InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If a, b, c are all positive, a + b + c = 1 and (1 – a) (1 – b) (1 – c) ≥ K(abc), then find the value of K. |
|
Answer» Given, a + b + c = 1, so that a + b = 1 – c, b + c = 1 – a, c + a = 1 – b Now, AM > GM ⇒ (a + b) > 2\(\sqrt{ab}\) ⇒ (1 – c) > 2\(\sqrt{ab}\) …(i) Similarly, (b + c) > 2\(\sqrt{bc}\) ⇒ (1 - a) > 2\(\sqrt{ab}\) …(ii) (c + a) > 2\(\sqrt{ca}\) ⇒ (1 - b) > 2\(\sqrt{ca}\) …(iii) Multiplying (i), (ii) and (iii), we get ⇒ (1 – a) (1 – b) (1 – c) > 8 \(\sqrt{ab}\) \(\sqrt{bc}\) \(\sqrt{ca}\) ⇒ (1 – a) (1 – b) (1 – c) > 8 abc ⇒ K = 8. |
|
| 2. |
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side. |
|
Answer» Let the length of shortest side be x cm. According to the given information, Longest side = 2 x Shortest side = 2x cm And third side = 2 + Shortest side = (2 + x) cm Perimeter of triangle = x + 2x + (x + 2) = 4x + 2 But it is given that, Perimeter > 166 cm => 4x + 2 > 166 => 4x> 166-2 => 4x>164 x>164/4 =41 cm Hence, the minimum length of shortest side is 41 cm. |
|
| 3. |
The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter then the longest side. If the perimeter of the triangle is at least 61 cm, find the minimum length of the shortest side. |
|
Answer» Let x, 3x, 3x – 2 be the sides of a triangle Given: x + 3x + 3x – 2 ≥ 61 7x ≥ 63 x ≥ 9. ∴ Minimum length of shortest side = 9 cm. ∴ Other sides are 27 and 25. |
|
| 4. |
Prove that for any three positive reals numbers a, b, c, a2 + b2 + c2 ≥ ab + bc + ca. |
|
Answer» a2 + b2 + c2 > ab + bc + ca To prove a2 + b2 + c2 – ab – bc – ca > 0 Let S = a2 + b2 + c2 – ab – bc – ca Then S = \(\frac12\)(2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca) = \(\frac12\)(a2 + b2 - 2ab + b2 + c2 - 2bc + c2 + a2 – 2ca) = \(\frac12\)[(a - b)2 + (b - c)2 + (c - a)2] > 0 As the RHS is the sum of squares which are positive ⇒ S > 0. Also the equality, i.e. = 0 holds when a = b = c. |
|
| 5. |
If a, b, c are the sides of a Δ ABC, then show that \(\frac12<\frac{ab+bc+ca}{a^2+b^2+c^2}\) ≤ 1. |
|
Answer» We have a > 0, b > 0, c > 0, so (a – b)2 + (b – c)2 + (c – a)2 > 0 ⇒ a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca > 0 ⇒ 2a2 + 2b2 + 2c2 > 2ab + 2bc + 2ca ⇒ a2 + b2 + c2 > ab + bc + ca ⇒ 1 > \(\frac{ab+bc+ca}{a^2+b^2+c^2}\) ⇒ \(\frac{ab+bc+ca}{a^2+b^2+c^2}\) < 1 …(i) Now for the other part let us using the triangle inequality, i.e., the sum of two sides of a triangle is greater than the third side, we have ∴ a + b > c, b + c > a, c + a > b. Also, a > 0, b > 0, c > 0 ⇒ a + b – c > 0, b + c – a > 0, c + a – b > 0 ⇒ a (b + c – a) + b (c + a – b) + c (a + b – c) > 0 ⇒ ab + ac – a2 + bc + ba – b2 + ca + cb – c2 > 0 ⇒ 2 (ab + bc + ac) > a2 + b2 + c2 ⇒ \(\frac{ab+bc+ca}{a^2+b^2+c^2}≥\frac12\) ....(ii) ∴ From (i) and (ii) \(\frac12<\frac{ab+bc+ca}{a^2+b^2+c^2}≥1.\) |
