Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

If `P(x_1,y_1),Q(x_2,y_2),R(x_3,y_3) and S(x_4,y_4)` are four concyclic points on the rectangular hyperbola ) and `xy = c^2` , then coordinates of the orthocentre ofthe triangle `PQR` is

Answer» We know that the orthocentre of the triangle formed by points `P(t_(1)), Q(t_(2)) and R(t_(3))` on hyperbola lies on the same hyperbola and has coordinates `((-c)/(t_(1)t_(2)t_(3)),-ct_(1)t_(2)t_(3))`.
Also, if points `P(t_(1)), Q(t_(2)),R(t_(3)) and S(t_(4))` are concyclic then `t_(1)t_(2)t_(3)t_(4)=1.`
Therefore, orhtocentre of triangle PQR is `(-ct_(4),(-c)/(t_(4)))-=(-x_(4),-y_(4)).`
52.

If the circle `x^2+y^2=a^2` intersects the hyperbola `xy=c^2` in four points `P(x_1,y_1)`,`Q(x_2,y_2)`,`R(x_3,y_3)`,`S(x_4,y_4)`, then which of the following need not hold.(a)  `x_1+x_2+x_3+x_4=0`(b)  `x_1 x_2 x_3 x_4=y_1 y_2 y_3 y_4=c^4`(c)  `y_1+y_2+y_3+y_4=0`(d)  `x_1+y_2+x_3+y_4=0`A. `x_(1)+x_(2)+x_(3) +x_(4)=0`B. `y_(1)+y_(2)+y_(3) +y_(4)=0`C. `x_(1)x_(2)x_(3)x_(4)=c^(4)`D. `y_(1)y_(2)y_(3)y_(4)=c^(4)`

Answer» It is given that,
`x^(2)+y^(2)=a^(2) " …(i)" `
and ` xy=c^(2) " …(ii)" `
We obtain ` x^(2)+c^(4)//x^(2)=a^(2)`
`rArr x^(4)-a^(2)x^(2)+c^(4)=0 " …(iii)" `
Now `x_(1),x_(2),x_(3),x_(4)` will be root of Eq. (iii).
Therefore, `Sigma x_(1)=x_(1)+x_(2)+x_(3)+x_(4)=0`
and product of the roots `x_(1)x_(2)x_(3)x_(4)=c^(4)`
Similarly, `y_(1)+y_(2)+y_(3)+y_(4)=0`
and ` y_(1)y_(2)y_(3)y_(4)=c^(4)`
Hence, all options are correct.
53.

if `y=mx+7sqrt(3)` is normal to `(x^(2))/(18)-(y^(2))/(24)=1` then the value of m can beA. `(3)/(sqrt(5)`B. `(sqrt(15))/(2)`C. `(2)/(sqrt(5))`D. `(sqrt(5))/(2)`

Answer» Given equation of hyperbola, is `(x^(2))/(24)-(y^(2))/(18)=1 " …(i)" `
Since, the equation of the normals of slope m to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`, are given by `y=mxpm(m(a^(2)+b^(2)))/(sqrt(a^(2)-b^(2)m^(2)))`
`therefore ` Equation of normals of slope m, to the hyperbola (i), are
`y=mx pm (m(24+18))/(sqrt(24-m^(2)(18)))" ...(ii)" `
`because " Line " y=mx+7sqrt(3)` is normal to hyperbola (i)
` therefore ` On comparing with Eq. (ii), we get
` pm (m(42))/(sqrt(24-18m^(2)))=7sqrt(3)`
`rArr pm(6m)/(sqrt(24-18m^(2)))=sqrt(3)`
`rArr (36m^(2))/(24-18m^(2))=sqrt(3) ` [squaring both sides]
`rArr 12m^(2)=24-18m^(2)`
`rArr 30m^(2)=24`
`rArr 5m^(2)=4 rArr m=pm (2)/(sqrt(5))`
54.

Let C be a curve which is locus of the point of the intersection of lines x = 2 + m and my = 4 – m. A circle (x – 2)2 + (y + 1)2 = 25 intersects the curve C at four points P, Q, R and S. If O is the centre of curve ‘C’ than OP2 + OQ2 + OR2 + OS2 is(a)  25(b)  50(c)   25/2(d)  100

Answer»

Correct option  (d)  100

Explanation:

x – 2 = m

y + 1 = 4/m

(x–2)(y+1) = 4

XY = 4, where X = x – 2 and Y = y + 1

and (x – 2)2 + (y + 1)2 = 25

X2 + Y2 = 25

 Curve C and circle both are concentric.

∴ OP+ OQ+ OR+ OS2 = 4r2

= 4 (25) = 100 

55.

The length of the transverse axis of the rectangular hyperbola `x y=18`is6 (b) 12 (c) 18(d) 9A. `6`B. `12`C. `18`D. `9`

Answer» We know that the lengths of transverse and conjugate axes of the rectangular hyperbola `xy=(a^(2))/(2)` are each equal to `2a`.
Here, `(a^(2))/(2)=18impliesa^(2)=36impliesa=6`
Hence, length of the transverse axis `=12`
56.

