αβ = 15 ∴ The required value of k is 15 |
|
| 520. |
`((a-b)^(2))/((b-c)(c-a))+((b-c)^(2))/((a-b)(c-a))+` `((c-a)^(2))/((a-b)(b-c))` का मान क्या है? |
|
Answer» Correct Answer - B `((a-b)^(2))/((b-c)(c-a))+((b-c)^(2))/((a-b)(c-a))+` `((c-a)^(2))/((a-b)(b-c))` Now `implies((a-b)^(2))/((b-c)(c-a))xx((a-b))/(a-b)` Multiply divide by `(a-b)` in Ist term `implies(b-c)` in IInd term `implies(c-a)` in IIIrd term `implies((a-b)^(2)(a-b))/((b-c)(c-a)(a-b))+` `((b-c)^(2)(b-c))/((a-b)(b-c)(c-a))+` `((c-a)^(2)(c-a))/((a-b)(b-c)(c-a))` `implies` Let `a-b=x` `b-c=y` `c-a=z` `:. x+y+z=0` `:. x^(3)+y^(3)+z^(3)=3xyz` `:. (a-b)^(3)+(b-c)^(3)+(c-a)^(3)` `=3(a-b)(b-c)(c-a)` `:. (3(a-b)(b-c)(c-a))/((a-b)(b-c)(c-a))=3` |
|
| 521. |
यदि `x=(sqrt(3))/2` है तो `((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))` का मान क्या होगा?A. `-sqrt(3)`B. `-1`C. `1`D. `sqrt(3)` |
|
Answer» Correct Answer - D `x=(sqrt(3))/2` `(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))xx(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))` `=((sqrt(1+x)+sqrt(1-x)^(2)))/((sqrt(1+x))^(2)-(sqrt(1-x))^(2))` `=(1+x+1-x+2sqrt(1-x^(2)))/(1+x-1+x)` `=(2+2sqrt(1-x^(2)))/(2x)=(1+sqrt(1-x^(2)))/x` `=(1+sqrt(1-3/4))/(sqrt(3))xx2` `=((1+1/2))/(sqrt(3))xx2=(3/2xx2)/(sqrt(3))=sqrt(3)` |
|
| 522. |
यदि `n+2/3n+1/2n+1/7n=97` है तो `n` का मान ज्ञात करें?A. 40B. 42C. 44D. 46 |
|
Answer» Correct Answer - B `n+2/3n+1/2n+1/7n=97` `implies(42n+28n+21n+6n)/42=97` `=(97n)/42=97` `=n=42` |
|
| 523. |
If \(x^2 + \frac 1 {x^2} = 7,\) then the value of \(x^3 + \frac 1 {x^3}\) where x > 0 is equal to:1. 162. 183. 124. 15 |
|
Answer» Correct Answer - Option 2 : 18 Given: x2 + 1/x2 = 7 Concept: (a + b)2 = a2 + b2 + 2ab (a + b)3 = a3 + b3 + 3ab(a + b) If b = 1/a (a + 1/a)2 = a2 + 1/a2 + 2 (a + 1/a)3 = a3 + 1/a3 + 3(a + 1/a) Calculation: ⇒ (x + 1/x)2 = x2 + 1/x2 + 2 ⇒ (x + 1/x)2 = 7 + 2 ⇒ x + 1/x = √9 ⇒ x + 1/x = 3 Now, ⇒ (x + 1/x)3 = x3 + 1/x3 + 3(x + 1/x) ⇒ 33 = x3 + 1/x3 + 3 × 3 ⇒ x3 + 1/x3 = 27 - 9 ⇒ x3 + 1/x3 = 18 ∴ The required value is 18. |
|
| 524. |
यदि `x-1/x=4` है तो `(x+1/x)` किसके बराबर है?A. `5sqrt(2)`B. `2sqrt(5)`C. `4sqrt(2)`D. `4sqrt(5)` |
|
