Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Solve `log_(2)(4xx3^(x)-6)-log_(2)(9^(x)-6)=1`.

Answer» `log_(2)(4xx3^(x)-6)-log_(2)(9^(x)-6)=1`
or `"log"_(2)(4xx3^(x)-6)/(9^(x)-6)=1`
or `"log"_(2)(4xx3^(x)-6)/(9^(x)-6)=2`
`or4y-6=2y^(2)-12" "("putting"3^(x)=y)`
`ory^(2)-2y-3=0`
`ory=-1,3`
`or3^(x)=3`
`orx=1`
2.

Let a, b, c, d be positive integers such that ` log_(a) b = 3//2 and log_(c) d = 5//4`. If (a-c) = 9, then find the value of (b-d).

Answer» `b = a^(3//2) and d=c^(5//4)`
Let ` a= x^(2) and c=y^(4), x, y in N`
` rArr b= x^(3), d= y^(5)`
Given ` a-c=9, " then "x^(2)-y^(4) = 9`
` rArr (x- y^(2))(x+y^(2)) = 9` .
Hence, ` x- y^(2) = 1 and x + y^(2) =9`.
(No other combination in the set of positive integers will be possible.)
` x= 5 and y = 2`
`:. b - d = x^(3) - y^(5) = 125 - 32 = 93`
3.

If ` log_(b) n = 2 and log_(n) 2b = 2`, then find the value of b.

Answer» Correct Answer - `2^(1//3)`
Eliminating n, we have ` log_(b) 2b = 4`
` or 2b = b^(4)`
` or b^(3) = 2`
` rArr b = 2^(1//3)`
4.

If ` log_(2) x xx log_(3) x = log_(2) x + log_(3) x`, then find x .

Answer» Correct Answer - x = 1, 6
` log_(2) x xx log_(3) x = log_(2) x + log_(3) x`
` rArr (log x)/(log 2) *(log x)/(log 3) =(log x)/(log 2) +(log x)/(log 3) `
` rArr log x = 0`
` or (log x)/(log 2*log 3) = 1/(log 2) + 1/(log 3) `
` rArr x = 1 or log x = log 2+ log 3`
`rArr x = 1 or log x = log 6`
` rArr x = 1 or x = 6`
5.

If `y^2=xz` and a^x=b^y=c^z`then prove that `log_b (a)= log_c (b)

Answer» `a^(x) = b^(y) = c^(z)`
` rArr x log a = y log b = z log c`
` :. y/x = z/y rArr(log a)/(log b) = (log b)/(log c)`
` rArr log_(b) a = log_(c) b`
6.

Let `a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12`. Then find the value of `1/(a+1)+1/(b+1)+1/(c+1)`.

Answer» We have
`a+1 = log_(3) 20 + log_(3) 3 = log_(3) 60`
` b+ 1 = log_(4) 15 + log_(4) 4 = log_(4) 60`
` c+1 = log_(5) 12+ log_(5) 5 = log_(5) 60`
`1/(a+1)+1/(b+1)+1/(c+1)=1/(log_(3) 60)+1/(log_(4)60)+1/(log_(5)60)`
` =log_(60)3+log_(60)4+log_(60)5`
` = log_(60)(3 xx 4 xx 5)`
` = log_(60) 60`
` = 1`
7.

If `a^4b^5=1` then the value of `log_a(a^5b^4)` equalsA. `9//5`B. 4C. 5D. `8//5`

Answer» Correct Answer - A
Given ` 4 log_(a) a+5log_(a) b =0`
` rArr log_(a) b = -4//5` …(i)
Now ` log_(a)(a^(5)b^(4)) = 5+4 log_(a) b = 5 + 4 (-4/5)`
` = 5 - 16/5 = 9/5`
8.

`2^((sqrt(log_a(ab)^(1/4)+log_b(ab)^(1/4))-sqrt(log_a(b/a)^(1/4)+log_b(a/b)^(1/4)))sqrt(log_a(b))` =A. 1B. 2C. ` 2^(log_(a) b)`D. ` 2 ^(log_(b)a)`

Answer» Correct Answer - C
We have
` E= 2^((sqrt(log_(a)root(4)(ab)+log_(b)root(4)(ab))-sqrt(log _(a)root(4)(b/a+log_(b)root(4)(a/b)))) sqrt(log_(a)b))`
` = 2^(1/2(sqrt(log_(a)ab+log_(b)ab-)sqrt(log_(a)b//a+log_(b)a//b))sqrt(log_(a)b))`
` = 2^(1/2(sqrt(2+log_(a)b+log_(b)a)-sqrt(log_(a)b+log_(b)a - 2))sqrt(log_(a)b))`
` = 2^(1/2(sqrt((log_(a)b)^(2)+2log_(a)b+1)-sqrt((log_(a)b)^(2)-2log_(a)b+1))`
` = 2^(1/2(sqrt((log_(a)b+1)^(2))-sqrt((log_(a)b-1)^(2)))`
` =2^(1/2(|log_(a)b+1|-|log_(a)b-1|)`
Case I:
` bgea gt1`
` rArr log_(a) b ge log_(a) a`
` rArr log_(a) b ge 1`
` rArrE=2^(1/2(log_(a)b+1-log_(a)b+1))=2`
Case II:
` 1 lt b lt a`
` rArr 0 lt log_(a) b lt log_(a) a`
` rArr 0 lt log_(a) b lt 1`
` rArr E = 2^(1/2(log_(a)b+1-1+log_(a)b))`
` = 2^(1//2.(2log_(a)b))`
` = 2 ^(log_(a)b)`
9.