The equation of the transverse axis of the hyperbola(x – 3)2 + (y + 1)2 = (4x + 3y)2 is (a) 3x – 4y = 0(b)  4x + 3y = 0(c) 3x – 4y = 13(d)  4x + 3y = 9 

Answer»

Correct option  (c) 3x – 4y = 13

Explanation:

(x – 3)+ (y + 1)2 = (4x + 3y)2

(x – 3)+ (y + 1)= 25 (4x + 3y/5)2

PS = 5 PM

Directrix is 4x + 3y = 0 and focus is (3,–1)

Equation of transverse axis is y + 1 = 3/4(x - 3)

3x - 4y = 13

57.

Find the product of the length of perpendiculars drawn from any pointon the hyperbola `x^2-2y^2-2=0`to its asymptotes.A. `1//2`B. `2//3`C. `3//2`D. `2`

Answer» We have,
`(x^(2))/((sqrt(2))^(2))-(y^(2))/(1)=1`........`(i)`
We know that the product of the lengths of perpendicular from any point on the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` to its asymptotes is
`(a^(2)b^(2))/(a^(2)+b^(2))`
Here, `a^(2)=2` and `b^(2)=1`. So, required product `=(2)/(2+1)=(2)/(3)`
58.

If angle between asymptotes of hyperbola x2/a2 - y2/b2 = 1 is 120° and product of perpendiculars drown from foci upon its any tangent is 9, then locus of point of intersection of perpendicular tangents of the hyperbola can be(a)  x2 + y2 = 18(b)  x2 + y2 = 6(c)  x2 + y2 = 9(d)  x2 + y2 = 3

Answer»

Correct option  (a) x+ y2 = 18

Explanation:

2tan–1 b/a =  60°

b/a = 1/√3

b2 = 9

∴ a2 = 27

Required locus is director circle i.e

x+ y2  = 27 – 9

x+ y2 = 18

If b/a = tan 60° = √3

a2 = 3

Then equation of director circle is x+ y2  = 3 - 9 = -6 which is not possible.

59.

Find the equation of hyperbola whose foci are (±5, 0) and the conjugate axis is of the length 8. Also, find its eccentricity.

Answer»

Foci of the equation is in the form (±c, 0)

Equation of the hyperbola will be of the form: x2/a2 – y2/b2 = 1

Whose foci at (±c, 0) and conjugate axis is 2b

On comparing, we get

2b = 8 ⇒ b = 4

And c = 5

Again, We know, c2 = a2 + b2

25 = 16 + a2

or a2 = 9

Equation (1)⇒

x2/9 – y2/16 = 1

Which is required equation.

Again,

Eccentricity (e) = c/a = 5/3

60.

Find the eccentricity of the hyperbola `x^(2) - y^(2) = 1`. If S, `S_(1)` are the foci and P any point on this hyperbola, prove that, `CP^(2) = SP*S_(1)P` (C is the origin.)

Answer» Correct Answer - `e=sqrt(2)`
61.

Tangents are drawn to the hyperbola `x^2/9-y^2/4=1` parallet to the sraight line `2x-y=1.` The points of contact of the tangents on the hyperbola are (A) `(2/(2sqrt2),1/sqrt2)` (B) `(-9/(2sqrt2),1/sqrt2)` (C) `(3sqrt3,-2sqrt2)` (D) `(-3sqrt3,2sqrt2)`A. `((9)/(2sqrt2),(1)/(sqrt2))`B. `(-(9)/(2sqrt2),-(1)/(sqrt2))`C. `(3sqrt3,-2sqrt2)`D. `(3sqrt3,-2sqrt2)`

Answer» Correct Answer - A::B
Slope of tangent = 2
The tangent are
`y=2xpmsqrt(9xx4-4)" "("using y"=mx pmsqrt(a^(2)m^(2)-b^(2)))`
`"i.e., "2x-y= pm 4sqrt2`
`"or "(x)/(2sqrt2)-(y)/(4sqrt2)=1 and (x)/(2sqrt2)-(y)/(4sqrt2)=-1`
Comparing it with `(x x_(1))/(9)-(yy_(1))/(4)=1` (Eqn. of tangent to hypebola at point `(x_(1),y_(1))` on it we get the point of contact as `(9//2sqrt2,1//sqrt2) and (-9//2sqrt2, -1//sqrt2)`.
Alternatye Mathod:
The equation of tangent at `P(theta)` is
`((sec theta)/(3))x-((tan theta)/(2))y=1`
`therefore" Slope"=(2 sec theta)/(3 tan theta)=2`
`"or "sin theta=(1)/(3)`
`therefore" "sec theta= pm(3)/(2sqrt2)` and corresponding by tan `theta= pm (1)/(2sqrt2)`
Therefore, the points are `(9//2sqrt2,1//sqrt2)` and `(-9//2sqrt2, -1//sqrt2)`.
62.