Answer» Correct Answer - B `x-1/x=4` `x^(2)=1/(x^(2))-2=16` (On Squaring) `impliesx^(3)+1/(x^(2))=18` `x^(2)+1/(x^(2))+2-2=18` `x^(2)+1/(x^(2))+2=20` `(x+1/x)^(2)=20` `x+1/x=sqrt(20)=2sqrt(5)` |
|
| 525. |
यदि `(3a+1)^(2)+(b-1)^(2)+(2c-3)^(2)=0`, है तो `(3a+b+2c)` का मान क्या होगा?A. 3B. `-1`C. `2`D. `5` |
|
Answer» Correct Answer - A `(3a+1)^(2)+(b-1)^(2)+(2c-3)^(2)=0` `=(3a+1)^(2)=0` `implies 3a=-1implies a=(-1)/3` `(b-1)^(2)=0impliesb-1=0` `implies b=1` `(2c-3)=0impliesc=3/2` `:. 3a+b+2c=3xx(-1)/3+1+3/2xx2` `=-1+1+3=3` |
|
| 526. |
Find the maximum value of –x2 – 8x + 7.1. 72. 133. 234. 3 |
|
Answer» Correct Answer - Option 3 : 23 Given: The given polynomial is –x2 – 8x + 7 Formula used: For a given polynomial ax2 + bx + c Min/Max value of a polynomial = c – b2/4a or (4ac – b2)/4a Calculation: For polynomial –x2 – 8x + 7, Value of a = –1, b = –8, and c = 7 Maximum value of the polynomial = c – b2/4a ⇒ Maximum value of the polynomial = 7 – (–8)2/(4 × (–1) ⇒ Maximum value of the polynomial = 7 + 64/4 ⇒ Maximum value of the polynomial = 7 + 16 ∴ Maximum value of –x2 – 8x + 7 is 23 |
|
| 527. |
यदि `x**y=(x+3)^(2)(y-1)` है तो `5**4` का मान ज्ञात करें?A. 192B. 182C. 180D. 172 |
|
Answer» Correct Answer - A `x**y=(x+3)^(2)(y-1)` `5**4=(5+3)^(2)(4-1)` `=64xx3=192` |
|
| 528. |
`1/(1+a)+1/(1-b)+1/(1-c)` का मान ज्ञात करें?A. 1B. 2C. 3D. 4 |
|
Answer» Correct Answer - D `a/(1-a)+b/(1-b)+c/(1-c)=1` Add 3 both sides `implies1/(1-a)+b/(1-b)+c/(1-c)+3=1+3` `implies(a/(1-a)+1)+(b/(1-b)+1)+(c/(1-c)+1)=4` `implies((a+1-a)/(1-a))+((b+1-b)/(1-b))` `+((c+1-c)/(1-c))=4` `implies 1/(1-a)+1/(a-b)+1/(1-c)=4` |
|
| 529. |
यदि `4^(4x+1)=1/64` है तो `x` का मान ज्ञात करें?A. `1/7`B. `-1`C. `-1/2`D. `-1/6` |
|
Answer» Correct Answer - B `4^(4x+1)=1/64` `=4^(4x+1)=1/64` `implies4^(4x+1)=(4)^(-3)` `implies4x+1=-3` `implies4x=-4` `impliesx=-1` |
|
| 530. |
If \(x - \frac 3 x = 6,\; x \ne 0,\) then the value of \(\frac {x^4 - \frac {27}{x^2}}{x^2 - 3x - 3}\) is:1. 542. 2703. 804. 90 |
|