|
| 6. |
The longest side of a triangle is twice the shortest side and the third side is 2 cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side. |
|
Answer» Let the length of shortest side = ‘x’ cm According to the question, The longest side of a triangle is twice the shortest side ⇒ Length of largest side = 2x Also, the third side is 2 cm longer than the shortest side ⇒ Length of third side = (x + 2) cm Perimeter of triangle = sum of three sides = x + 2x + x + 2 = 4x + 2 cm Now, we know that, Perimeter is more than 166 cm ⇒ 4x + 2 ≥ 166 ⇒ 4x ≥ 164 ⇒ x ≥ 41 Hence, minimum length of the shortest side should be = 41 cm. |
|
| 7. |
Let a, b, c be the lengths of the sides of a right angled triangle, the hypotenuse having the length c, then a + b is(a) > 2c (b) < √2c (c) > √2c (d) < 2c |
|
Answer» (b) < √2c Since a, b, c are the lengths of the sides of a right triangle having hypotenuse of length c, therefore a2 + b2 = c2 (Pythagoras, Theoram) Now, a > 0, b > 0 ⇒ (a – b)2 > 0 ⇒ a2 + b2 > 2ab ⇒ 2(a2 + b2) > a2 + b2 + 2ab ⇒ 2 (a2 + b2) > (a + b)2 ⇒ 2c2 > (a + b)2 ⇒ (a + b)2 < 2c2 ⇒ (a + b) < √2c. |
|
| 8. |
If a, b, c be the lengths of the sides of a triangle and (a + b + c)3 ≥ k (a + b – c) (b + c – a) (c + a – b), then k equals(a) 1 (b) 3 (c) 8 (d) 27 |
|
Answer» (d) 27 By triangle inequality, we have sum of lengths of two sides of a Δ > length of third side ⇒ a + b > c, b + c > a, c + a > b ⇒ a + b – c > 0, b + c – a > 0, c + a – b > 0 All being positive quantities, we apply AM > GM ⇒ \(\frac{(a+b-c)+(b+c-a)+(c+a-b)}{3}\) ≥ [(a+b-c)(b+c-a)(c+a-b)]\(\frac13\) ⇒ \(\big(\frac{a+b+c}{3}\big)^3\) ≥ [(a+b-c)(b+c-a)(c+a-b)] (a+b+c)3 ≥ 27(a+b-c)(b+c-a)(c+a-b) ⇒ K = 27. |
|
| 9. |
Which of the following inequations represents the shaded region ?(a) 2x + y ≤ 4 (b) 2x + y ≥ 4 (c) x + 2y ≤ 4 (d) x + 2y ≥ 4 |
|
Answer» (a) 2x + y + ≤ 4 The line shown on the graph is 2x + y = 4 Substituting (0, 0) in the inequality 2x + y ≤ 4. 2 × 0 + 0 ≤ 4 ⇒ 0 ≤ 4, which hold true ⇒ (0, 0) lies in the required region. ∴ (a) is the correct option. |
|
| 10. |
If x < 5, then A.–x < – 5 B. –x ≤ –5 C. –x > –5 D. –x ≥ –5 |
|
Answer» C.-x > -5 x < 5 Multiplication or dividing by negative number inverts the inequality sign. ⇒ -x > -5 |