Find the eccetricity of hyperbola through `(4,2)` whose centre is `(0.0)` length of transverse axis is 4 and transverse axis along x-axis. (a) `2` (b) `sqrt3` (c) `(sqrt3)/(2)` (d) `(2)/(sqrt3)`A. 2B. `(2)/(sqrt(3))`C. `(3)/(2)`D. `sqrt(3)`

Answer» Equation of hyperbola is given by
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`
` because ` Length of transverse axis = 2a = 4
` therefore a=2`
Thus, `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` is the equation of hyperbola
` because ` It passes through (4, 2).
`therefore (16)/(4)-(4)/(b^(2))=1 rArr 4-(4)/(b^(2))=1 rArr b^(2)=(4)/(3) rArr b=(2)/(sqrt(3))`
Now, eccentricity,
`e=sqrt(1+(b^(2))/(a^(2)))=sqrt(1+((4)/(3))/(4))=sqrt(1+(1)/(3))=(2)/(sqrt(3))`
63.

Let `A` and `B` be two fixed points and `P`, another point in the plane, moves in such a way that `k_(1)PA+k_(2)PB=k_(3)`, where `k_(1)`, `k_(2)` and `k_(3)` are real constants. The locus of `P` is Which one of the above is not true ?A. a circle if `k_(1)=0` and `k_(2)`, `k_(3) gt 0`B. a circle if `k_(1) gt 0` and `k_(2) lt 0`, `k_(3) = 0`C. an ellipse if `k_(1)=k_(2) gt =0` and `k_(3) gt 0`D. a hyperbola if `k_(2)=-1` and `k_(1)`, `k_(3) gt 0`

Answer» If `k_(1)=0`, then
`k_(1)PA+k_(2)PB=k_(3)`
`impliesPB=(k_(3))/(k_(2)) gt 0` ,brgt `implies P` describes a circle with `B` as centre and radius `=(k_(3))/(k_(2))`
If `k_(3)=0`, then
`k_(1)PA+k_(2)PB=0`
`implies(PA)/(PB)=(k_(2))/(-k_(1))= k gt 0`
`impliesP` describes a circle with `P_(1)P_(2)` as its diameter, `P_(1)` and `P_(2)` being the points which divide `AB`. Internally and externally in the ratio `k : 1`
If `k_(1)=k_(2) gt 0` and `k_(3) gt 0`, then
`PA+PB=(k_(3))/(k_(1))=k gt 0`
`impliesP` describes an ellipse with `A` and `B` as its foci.
64.

The equation of a rectangular hyperbola whose asymptotes are `x=3`and `y=5`and passing through (7,8) is`x y-3y+5x+3=0``x y+3y+4x+3=0``x y-3y+5x-3=0``x y-3y+5x+3=0`A. `xy-3y+5x+3=0`B. `xy+3y+4x+3=0`C. `xy-3y+5x-3=0`D. `xy-3y-5x+3=0`

Answer» Correct Answer - D
The equation of the rectangular hyperbola is
`(x-3)(y-5)+lambda=0`
It passes through (7, 8). Hence,
`4xx3+lambda or lambda=-12`
`therefore" "Xy-5x-3y+15-12=0`
`"or "xy-3y-5x+3=0`
65.

The equation of the line passing through the centre of a rectangular hyperbola is `x-y-1=0`. If one of its asymptotoes is `3x-4y-6=0`, the equation of the other asymptote isA. `4x+3y+17=0`B. `4x-3y+8=0`C. `3x-2y+15=0`D. none of these

Answer» The point of intersection of the line `x-y-1=0`, which passes through the centre of the hyperbola, and the asymptote `3x-4y-6=0` is the centre of the hyperbola. So, its coordinates are `(-2,-3)`. Since asymptotes of a rectangular hyperbola are always at right angle. So, required asymptotes is perpendicular to the given asymptote and passes through the centre `(-2,-3)` of the hypebola and hence its equation is
`y+3=-(4)/(3)(x+2)` or, `4x+3y+17=0`
66.

The director circle of a hyperbola is `x^(2) + y^(2) - 4y =0`. One end of the major axis is (2,0) then a focus isA. `(sqrt(3),2-sqrt(3))`B. `(-sqrt(3),2+sqrt(3))`C. `(sqrt(6),2-sqrt(6))`D. `(-sqrt(6),2+sqrt(6))`

Answer» Correct Answer - C::D
Radius of director circle `sqrt(a^(2)-b^(2)) =2`
Axis of hyperbola is line joining the center `C(0,2)` and `A(2,0)` (end of major axis)
`:. a = CA = 2 sqrt(2)`
`:. (2sqrt(2))^(2)-b^(2)=4`
`:. b^(2) =4`
`:. e = (sqrt(3))/(sqrt(2))`
Center of the hyperbola is center of the director circle (0,2) Focus lies on this line at distance ae from center
`:.` If foci are (x,y) then `(x-0)/(-(1)/(sqrt(2))) = (y-2)/((1)/(sqrt(2))) = +- 2 sqrt(3)`
`(x,y) = (sqrt(6),2-sqrt(6))` or `(-sqrt(6),2+sqrt(6))`
67.