Answer» Correct Answer - Option 4 : 90 GIVEN: \(x - \frac 3 x = 6,\; x \ne 0,\) FORMULA USED: (a - b)2 = (a2 + b2 - 2ab), (a3 - b3) = (a - b) (a2 + b2 + ab) CALCULATION: (a - b)2 = (a2 + b2 - 2ab) ⇒ \(x - \frac 3 x = 6,\; x \ne 0,\) Squaring both sides ⇒ (x - 3/x)2 = (6)2 ⇒ x2 + 9/x2 - 6 = 36 ⇒ x2 + 9/x2 = 42 \(\frac {x^4 - \frac {27}{x^2}}{x^2 - 3x - 3}\) Divide by x into numerator and denominator \(⇒ \frac{{{x^3} - \frac{{27}}{{{x^3}}}}}{{x - 3 - \frac{3}{x}}}\) \( ⇒ \frac{{\left( {x - \frac{3}{x}} \right)\left( {{x^2} + \frac{9}{{{x^2}}} + 3} \right)}}{{\left( {x - \frac{3}{x}} \right) - 3}}\) \(⇒ \;\frac{{6 \times \left( {42 + 3} \right)}}{{6 - 3}}\) \( ⇒ \;\frac{{6 \times 45}}{3}\) ⇒ 90 ∴ \( \frac{{{x^3} - \frac{{27}}{{{x^3}}}}}{{x - 3 - \frac{3}{x}}}\) = 90 |
|
| 531. |
यदि `x=3+sqrt(8)` है तो `x^(2)+1/(x^(2))` किसके बराबर है?A. 38B. 36C. 34D. 30 |
|
Answer» Correct Answer - C `x=3+sqrt(8)` `1/x=1/(3+sqrt(8))` `=1/x=1/(3+sqrt(8))xx(3-sqrt(8))/(3-sqrt(8))` `=(3-sqrt(8))/(9-8)=3-sqrt(8)` `x+1/x=3+sqrt(8)+3-sqrt(8)=6` `x+1/x=6` squaring both sides `x^(2)+1/(x^(2))+2=36` `x^(2)+1/(x^(2))=34` |
|
| 532. |
Find a two digits number, the sum of its digits is 14 and when the digits are interchanged their places the obtained number is 18 less than the original number.1. 862. 683. 954. 59 |
|
Answer» Correct Answer - Option 1 : 86 Given: The sum of digits is 14 and the number is 21 less when the digits are reversed Calculation: Let the once place digit is y and tens place digit is x ∴ The number is = 10x + y Now, the sum of digits is 14 ∴ x + y = 14 --- (1) And the number is 21 less when the digits are reversed ∴ 10x + y = x + 10y + 18 ⇒ x - y = 2 --- (2) By equation (1) and (2) ∴ x = 8 and y = 6 Hence number = 86. |
|
| 533. |
यदि `sqrt(0.03xx0.3a)=0.3xx0.3xxsqrt(b)` है तो `a/b` का मान क्या होगा?A. `0.009`B. `0.03`C. `0.9`D. `0.08` |
|
Answer» Correct Answer - C `sqrt(0.03xx0.3a)=0.3xx0.3sqrt(b)` Squaring both sides `0.03xx0.3a=(0.3)^(2)xx(0.3)^(2)b` `3/100xx3/10a=9/100xx9/100xxb` `9a=81/10bimplies10a=9b` `a/b=9/10=0.9` |
|
| 534. |
What will be the unit digit of \({64^{{{128}^{256}}}}\)?1. 22. 43. 64. 8 |
|
Answer» Correct Answer - Option 3 : 6 Given: The given expression is \({64^{{{128}^{256}}}}\) Concept Used: Concept of unit digit Calculation: The given expression can be written as 64128 × 128 × 128………… × 256 times Again the expression can be simplified as 64128 × (128 × 128 × 128………… × 255 times) 64128 × (128 × 128 × 128………… × 255 times) = 644 × 32 × (128 × 128 × 128………… × 255 times) Now, let 32 × (128 × 128 × 128………… × 255 times) = n 644 × 32 × (128 × 128 × 128………… × 255 times) = 644 × n Now, unit digit of 644 × n 644 × n = (4)4 × n For any value of n 44 × n always gives the unit digit as 6 ∴ The unit digit is 6. |