|
| 11. |
If – 3x + 17 < – 13, then A.x ∈ (10, ∞)B. x ∈ [10, ∞) C. x ∈ (–∞, 10] D. x ∈ [– 10, 10) |
|
Answer» A. x ∈ (10, ∞) -3x + 17 < -13 ⇒ -3x < -30 [Subtracting 17 both side] ⇒ x > 10 [Division by negative number inverts the inequality sign] ⇒ x ∈ (10, ∞) |
|
| 12. |
If x is a real number and |x| < 3, then A. x ≥ 3 B. –3 < x < 3 C. x ≤ – 3 D. –3 ≤ x ≤ 3 |
|
Answer» B. -3 < x < 3 |x| < 3 Hence, there are two cases, x < 3 [1] and -x < 3 ⇒ x > -3 [2] From [1] and [2], we get ⇒ -3 < x < 3 |
|
| 13. |
If |x – 1| > 5, then A.x ∈ (–4, 6) B. x ∈ [–4, 6] C. x ∈ [∞, –4) ∪ (6, ∞) D. x ∈ [–∞, –4) ∪ [6, ∞) |
|
Answer» D. x ∈ (-∞, -4) ∪ (6, ∞) Given, |x – 1| > 5 There are two cases, (x – 1) > 5 ⇒ x > 6 ⇒ x ∈ (6, ∞) [1] And -(x – 1) > 5 ⇒ -x + 1 > 5 ⇒ -x > 4 ⇒ x < -4 [Multiplication by negative inverts the inequality sign] ⇒ x ∈ (-∞, -4) [2] From [1] and [2], we get ⇒ x ∈ (-∞, -4) ∪ (6, ∞) |
|
| 14. |
If |x + 2| ≤ 9, then A.x ∈ (–7, 11) B. x ∈ [–11, 7] C. x ∈ (∞, –7) ∪ (11, ∞) D. x ∈ (–∞, –7) ∪ [11, ∞) |
|
Answer» B. x ∈ [-11, 7] Given, |x + 2| ≤ 9 There are two cases, (x + 2) ≤ 9 ⇒ x ≤ 7 ⇒ x ∈ (-∞,7] [1] And -(x + 2) ≤ 9 ⇒ -x – 2 ≤ 9 ⇒ -x ≤ 11 ⇒ x ≥ -11 [Multiplication by negative inverts the inequality sign] ⇒ x ∈ [-11, ∞) [2] From [1] and [2], we get ⇒ x ∈ [-11, 7] |
|
| 15. |
x and b are real numbers. If b > 0 and |x| > b, then A.x ∈ (–b, ∞) B. x ∈ [–∞, b) C. x ∈ (–b, b) D. x ∈ (–∞, –b)∪(b, ∞) |
|
Answer» D. x ∈ (-∞, -b) ∪ (b, ∞) |x| > b Hence, there are two cases, x > b ⇒ x ∈ (b, ∞) [1] and -x > b ⇒ x < -b ⇒ x ∈ (-∞, -b) [2] From [1] and [2], we get ⇒ x ∈ (-∞, -b) ∪ (b, ∞) |
|
| 16. |
Solve \(\frac{1}{x-2}\) < 0, x ∈ R. |
|
Answer» We have, \(\frac{1}{x-2}\) < 0 ⇒ − 2 < 0 [∵ \(\frac{a}{b}\) < 0 and > 0 ⇒ < 0] ⇒ x − 2 ⇒ x ∈ (−∞, 2) |
|
| 17. |
Solve: x/4 < (5x - 2)/3 - (7x - 3)/5 |
|
Answer» x/4 < (5x - 2)/3 - (7x - 3)/5 ⇒ 15x < 16x - 4 ⇒ 4 < 16x - 15x ⇒ x > 4 ∴ Solution set = (4, ∞). |
|
| 18. |
Solve, 0 < \(\frac{-x}{3}\) < 1, x ∈ R. |
|
Answer» We have, 0 < \(\frac{-x}{3}\)< 1, Multiplying inequality by 3, we get 0 < −x < 3 or 0 > x > 3 or −3 < x > 0 ⇒ x ∈ (−3,0) |
|
| 19. |
Solve, −3 ≤ −3x + 2 < 4, x ∈ R. |
|
Answer» We have, −3 ≤ −3x + 2 <4, ⇒ −3 − 2 ≤ −3x + 2 − 2 < 4 − 2 (Adding -2 in inequality) ⇒ −5 ≤ −3x < 2 ⇒ \(\frac{-5}{-3}\) ≥ \(\frac{-3x}{-3}\) >\(\frac{2}{-3}\) (Dividing by −3) Or ⇒ \(-\frac{2}{3}\) > x ≤ \(-\frac{5}{3}\) Or x ∈\(-\frac{2}{3}\),\(-\frac{5}{3}\) |
|
| 20. |