Consider a hyperbola: `((x-7)^(2))/(a) -((y+3)^(2))/(b^(2)) =1`. The line `3x - 2y - 25 =0`, which is not a tangent, intersect the hyperbola at `H ((11)/(3),-7)` only. A variable point `P(alpha +7, alpha^(2)-4) AA alpha in R` exists in the plane of the given hyperbola. The eccentricity of the hyperbola isA. `sqrt((7)/(5))`B. `sqrt(2)`C. `(sqrt(13))/(2)`D. `(3)/(2)`

Answer» Correct Answer - C
The given line must be parallel to asymptotes
`rArr` Slope of asymptotes are `(3)/(2)` and `-(3)/(2)`
`rArr (b)/(a) =(3)/(2) rArr e = (sqrt(13))/(2)`
68.

The points on the ellipse `(x^(2))/(2)+(y^(2))/(10)=1` from which perpendicular tangents can be drawn to the hyperbola `(x^(2))/(5)-(y^(2))/(1) =1` is/areA. `(sqrt((3)/(2)),sqrt((5)/(2)))`B. `(sqrt((3)/(2)),-sqrt((5)/(2)))`C. `(-sqrt((3)/(2)),sqrt((5)/(2)))`D. `(sqrt((5)/(2)),sqrt((3)/(2)))`

Answer» Correct Answer - A::B::C
Required points will lie on the intersection of ellipse `(x^(2))/(2)+(y^(2))/(10)=1` with director circle of hyperbola `(x^(2))/(5)-(y^(2))/(1) =1` i.e. on `x^(2) + y^(2) =4`
`rArr (sqrt(2)cos theta)^(2) + (sqrt(10)sin theta)^(2) =4`
Solving, we get `sin theta = +- (1)/(2), cos theta = +-(sqrt(3))/(2)`
`:.` Points are `(+-sqrt((3)/(2)),+-sqrt((5)/(2)))`
69.

If the foci of `(x^(2))/(16)+(y^(2))/(4)=1` and `(x^(2))/(a^(2))-(y^(2))/(3)=1` coincide, the value of a isA. 3B. 2C. `(1)/(sqrt(3))`D. `sqrt(3)`

Answer» Correct Answer - A
Foci of `(x^(2))/(16)+(y^(2))/(4) =1` are `(+- sqrt(12),0)`
Foci of `(x^(2))/(a^(2)) -(y^(2))/(3) =1` are `(+- sqrt(a^(2)+3), 0)`
Given `a^(2)+3 =12 rArr a^(2) = 9 rArr a = 3`
70.

(x-1)(y-2)=5 and `(x-1)^2+(y+2)^2=r^2` intersect at four points A, B, C, D and if centroid of `triangle ABC` lies on line `y = 3x-4` , then locus of D is

Answer» Given hyperbola is
`(x-1)(y-2)=5" (1)"`
and circle is
`(x-1)^(2)+(y+2)^(2)=r^(2)" (2)"`
These curves intersect at four points A, B, C and D.
We know curves intersect at four points is midpoint of centres of curves.
`(sum_(i=1)^4x_(i))/(4)=(1+1)/(2)=1 and (sum_(i-1)^(4)y_(1))/(4)=(2-2)/(2)=0,`
where `(x_(i),y_(i),i=1,2,3,4` are points A, B, C and D.
`therefore" "sum_(i=1)^(4)x_(1)=4 and sum_(i=1)^(4)y_(i)=0`
`therefore" "x_(1)+x_(2)+x_(3)=4-x_(4) and y_(1)+y_(2)+y_(3)=-y_(4)`
So, centroid of triangle ABC is
`((x_(1)+x_(2)+x_(3))/(3),(y_(1)+y_(2)+y_(3))/(3))-=((4-x_(4))/(3),(-y_(4))/(3))`
Now, given that centroid lies on the line `y = 3x-4`.
`therefore" "(-y_(y))/(3)=3((4-x_(4))/(3))-4`
`therefore" "y_(4)=3x_(4)`
Therefore, y=3x, which is locus of point D.
71.

Find the equations of the tangents to the hyperbola `x^2=9y^2=9`that are drawn from (3, 2).