|
| 535. |
If the values of x, y and z are 256, -113 and -135, then find the value of the expression \(\frac{{{x^{3\;}}\; + \;{y^3}\; + \;{z^3} - \;3xyz\;}}{{{{\left( {x - y} \right)}^2}\; + \;{{\left( {y - z} \right)}^2}\; + \;{{\left( {z - x} \right)}^2}}}\)?1. 102. 43. 64. 8 |
|
Answer» Correct Answer - Option 2 : 4 Given: X = 256 Y = -113 Z = -135 Formula used: ⇒ x3 + y3 + z3 – 3xyz = (1/2) × (x + y + z)[(x – y)2 + (y – z)2 + (z – x)2] Calculation: ∵ x3 + y3 + z3 – 3xyz = (1/2) × (x + y + z)[(x – y)2 + (y – z)2 + (z – x)2] ⇒ (x3 + y3 + z3 – 3xyz)/[(x – y)2 + (y – z)2 + (z – x)2] = (1/2) × (x + y + z) ⇒ (x3 + y3 + z3 – 3xyz)/[(x – y)2 + (y – z)2 + (z – x)2] = (1/2) × (256 – 113 – 135) = (1/2) × (256 – 248) = (1/2) × 8 = 4 |
|
| 536. |
यदि `a**b=ab` है तो `5**3` का मान क्या होगा?A. 125B. 243C. 58D. 15 |
|
Answer» Correct Answer - D `a**b=ab` `5**3=5xx3=15` |
|
| 537. |
यदि `(sqrt(x+4)-sqrt(x-4))/(sqrt(x+4)-sqrt(x-4))=2` तो `x` किसके बराबर है?A. 2.4B. 3.2C. 4D. 5 |
|
Answer» Correct Answer - D `(sqrt(x+4)+sqrt(x-4))/(sqrt(x+4)-sqrt(x-4))=2/1` By C-D rule `(sqrt(x+4))/(sqrt(x-4))=(2+1)/(2-1)=3/1` `implies((sqrt(x+4))/(sqrt(x-4)))^(2)=(3/1)^(2)` `implies (x+4)/(x-4)=` 9again C & D rule `implies x/4=(9+1)/(9-1)` `impliesx/4=10/8` `implies x=10/8xx4=5` |
|
| 538. |
यदि `x+1/x=5` है तो `(2x)/(3x^(2)-5x+3)` किसके बराबर है?A. 5B. `1/5`C. `3`D. `1/3` |
|
Answer» Correct Answer - B `x+1/x=5` `:. (2x)/(3x^(2)-5x-3)` (Divide by `x`) `=((2x)/x)/((3x^(2))/x-(5x)/x+3/x)=2/(3x+3/x-5)` `=2/(3(x+1/x)-5)=2/(3xx5-5)` `=2/10=1/5` |
|
| 539. |
यदि `sqrt(2^(x))=256` है तो `x` का मान ज्ञात करें?A. 14B. 16C. 18D. 20 |
|
Answer» Correct Answer - B `sqrt(2^(x))=256` `sqrt(2^(x))=2^(8)` `2^(x)=2^(8)` `2^(x)=(2^(8))^(2)` `=2^(x)=2^(16)` `x=16` |
|
| 540. |
यदि `(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=a+bsqrt(6)` है तो `a` और `b` का मान क्रमशः क्या होगा?A. `9/15,-4/15`B. `3/11,4/33`C. `9/10,5/2`D. `3/5,4/15` |
|