Solve the following inequalities for real x. \(\frac{2x-3}{4}\) − 3< \(\frac{x-4}{3}\) −2, x ∈ R. |
|
Answer» We have, \(\frac{2x−3}{4}\)−3 < \(\frac{x−4}{3}\)−2, ⟹ \(\frac{2x−9}{4}\) < \(\frac{x−10}{3}\) ⟹ \(\frac{x}{2}\) − \(\frac{x}{3}\) < \(\frac{−10}{3}\) + \(\frac{9}{4}\) [Transposing \(\frac{x}{2}\)to LHS and \(\frac{9}{4}\) to RHS] ⟹ \(\frac{x}{6}\) < \(\frac{13}{12}\) ⟹ x < \(\frac{13}{2}\) ∴ x ∈ (−∞, \(\frac{13}{2}\)) |
|
| 21. |
Solve for x, the inequalities in 4x + 3 ≥ 2x + 17, 3x – 5 < – 2. |
|
Answer» According to the question, 4x + 3 ≥ 2x + 17 ⇒ 4x – 2x ≥ 17 – 3 ⇒ 2x ≥ 14 ⇒ x ≥ 7 …(i) Also, 3x – 5 < – 2 ⇒ 3x < 3 ⇒ x < 1 …(2) Since, equations [i] and [ii] cannot be possible simultaneously, We conclude that x has no solution. |
|
| 22. |
If x, y are positive real numbers such that x + y = 1, prove that \(\big(1+\frac1x\big)\big(1+\frac1y\big)\) > 9. |
|
Answer» For positive real numbers, x, y applying AM > GM, we have \(\frac{x+y}{2}\) > \(\sqrt{xy}\) ⇒ \(\frac12\) > \(\sqrt{xy}\) (∵ x + y = 1) ⇒ 1 ≥ 2\(\sqrt{xy}\) ⇒ 1 > 4xy ⇒ 2 > 8xy ⇒ 1 + 1 > 8xy ⇒ 1 + \(x\) + y > 8xy ⇒ 1 + \(x\) + y + xy > 9xy ⇒ (1 + \(x\)) (1 + y) > 9xy ⇒ \(\frac{(1+x)(1+y)}{xy}\) > 9 ⇒ \(\big(\frac{x+1}{x}\big)\big(\frac{y+1}{y}\big)\) > 9 ⇒ \(\big(1+\frac1x\big)\big(1+\frac1y\big)\) > 9 |
|
| 23. |
For positive real numbers a, b, c, the least value of alogb – logc + blogc – loga + cloga – logb is (a) 0 (b) 1 (c) 3 (d) 6 |
|
Answer» (c) 3. a > 0, b > 0, c > 0 ⇒ loga, logb, logc are all defined. Also alogb – logc, blogc–loga, cloga–logb are all positive quantities. ∴ Applying AM > GM, we have \(\frac13\)[ alogb – logc + blogc–loga + cloga–logb ] > [alogb – logc. blogc–loga. cloga–logb]\(\frac13\) ...(i) Let x = alog b – log c . blog c – log a. clog a – log b ⇒ log x = (log b – log c) log a + (log c – log a) log b + (log a – log b) log c Now, loge x = 0 ⇒ x = e0 = 1. ∴ (i) ⇒ \(\frac13\)[ alogb – logc + blogc–loga + cloga–logb ] > 1 ⇒ alog b – log c + blog c – log a + clog a – log b > 3 ⇒ The least value of alog b – log c + blog c – log a + clog a – log b is 3. |
|
| 24. |
If a, b, c, d are four distinct positive real numbers and if 3s = a + b + c + d, then(a) abcd > 81 (s – a) (s – b) (s – c) (s – d)(b) abcd < 9 (s – a) (s – b) (s – c) (s – d)(c) abcd < 18 (s – a) (s – b) (s – c) (s – d)(d) abcd < 27 (s – a) (s – b) (s – c) (s – d) |
|