Answer» The equation of the hyperbola is
`(x^(2))/(9)-(y^(2))/(1)=1`
The equation of the tangent haivng slope m is
`y=mx pm sqrt(9m^(2)-1)`
It passes through (3, 2). Therefore,
`2=3m pm sqrt(9m^(2)-1)`
`"or "4+9m^(2)-12m=9m^(2)-1`
`"i.e., "m=(5)/(12)or m=oo`
Hence, the equations of the tangents are `y-3=(5)/(12)(x-2) and x=3`
72.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola.Horizontal Hyperbola:For general form of Hyperbola:x2/a2 – y2/b2 = 1 ……..(1)Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2)x2/9 – y2/16 = 1

Answer»

Given equation is of the form x2/a2 – y2/b2 = 1

On comparing given equation with (1), we get

a = 3 and b = 4

Then,

c2 = a2 + b2

c2 = 9 + 16 = 25

or c = 5

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 6 units

Length of Conjugate axis = 2b = 8 units

(ii) Coordinates of the vertices: (±a, 0) = (±3, 0)

(iii) Coordinates of the foci: (±c, 0) = (±5, 0)

(iv) Eccentricity: e = c/a = 5/3

(v) Length of the latus rectum: 2b2/a = 2(16)/5 = 32/5 units

73.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) x2/25 – y2/4 = 1

Answer»

Given equation is of the form x2/a2 – y2/b2 = 1

On comparing given equation with (1), we get

a = 5 and b = 2

Then,

c2 = a2 + b2

c2 = 25 + 4 = 29

or c = √29

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 10 units

Length of Conjugate axis = 2b = 4 units

(ii) Coordinates of the vertices: (±a, 0) = (±5, 0)

(iii) Coordinates of the foci: (±c, 0) = (±√29, 0)

(iv) Eccentricity: e = c/a = √29/5

(v) Length of the latus rectum: 2b2/a = 8/5 units

74.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) x2 – y2 = 1

Answer»

Given equation is of the form x2/a2 – y2/b2 = 1

On comparing given equation with (1), we get

a = 1 and b = 1

Then,

c2 = a2 + b2

c2 = 1 + 1 = 2

or c = √2

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 2 units

Length of Conjugate axis = 2b = 2 units

(ii) Coordinates of the vertices: (±a, 0) = (±1, 0)

(iii) Coordinates of the foci: (±c, 0) = (±√2, 0)

(iv) Eccentricity: e = c/a = √2

(v) Length of the latus rectum: 2b2/a = 2 units

75.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) 3x2 – 2y2 = 6

Answer»

Divide each side by 6

x2/2 – y2/3 = 1

Given equation is of the form x2/a2 – y2/b2 = 1

On comparing given equation with (1), we get

a = √2 and b = √3

Then,

c2 = a2 + b2

c2 = 2 + 3 = 5

or c = √5

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 2√2 units

Length of Conjugate axis = 2b = 2√3 units

(ii) Coordinates of the vertices: (±a, 0) = (±√2, 0)

(iii) Coordinates of the foci: (±c, 0) = (±√5, 0)

(iv) Eccentricity: e = c/a = √(5/2)

(v) Length of the latus rectum: 2b2/a = 3√2 units

76.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) y2/9 – x2/27 = 1

Answer»

Given equation is of the form y2/a2 – x2/b2 = 1

On comparing given equation with (2), we get

a = 3 and b = √27 = 3√3

Then,

c2 = a2 + b2

c2 = 9 + 27 = 36

or c = 6

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 6 units

Length of Conjugate axis = 2b = 6√3 units

(ii) Coordinates of the vertices: (0, ±a) = (0, ±3)

(iii) Coordinates of the foci: (0, ±c) = (0, ±6)

(iv) Eccentricity: e = c/a = 2

(v) Length of the latus rectum: 2b2/a = 18 units

77.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) y2/16 – x2/49 = 1

Answer»

Given equation is of the form y2/a2 – x2/b2 = 1

On comparing given equation with (2), we get

a = 4 and b = 7

Then,

c2 = a2 + b2

c2 = 16 + 49 = 65

or c = √65

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 8 units

Length of Conjugate axis = 2b = 14 units

(ii) Coordinates of the vertices: (0, ±a) = (0, ±4)

(iii) Coordinates of the foci: (0, ±c) = (0, ±√65)

(iv) Eccentricity: e = c/a = √65/4

(v) Length of the latus rectum: 2b2/a = 49/2 units

78.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) 24x2 – 25y2 = 600

Answer»

Divide both sides by 600

x2/25 – y2/24 = 1

Given equation is of the form x2/a2 – y2/b2 = 1

On comparing given equation with (1), we get

a = 5 and b = 2√6

Then,

c2 = a2 + b2

c2 = 25 + 24 = 49

or c = 7

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 10 units

Length of Conjugate axis = 2b = 4√6 units

(ii) Coordinates of the vertices: (±a, 0) = (±5, 0)

(iii) Coordinates of the foci: (±c, 0) = (±7, 0)

(iv) Eccentricity: e = c/a = 7/5

(v) Length of the latus rectum: 2b2/a = 48/5 units

79.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) 25x2 – 9y2 = 225

Answer»