Answer» Correct Answer - D `(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=a+bsqrt(6)` `implies(4sqrt(3)+5sqrt(2))/(sqrt(16xx3)+sqrt(9xx2))` `=(4sqrt(3)+5sqrt(2))/(4sqrt(3)+3sqrt(2))` `implies (4sqrt(3)+5sqrt(2))/(4sqrt(3)+3sqrt(2))` `implies (4sqrt(3)+5sqrt(2))/(4sqrt(3)+3sqrt(2))xx(4sqrt(3)-3sqrt(2))/(4sqrt(3)-3sqrt(2))` `=((4sqrt(3)+5sqrt(2))(4sqrt(3)-3sqrt(2)))/(48-18)` `=(8sqrt(6)+18)/30=(8sqrt(6))/30+18/30` `=4/15sqrt(6)` `:. 3/5+4/15sqrt(6)=a+bsqrt(6)` By comparing coefficient of rational and irrational parts. `implies a=3/5 b=4/15` `(3/5,4/15)` |
|
| 541. |
यदि `sqrt(1-(x^(3))/100)=3/5` है तो `x=?`A. 2B. 4C. 16D. `(136)^(1//3)` |
|
Answer» Correct Answer - B `sqrt(1-(x^(3))/100)=3/5` `implies 1-(x^(3))/100-(3/5)^(2)` `=1-9/25=(x^(3))/100` `implies 16/25=(x^(3))/100` `implies (16xx100)/25=x^(3)` `implies 16xx4=x^(3)` `implies 4=x` |
|
| 542. |
यदि `sqrt(1+x/9)=13/3` है तो `x` का मान करें?A. `1439/9`B. `160`C. `1443/9`D. `169` |
|
Answer» Correct Answer - B `sqrt(1+x/9)=13/3` By option Put `x=160` `sqrt(1+160/9)=sqrt(169/9)=13/3` Alternate: Squaring both sides `(sqrt(1+x/9))^(2)=(13/3)^(2)` `implies 1+x/9=169/9` `implies(9+x)/9=169/9` `9+x=169` `x=160` |
|
| 543. |
यदि `x=11,` हो तो `x^(5)-12x^(4)+12x^(3)-12x^(2)+12x-1` का मान बताइए।A. 11B. 10C. 12D. -10 |
|
Answer» Correct Answer - B `x^(5)-12x^(4)+12x^(3)-12x^(2)+12x-1` `x^(5)-11x^(4)-x^(4)+11x^(3)+x^(3)-11x^(2)-` `x^(2)+11x+x-1` put `x=11` `=11^(5)-11.11^(4)-11^(4)+11.11^(3)+` `11^(3)-11.11^(2)-11^(2)+11.11+11-1` `=11-1=10` |
|
| 544. |
यदि `a=(sqrt(5)+1)/(sqrt(5)-1)` और `b=(sqrt(5)-1)/(sqrt(5)+1)` है तो `(a^(2)+ab+b^(2))/(a^(2)-ab+b^(2))` का मान ज्ञात करें?A. `3/4`B. `4/3`C. `3/5`D. `5/3` |
|
Answer» Correct Answer - B `a=(sqrt(5)+1)/(sqrt(5)-1)b=(sqrt(5)-1)/(sqrt(5)+1)` `:. a=1/b` `a+b=a+1/a` `implies (sqrt(5)+1)/(sqrt(5)-1)+(sqrt(5)-1)/(sqrt(5)-1)` `implies (5+1+2sqrt(5)+5+1-2sqrt(5))/((sqrt(5))^(2)-(1)^(2))` `implies 6+2sqrt(5)+6-2(sqrt(5))/(5-1)=12/4=3` `:. (a^(2)+ab+b^(2))/(a^(2)-ab+b^(2))` `=(a^(2)+1/(a^(2))+ab)/(a^(2)+1/(a^(2))-ab)` `impliesa+1/a=3` `a^(2)+1/(a^(2))=9-2=7 (ab=1)` `:. (a^(2)+1/(a^(2))+ab)/(a^(2)+1/(a^(2))-ab)=(7+1)/(7-1)=8/6=4/3` |
|
| 545. |