Answer» (a) abcd > 81(s – a) (s – b) (s – c) (s – d) 3s = a + b + c + d ⇒ 3s – b – c – d = a ⇒ a = (s – b) + (s – c) + (s – d) For distinct positive real numbers AM > GM ⇒ \(\frac13\)[(s – b) + (s – c) + (s – d)]> {(s – b) + (s – c) + (s – d)}\(\frac13\) ⇒ (s – b) + (s – c) + (s – d) > 3 {(s – b) + (s – c) + (s – d)}\(\frac13\) ⇒ a > 3 {(s – b) + (s – c) + (s – d)}\(\frac13\) ....(i) Similarly, b > 3 {(s – a) + (s – c) + (s – d)}\(\frac13\) ....(ii) c > 3 {(s – a) + (s – b) + (s – d)}\(\frac13\) ....(iii) a > 3 {(s – a) + (s – b) + (s – c)}\(\frac13\) ....(iv) ∴ (i) × (ii) × (iii) × (iv) ⇒ abcd > 81{(s - a)3 (s – b)3 (s – c)3 (s – d)3}\(\frac13\) ⇒ abcd > 81(s – a) (s – b) (s – c) (s – d). |
|
| 25. |
Find the solution set of –3 < x – 2 ≤ 9 – 2x ; x ∈ Z (set of integers). |
|
Answer» – 3 < x – 2 < 9 – 2x ⇒ – 3 < x – 2 and x – 2 < 9 – 2x ⇒ – 3 + 2 < x and x + 2x < 9 + 2 ⇒ – 1 < x and 3x < 11 or x < \(\frac{11}{3}\) ⇒ − 1 < \(x\) ≤ \(\frac{11}{3}\) Since \(x\) ∈ Z, so the solution set = {0, 1, 2, 3}. |
|
| 26. |
The solution set of x + 2 < 9 over a set of positive even integers is(a) {8, 10, 12,…} (b) {2, 4, 6} (c) {1, 2, 3, 4, 5, 6} (d) {2, 4, 6, 8} |
|
Answer» (b) {2,4,6} x + 2 < 9 ⇒ x < 9 – 2 ⇒ x < 7 ∴ The positive even integers less than 7 are 2, 4, 6. |
|
| 27. |
The solution to the inequality –5x > 4 is(a) x < \(\frac45\)(b) x > \(-\frac45\)(c) x < \(-\frac45\)(d) x > \(\frac45\) |
|
Answer» (c) x < \(-\frac45\) –5x > 4 ⇒ 5x < – 4 ⇒ x < \(-\frac45\) |
|
| 28. |
Which inequality has the following number line solution : |
|
Answer» (b) 2x -6 <10 2x – 6 < 10 ⇒ 2x < 16 ⇒ x < 8 2x – 6 < 10 ⇒ 2x < 16 ⇒ x < 8 |
|
| 29. |
Which graph shows the solution to the inequality –3.5x – 12 ≤ 58 ?(a) x ≤ – 20 (b) x ≥ –70 (c) x ≤ –70 (d) x ≥ –20 |
|
Answer» (d) x ≥ -20 –3.5x – 12 ≤ 58 ⇒ –3.5 x ≤ 70 ⇒ x ≥ \(-\frac{70}{3.5}\) ⇒ x ≥ -20 |
|
| 30. |
If |x + 2| ≤ 9, then(A) x ∈ (– 7, 11) (B) x ∈ [– 11, 7](C) x ∈ (– ∞, – 7) ∪ (11, ∞) (D) x ∈ (– ∞, – 7) ∪ [11, ∞) |
|
Answer» Answer is (B) x ∈ [– 11, 7] |
|
| 31. |
The inequality representing the following graph is:(A) | x| < 5 (B) | x| ≤ 5 (C) | x| > 5 (D) | x| ≥ 5 |
|
Answer» Answer is (A) | x| < 5 |
|
| 32. |
Solve: 3x + 8 > 2, when (i) x is an integer (ii) x is a real number. |
|
Answer» Given: 3x + 8 > 2 ⇒ 3x > 2 – 8 = – 6 ∴ x > - 6/3 = - 2 (i) When x ∈ Z, solution set = {-1, 0, 1, 2, 3,…} (ii) When x∈M, solution set = (-2, ∞). |
|
| 33. |
Solve: 5x – 3 < 3x + 1 when (i) x is an integer (ii) x is a real number. |
|
Answer» Given: 5x – 3 < 3x + 1 ⇒ 5x – 3x <1 + 3 ⇒ 2x<4 ⇒ x < 4/2 = 2 (i) When x ∈ Z, solution set ={…, -3, -2, -1, 0,1} (ii) When x ∈ M, solution set = (- ∞, 2). |
|
| 34. |
Solve -12x > 30, when (i) x ∈ N (ii) x ∈ Z |