Divide both sides by 225

x2/9 – y2/25 = 1

Given equation is of the form x2/a2 – y2/b2 = 1

On comparing given equation with (1), we get

a = 3 and b = 5

Then,

c2 = a2 + b2

c2 = 9 + 25 = 34

or c = √34

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 6 units

Length of Conjugate axis = 2b = 10 units

(ii) Coordinates of the vertices: (±a, 0) = (±3, 0)

(iii) Coordinates of the foci: (±c, 0) = (±√34, 0)

(iv) Eccentricity: e = c/a = √34/3

(v) Length of the latus rectum: 2b2/a = 50/3 units

80.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) 3y2 – x2 = 108

Answer»

Divide each side by 108

y2/36 – x2/108 = 1

Which is of the form y2/a2 – x2/b2 = 1

On comparing given equation with (2), we get

a = 6 and b = 6√3

Then,

c2 = a2 + b2

c2 = 36 + 108 = 144

or c = 12

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 12 units

Length of Conjugate axis = 2b = 12√3 units

(ii) Coordinates of the vertices: (0, ±a) = (0, ±6)

(iii) Coordinates of the foci: (0, ±c) = (0, ±12)

(iv) Eccentricity: e = c/a = 2

(v) Length of the latus rectum: 2b2/a = 36 units

81.

Find the (i) lengths of axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of the hyperbola. Horizontal Hyperbola:For general form of Hyperbola: x2/a2 – y2/b2 = 1 ……..(1) Vertical Hyperbola:For general form of Hyperbola:y2/a2 – x2/b2 = 1 ……..(2) 5y2 – 9x2 = 36

Answer»

Divide each side by 36, we get

y2/(36/5) – x2/4 = 1

Which is of the form y2/a2 – x2/b2 = 1

On comparing given equation with (2), we get

a = 6/√5 and b = 2

Then,

c2 = a2 + b2

c2 = 36/5 + 4 = 56/5

or c = 2√(14/5)

Now,

(i) Lengths of the axes:

Length of Transverse axis = 2a = 12/√5 units

Length of Conjugate axis = 2b = 4 units

(ii) Coordinates of the vertices: (0, ±a) = (0, ±6/√5)

(iii) Coordinates of the foci: (0, ±c) = (0, ±2√(14/5))

(iv) Eccentricity: e = c/a = √14/3

(v) Length of the latus rectum: 2b2/a = 4√5/3 units

82.

Find the equation of hyperbola whose vertices at (±6, 0) and foci at (±8, 0).

Answer»

Vertices are of the form (±a, 0), hence it is a horizontal hyperbola.

So, the equation is of the form: x2/a2 – y2/b2 = 1 …..(1)

Given: vertices of hyperbola (±6, 0)

Here a = 6

Again,

Foci is of the form (±c, 0)

Given: foci of hyperbola at (±8, 0)

⇒ c = 8

Find b:

We know, c2 = a2 + b2

64 = 36 + b2

or b2 = 64 – 36 = 28

Equation (1)⇒

x2/36 – y2/28 = 1

Which is required equation.

83.

Find the equation of the hyperbola with vertices at (0, ±5) and foci at (0, ±8).

Answer»

Vertices are of the form (0, ±a), hence it is a vertical hyperbola.

So, the equation is of the form: y2/a2 – x2/b2 = 1 …..(1)

Given: vertices of hyperbola (0, ±5)

Here a = 5

Again,

Foci is of the form (0, ±c)

Given: foci of hyperbola at (0, ±8)

⇒ c = 8

Find b:

We know, c2 = a2 + b2

64 = 25 + b2

or b2 = 39

Equation (1)⇒

y2/25 – x2/39 = 1

Which is required equation.

84.

Find the equation of hyperbola whose foci are (±√29, 0) and the transverse axis is of the length 10.

Answer»

Major axis of the given hyperbola lie on x-axis.

Equation of the hyperbola will be of the form: x2/a2 – y2/b2 = 1

Whose foci at (±c, 0) and transverse axis is 2a

Given: transverse axis = 10

⇒ 2a = 10 ⇒ a = 5

Given: foci (±√29, 0)

(±c, 0) = (±√29, 0)

⇒ c = √29

We know, c2 = a2 + b2

29 = 25 + b2

or b2 = 4

Equation (1)⇒

x2/25 – y2/4 = 1

Which is required equation.

85.

A common tangent to `9x^2-16y^2 = 144` and `x^2 + y^2 = 9`, is

Answer» Correct Answer - `y=pm3sqrt((2)/(7))xpm(15)/(sqrt7)`
Given equation of hyperbola is
`9x^(2)-16y^(2)=144`
`"or "(x^(2))/(16)-(y^(2))/(9)=1`
The equation of tangent to the hyperbola having slope m is brgt `y=mxpmsqrt(16m^(2)-9)`
If it touches the circle, then the distance of the line from the centre of the circle is the radius of the circle. Hence,
`(sqrt(16m^(2)-9))/(sqrt(m^(2)+1))=3`
`"or "9m^(2)+9=16m^(2)-9`
`"or "7m^(2)=18`
`"or "m=pm3sqrt((2)/(7))`

So, the equation of tangent is
`y=pm3sqrt((2)/(7))xpm(15)/(sqrt7)`
86.