यदि `x=11` है तो `x^(6)-12x^(4)+12x^(3)-12x^(2)+12x-1` का मान क्या है?A. 5B. 10C. 15D. 20 |
|
Answer» Correct Answer - B `x=11` `x^(5)-12x^(4)+12x^(3)-12x^(2)+12x-1` `=x^(5)-11x^(4)-x^(4)+11x^(3)+x^(3)-11x^(2)-x^(2)+11x+x-1` `=(11)^(4)-11xx(11)^(4)-(11)^(4)+11xx` `(11)^(3)+11^(3)-11xx(11)^(2)-(11xx` `11)+(11xx11)+(11)-1` `=0-0+0+0+11-1=10` |
|
| 546. |
यदि `a=4.36,b=2.369` और `c=1.97` है तो `a^(3)-b^(3)-c^(3)-3abc` का मान क्या होगा?A. `3.94`B. `2.39`C. `0`D. `1` |
|
Answer» Correct Answer - C `a=4.36` `b=2.39` `=c=1.97` `a-b-c` `=4.36-2.39-1.97` `=0` `a^(3)-b^(3)-c^(3)-3abc` `=1/2(a-b-c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]` `=0` |
|
| 547. |
यदि `a=x+y,b=x-y,c=x+2y` है तो `a^(2)+b^(2)+c^(2)-ab-bc-ca=?`A. `4y^(2)`B. `5y^(2)`C. `6y^(2)`D. `7y^(2)` |
|
Answer» Correct Answer - D `a=x+y` `b=x-y` `c=x+2y` `a^(2)+b^(2)+c^(2)-ab-bc-ca=1/2((a-b)^(2)+(b-c)^(2)+(c-a)^(2))` `=1/2((x+y-x+y)^(2)_(x-y-x-2y)^(2)+(x+2y-x-y)^(2))` `=1/2((2y)^(2)+(-3y)^(2)+y^(2))` `=1/2(4y^(2)+9y^(2)+y^(2))` `=1/2(14y^(2))=7y^(2)` |
|
| 548. |
`1/(a^(2)+ax+x^(2))-1/(a^(2)-ax+x^(2))+(2ax)/(a^(4)+a^(2)x^(2)+x^(4))` का मान ज्ञात करें।A. 2B. 1C. -1D. 0 |
|
Answer» Correct Answer - D `1/(a^(2)+ax+x^(2))-1/(a^(2)-ax+x^(2))` `+(2ax)/(a^(4)+a^(2)x^(2)+x^(4))` `=(a^(2)-ax+x^(2)-ax-x^(2))/((a^(2)+x^(2)+ax)(a^(2)+x^(2)-ax))+(2ax)/(a^(4)+a^(2)x^(2)+x^(4))` `=(-2ax)/((a^(2)+x^(2))^(2)-(ax)^(2))+(2ax)/(a^(4)+x^(4)+a^(2)x^(2))` `= (-2ax)/(a^(4)+x^(4)+2x^(2)a^(2)-a^(2)x^(2))+(2ax)/(a^(4)+x^(4)+a^(2)x^(2))` `=(-2ax)/(a^(4)+x^(4)+x^(2)a^(2))+(2ax)/(a^(4)+x^(4)+a^(2)x^(2))=0` |
|
| 549. |
यदि `x+y+z=6` है तो `(x-1)^(3)+(y-2)^(3)+(z-3)^(3)` का मान ज्ञात करें।A. `(3x-1)(y+2)(z-3)`B. `3(x+1)(y-2)(z-3)`C. `3(x-1)(y-2)(z+3)`D. `3(x-1)(y-2)(z-3)` |
|
Answer» Correct Answer - D `x+y+z=6` `(x-1)^(3)+(y-2)^(3)+(z-3)^(3)` `:.` as `x=y+z=6` Take values `(1+2+3)=6` `:. (1-1)^(3)+(2-2)^(3)+(3-3)^(2)=0` Now assume values in options. optiond d satisfies the given relation. Hence d is correct. |
|
| 550. |
यदि `m^(4)+1/(m^(4))=119` है तो `m-1/m=?`A. `+-3`B. `4`C. `+-2`D. `+-1` |
|
Answer» Correct Answer - A `m^(4)+1/(m^(4))=119` `m^(4)+1/(m^(4))+2=119+2` `(m^(2)+1/(m^(2)))^(2)=121` `m^(2)+1/(m^(2))=11` `m^(2)+1/(m^(2))-2=11-2` `(m-1/m)^(2)=9` `m-1/m=+-3` |
|