|
Answer» Given: -12x > 30 ⇒ x < 30/-12 = - 2.5 (i) When x ∈ N, solution set = φ (ii) When x ∈ Z, solution set = {…, -5, -4, -3} |
|
| 35. |
Define solution set. |
|
Answer» The set of all those values of x which satisfy the given inequation is called the solution set of inequation. Rules for solving inequations:
|
|
| 36. |
A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit? |
|
Answer» Cost function: C(x) = 26000 + 3Ox Revenue function: R(x) = 43x For profit, R(x) > C(x) ⟹ 26000 + 30x < 43x ⟹ 43x – 30x > 26000 ⟹ 13x > 26000 ⟹ x > 2000 Hence, more than 2000 cassettes must be produced to get profit. |
|
| 37. |
Solve 30x < 200 when(i) x is a natural number(ii) x is an integer. |
|
Answer» Given: 30x < 200 x < 200/30 = 6.6 (i) x is a natural number: Solution set = { 1, 2, 3,4, 5, 6} (ii) x is a real number: ∴ Solution set = {… -3, -2, -1,0, 1,2, 3,4, 5, 6} |
|
| 38. |
Find all pairs of consecutive odd natural numbers, both of which are larger than 10, such that their sum is less than 40. |
|
Answer» Let x be the smaller of the two consecutive odd natural number, so that the other one is x + 2. Given x > 10 and x + (x + 2) < 40 ⇒ 2x < 38 ⇒ x < 19 ∴10 < x < 19 Since x is an odd number, x can take the values 11,13, 15 and 17. ∴ Required possible pairs are (11, 13), (13, 15), (15, 17), (17,19). |
|
| 39. |
Define inequality. |
|
Answer» Two real numbers or two algebraic expressions related by the symbol ‘<’, V, ‘<’ or ‘>’ form an inequality. For example: 3 < 5, 7 > 5 are numerical inequalities x < 5, y > 2, x > 3 are literal inequalities. ax + b < 0, ax + b > 0 are strick inequalities in one variable. ax + b < 0, ax + b >0 are slack inequalities in one variable. ax + by < c, ax + by > c are strick inequalities in two variables. ax + by < c, ax + by > c are slack inequalities in two variables. ax2 + bx + c < 0, ax2 + bx + c > 0 are quadratic inequalities in one variable. |
|
| 40. |
If x < 5, then(A) – x < – 5(B) – x ≤ – 5(C) – x > – 5(D) – x ≥ – 5 |
|
Answer» Answer is (C) – x > – 5 |
|
| 41. |
If – 3x + 17 < – 13, then(A) x ∈ (10, ∞) (B) x ∈ [10, ∞)(C) x ∈ (– ∞, 10] (D) x ∈ [– 10, 10) |
|
Answer» Answer is (A) x ∈ (10, ∞) |
|
| 42. |
x and b are real numbers. If b > 0 and | x| > b, then(A) x ∈ (– b, ∞) (B) x ∈ [– ∞, b)(C) x ∈ (– b, b) (D) x ∈ (– ∞, – b) ∪ (b, ∞) |
|
Answer» Answer is (D) x ∈ (– ∞, – b) ∪ (b, ∞) |
|
| 43. |
If x is a real number and | x| < 3, then(A) x ≥ 3 (B) – 3 < x < 3(C) x ≤ – 3 (D) – 3 ≤ x ≤ 3 |
|
Answer» Answer is (B) – 3 < x < 3 |