`x^(2)-y^(2)=1`

Answer» Correct Answer - (i) 2 units , 2 units
(ii) `A(-1,0) ,B(1,0)`
(iii) `F_(1)(-sqrt(2),0),F_(2) (sqrt(2),0)`
(iv) `e=sqrt(2)`
(v) 2 units
87.

`(x^(2))/(25)-(y^(2))/(4)=1`

Answer» Correct Answer - (i) 10 units , 4 units
(ii) `A(-5,0),B(5,0)`
(iii) `F_(1)(-sqrt(29),0),F_(2)(sqrt(29),0)`
(iv) `e=(sqrt(29))/(5)`
`(v) 1(1)/(3) ` units
88.

`(x^(2))/(9)-(y^(2))/(16)=1`

Answer» Correct Answer - (i) 6 units , 8 units
(ii) `A(-3,0),B(3,0) `
(iii) `F_(1) (-5,0),F_(2)(5,0)`
`(iv) e=(5)/(3) `
` (v) 10(2)/(3)` units
89.

`25x^(2)-9y^(2)=225`

Answer» Correct Answer - (i) 6 units, 10 units
(ii) `A(-3,0),B(3,0) `
(iii) `F_(1)(-7,0),F_(2)(sqrt(34),0)`
(iv) `e=(sqrt(34))/(3)`
(v) `16(2)/(3)` units
90.

`5y^(2)-9x^(2)=36`

Answer» Correct Answer - `(i) (12)/(sqrt(5))"units,4units"`
(ii) `A(0,-(6)/(sqrt(5))),B(0,(6)/(sqrt(5)))`
`(iii) F_(1)(0,-2sqrt((14)/(5))),F_(2)(0,2sqrt((14)/(5)))`
(iv) `e=(sqrt(14))/(3)`
(v) `(4sqrt(5))/(3) ` units
Given equation is `(y^(2))/((36//5))-(x^(2))/(4)=1.`
`therefore a^(2)=(36)/(5),b^(2)=4 and c^(2)=(a^(2)+b^(2))=((36)/(5)+4)=(56)/(5).`
Also `, e=( c)/(a)=((sqrt(56))/(sqrt(5))xx(sqrt(5))/(6))=(2sqrt(14))/(6)=(sqrt(14))/(3).`
91.

Find the vertices of the hyperbola `9x^2=16 y^2-36 x+96 y-252=0`A. `(6,3)` and `(-6,3)`B. `(6,3)` and `(-2,3)`C. `(-6,3)` and `(-6,-3)`D. none of these

Answer» The equation of the hyperbola is
`9(x^(2)-4x+4)-16(y^(2)-6y+9)=144`
`implies((x-2)^(2))/(4^(2))-((y-3)^(2))/(3^(2))=1`
The coordinates of the vertices are given by
`x-2=+-4`, `y-3=0`
`impliesx=6`, `y=3` and `x=-2`, `y=3`
Hence, the coordinates of the vertices are `(6,3)` and `(-2,3)` .
92.

`3x^(2)-2y^(2)=6`

Answer» Correct Answer - (i) `2 sqrt(2) " units," 2sqrt(3) "units "`
(ii) `A(-sqrt(2),0),B (sqrt(2),0)`
(iii) `F_(1)(-sqrt(5),0),F_(2)(sqrt(5),0)`
`(iv) e=sqrt((5)/(2))`
(v) `3sqrt(2)` units
93.

The eccentricity of the hyperbola with latursrectum `12` and semi-conjugate axis is `2sqrt(3)`, isA. `2`B. `3`C. `sqrt(3)//2`D. `2sqrt(3)`

Answer» We have,
`(2b^(2))/(a)=12` and, `b=2sqrt(3)impliesa=2`
`:.e=sqrt(1+(b^(2))/(a^(2)))=sqrt(1+(12)/(4))=2`
94.

The equation of the tangent parallel to `y=x` drawn to `(x^(2))/(3)-(y^(2))/(2)=1`, isA. `x-y+1=0`B. `x-y+2=0`C. `x-y+3=0`D. `x-y-2=0`

Answer» Let `y=x+c` be the required tangent. Then,
`c^(2)=3xx1^(2)-2impliesc=+-1` [ Using `c^(2)=a^(2)m^(2)-b^(2)`]
Hence required tangents are `y=x+-1`.
95.

The equation of the hyperbola with vertices `(3,0)` and `(-3,0)` and semi-latursrectum `4`, is given byA. `4x^(2)-3y^(2)+36=0`B. `4x^(2)-3y^(2)+12=0`C. `4x^(2)-3y^(2)-36=0`D. none of these

Answer» We have,
`a=3` and `(b^(2))/(a)=4impliesb^(2)=12`.
Hence, the equation of the hyperbola is
`(x^(2))/(9)-(y^(2))/(12)=1implies4x^(2)-3y^(2)=36`
96.