|
| 44. |
The cost and revenue functions of a product are given by C(x) = 20 x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit? |
|
Answer» We have, profit = Revenue – Cost = (60x + 2000) – (20x + 4000) = 40x – 2000 To earn some profit, 40x – 2000 > 0 ⇒ x > 50 Hence, the manufacturer must sell more than 50 items to realise some profit. |
|
| 45. |
The solution set of 3x – 4 < 8 over the set of square numbers is(a) {1, 2, 3} (b) {1, 4} (c) {1} (d) {16} |
|
Answer» (c) {1} 3x – 4 < 8 ⇒ 3x < 12 ⇒ x < \(\frac{12}3\) ⇒ x < 4 The solution set = {1} as 1 is the only square number less than 4. |
|
| 46. |
The number line matching the statement ‘‘It was so cold in January in Shimla that the temperature never reached 10°C’’ is : |
|
Answer» (d) Temperature was less than 10° C, it never touched 10° C |
|
| 47. |
If loge (x2 – 16) < loge (4x – 11), then(a) – 1 < \(x\) < 5 (b) \(x\) < – 1 or \(x\) > 5 (c) 4 < \(x\) < 5 (d) \(x\) < – 4 or \(x\) > 4 |
|
Answer» (a) – 1 < x < 5 loge (x2 – 16) < loge (4x – 11) (x2 – 16) < 4x – 11 (∵ a > 1, loga f (x) > loga(gx) ⇒ f (x) > g(x) > 0) ⇒ x2 – 4x – 5 < 0 ⇒ (x – 5) (x + 1) < 0 ⇒ – 1 < x < 5 (∵ If a < b, then (x – a) (x – b) < 0 ⇒ a < \(x\) < b) |
|
| 48. |
The solution to the inequality –2x + (33 – 52 ) ≥ 4 is(a) x ≥ –1 (b) x ≤ –1 (c) x > –2 (d) x < 2 |
|
Answer» (b) x ≤ –1 – 2x + (33 – 52 ) ≥ 4 ⇒ – 2x + (27 – 25) ≥ 4 ⇒ – 2x + 2 ≥ 4 ⇒ –2x ≥ 2 ⇒ x ≤ –1 |
|
| 49. |
The set of all real numbers x, for which x2 – |x + 2| + x > 0, is(a) (– ∞, – 2) ∪ (2, ∞) (b) (√2, ∞)(c) (– ∞, – 1) ∪ (1, ∞) (d) (– ∞ , - √2) ∪ (√2, ∞) |
|
Answer» (d) (−∞ , -√2) ∪ ( √2, ∞) Case I: When \(x\) + 2 > 0, then \(x\) > – 2 ⇒ |\(x\) + 2| = \(x\) + 2 ∴ x2 – |\(x\) + 2| + \(x\) > 0 = x2 – (\(x\) + 2) + \(x\) > 0 ⇒ x2 – 2 > 0 ⇒ x2 > 2 ⇒ \(x\) < -√2 or 2 \(x\) > √2 ⇒ x∈ (– 2, − √2 ) ∪ ( 2 , ∞) [∵ \(x\) ≥ − 2] …(i) Case II: When \(x\) + 2 < 0, then \(x\) < – 2 ⇒ |\(x\) + 2| = – (\(x\) + 2) ∴ x2 – |\(x\) + 2| + \(x\) > 0 ⇒ x2 + (\(x\) + 2) + \(x\) > 0 ⇒ x2 + 2x + 2 > 0 ⇒ (x2 + 2x + 1) + 1 > 0 ⇒ (x + 1)2 + 1 > 0, which is true for all value of x. ∴ \(x\) < – 2 ⇒ \(x\)∈ (– ∞, – 2) …(ii) From (i) and (ii) \(x\)∈ (– 2, −√2) ∪ ( √2, ∞ ) ∪ (– ∞, – 2) ⇒ \(x\)∈ (−∞ , −√2) ∪ ( √2, ∞) |
|
| 50. |
The solution to the inequality |10 – 2x| > 6 is(a) 2 < x < 8 (b) x < –2 and x > 8 (c) x > 2 and x < –8 (d) x < 2 or x > 8 |
|
Answer» (d) x < 2 or x > 8 | 10 – 2x | > 6 ⇒ 10 – 2x > 6 or – (10 – 2x) > 6 ⇒ –2x > 6 – 10 or 2x > 6 + 10 ⇒ –2x > – 4 or 2x > 16 ⇒ x < 2 or x > 8 |
|