Find the equation of tangents to the curve `4x^2-9y^2=1`which are parallel to `4y=5x+7.`A. `24y-30x=17`B. `30y-24x=+-sqrt(161)`C. `24y-30x=+-sqrt(161)`D. none of these

Answer» Let `m` be the slope of the tangent to `4x^(2)-9y^(2)=1`
Then,
`m=("Slope of the line" 4y=5x+7)=5//4`
We have,
`(x^(2))/(1//4)-(y^(2))/(1//9)=1` or, `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`, where `a^(2)=(1)/(4)`, `b^(2)=(1)/(9)`
The equations of the tangents are
`y=mx+-sqrt(a(2)m^(2)-b^(2))`
`impliesy=(5)/(4)x+-sqrt((25)/(64)-(1)/(9))`
`implies30x-24y+-sqrt(161)=0implies24y-30x=+-sqrt(161)`
97.

Find the equation of tangents to the curve `4x^2-9y^2=1`which are parallel to `4y=5x+7.`

Answer» Let m be the slope of the tangent of `4x^(2)-9y^(2)=1.` Then `m=("Slope of the line "4y=5x+7)=(5)/(4)`
We have `(x^(2))/(1//4)-(y^(2))/(1//9)=1`
where `a^(2)=(1)/(4),b^(2)=(1)/(9)`
The equations of the tangents are
`y=mx pm sqrt(a^(2)m^(2)-b^(2))`
`"or "y=(5)/(4)xpmsqrt((25)/(64)-(1)/(9))`
`"or "30x-24y pm sqrt(161)=0`
`"or "24y-30x=pmsqrt(161)`
98.

The angle between pair of tangents to the curve `7x^(2)-12y^(2)=84` from the point `M(1,2)` isA. `2tan^(-1)"(1)/(2)`B. `2tan^(-1)2`C. `2(tan^(-1).(1)/(3)+tan^(-1).(1)/(2))`D. `2tan^(-1)3`

Answer» The equation of the director circles of the given byperbola is
`x^(2)+y^(2)=12-7` or `x^(2)+y^(2)=5`
Clearly, the point `M(1,2)` lies on the director circle `x^(2)+y^(2)=5`.
So, the angle between the tangents to the hyperbola drawn from `M(1,2)` is right angle.
Now,
`2(tan^(-1).(1)/(3)+tan^(-1).(1)/2)=2tan^(1)(((1)/(3)+(1)/(2))/(1-(1)/(3)xx(1)/(2)))=2tan^(1)1=(pi)/(2)`
Hence, option `(c )` is correct.
99.

Find the equation of the hyperbola whose vertices are `(+-7,0)` and the eccentricity is `(4)/(3).`

Answer» Since the vertices of the given hyperbola are of the form `(+-a,0)`,it is a horizontal hyperbola .
Let the requied equation of the hyperbola be `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1.`
then , its vertices are `(+-a,0)`.
But , the vertices are `(+-7,0)`
`therefore a=7hArra^(2)=49.`
Also ,`e=( c)/(a)hArrc=ae=(7xx(4)/(3))=(28)/(3).`
Now , `C^(2)=(a^(2)+b^(2))hArrb^(2)=(c^(2)-a^(2))=[((28)/(3))^(2)-49]=(343)/(9).`
Thus`,a^(2)=49 and b^(2)=(343)/(9).`
` therefore` the required equation is
`(x^(2))/(49)-(y^(2))/((343//9))=1hArr(x^(2))/(49)-(9y^(2))/(343)=1hArr 7x^(2)-9y^(2)=343.`
100.

Tangents are drawn to the hyperbola `x^2/9-y^2/4=1` parallet to the sraight line `2x-y=1.` The points of contact of the tangents on the hyperbola are (A) `(2/(2sqrt2),1/sqrt2)` (B) `(-9/(2sqrt2),1/sqrt2)` (C) `(3sqrt3,-2sqrt2)` (D) `(-3sqrt3,2sqrt2)`A. `(+-(9)/(2sqrt(2)),+-(1)/(sqrt(2)))`B. `(+-(1)/(sqrt(2)),+-(9)/(2sqrt(2)))`C. `(3sqrt(3),-2sqrt(2))`D. `(-3sqrt(3),2sqrt(2))`

Answer» The points of contact of tangents of slope `m` to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` are
`(+-(a^(2)m)/(sqrt(a^(2)m^(2)-b^(2))),+-(b^(2))/(sqrt(a^(2)m^(2)-b^(2))))`
Here , `m=2`, `a^(2)=9` and `b^(2)=4`.
So, the points of contact are
`(+-(18)/(sqrt(36-4)),+-(4)/(sqrt(36-4)))=(+-(9)/(2sqrt(2)),+-(1)/(sqrt(2)))`