Solve for `x: log_(4) log_(3) log_(2) x = 0`.

Answer» Correct Answer - x=8
`log_(4)log_(3)log_(2)x = 0`
` rArrlog_(3)log_(2) x = 1`
` rArr log_(2) x = 3`
` rArr x = 2^(3) = 8`
10.

Solve ` (1/2)^(x^(6)-2x^(4)) lt 2^((x)^(2))`.

Answer» Correct Answer - ` x in R - {0, pm 1}`
` (1/2)^(x^(6)-2x^(4))lt2^(x^(2))`
` or (1/2)^(x^(6)-2x^(4))lt(1/2)^(-x^(2))`
` or x^(6) - 2x^(4) gt -x^(2)`
` or x^(6) - 2x^(4) + x^(2) gt 0`
` or (x^(3)=x)^(2) gt 0`
` rArr x^(3) - x ne 0`
` :. x ne 0, - 1, 1`
` :. x in R - {0, pm 1}`
11.

Solve for x and ` y:y^(x) = x^(y), x = 2y`.

Answer» Correct Answer - ` x = 4, y = 2`
`y^(x) = x^(y), x = 2 y `
` rArr y^(x) =(2y)^(x//2)`
` rArr y = 2,`hence x = 4
12.

Solve ` 2^(x+2)-2^(x+3) -2^(x+4) gt 5^(x+1) -5^(x+2)`.

Answer» Correct Answer - ` x in (0, infty)`
`2^(x+2)-2^(x+3) -2^(x+4) gt 5^(x+1) -5 ^(x+2)`
` rArr 2^(x)(4-8-16) gt 5^(x) (5 - 25)`
` rArr (2//5)^(x) lt 1`
` rArr (2//5)^(x) lt (2//5)^(0)`
` rArr x in (0, infty)`
13.

Solve` (3/4)^(6x+10-x^(2)) lt 27/64`.

Answer» Correct Answer - ` -1 lt x lt 7`
`(3/4)^(6x+10-x^(2)) lt27/64`
` rArr(3/4)^(6x+10-x^(2)) lt (3/4)^(3)`
`rArr 6x + 10 - x^(2) gt 3`
` rArr x^(2) - 6x - 7 lt 0`
` rArr (x+1)(x-7) lt 0`
` rArr -1 lt x lt 7`
14.

Find the number of solutions of ` |x|*3^(|x|) = 1`.

Answer» Correct Answer - 2
We have ` |x|3^(|x|)=1`
` or |x| = 3^(-|x|)`
Now, ` 3^(-|x|) ={{:(3^(-x)",",x ge 0),(3^(x)" ,",x lt 0):}`
To find the number of roots of the above equation, we need to find the number of points of intersection of `y=|x| and y = 3^(|x|)`
The graphs of these functions are as shown in the following figure:
From the fraph number of solution is 2.
15.

Solve ` 2^(log_(2)(x-1))gtx+5`.

Answer» Correct Answer - no solution
`2^(log_(2)(x-1)) gt x + 5`
` or x - 1 gt x + 5`
` or -1 gt 5 ` which is not possible.
16.

Find the value of `3^(2log_(9)3)`.

Answer» Correct Answer - 3
` 3^(2 log_(9)3)=3^(log_(9)9^(1//2)`
` = 3^(2(1/2))=3`
17.

Let `f(x) = sqrt(log_(10)x^(2))`.Find the set of all values of x for which f (x) is real.

Answer» Correct Answer - `x le - 1 or x ge 1`
`log_(10)x^(2) ge 0`
` rArr log_(10)x^(2) ge log_(10) 1`
` rArr x^(2) ge 1`
` rArr x ge 1`
` or x le -1`.
18.

Find the values of x which the function `f(x)=sqrt(log_(1//2)((x-1)/(x+5))` is defined.

Answer» Correct Answer - ` x in (1, infty)`
`f(x)=sqrt(log_(1//2(x-1)/(x+5)))`
It is defined if `log_(1//2).(x-1)/(x+5) ge 0`
` rArr 0 lt(x-1)/(x+5) le 1`
When `(x-1)/(x+5) gt 0, x in (-infty, -5) uu(1, infty)` ...(i)
When `(x-1)/(x+5) le 1`
`rArr (x-1)/(x+5) - 1 le 0`
`rArr (-6)/(x+5) le 0`
` rArr x gt - 5` ...(ii)
From (i) and (ii), ` x in (1, infty)`.
19.

Rupees 10,000 is invested at 6% interest compounded annually. How long will it take to accumulate Rs. 20, 000 in the account?

Answer» Correct Answer - 12 years
Principal amount = Rs. 10,000
Rate of interest = 6%
So, amount after one year = Rs. `1.06 xx 1000`
Amount after two years = Rs. ` 1.06 xx 1.06 xx 10000`
Rs.` (1.06)^(2) xx 10000`
and so on
So, amount accumulated after n years = Rs. `(1.06)^(n) xx 10000`.
Now,` (1.06)^(n) xx 10000 = 20000`
` :. (1.06)^(n) = 2`
` rArr n log_(10)1.06 = log_(10) 2`
` rArr n = (log_(10)2)/(log_(10)1.06) = (0.30103)/(0.025306)`
` rArr log n = log 0.30103 - log 0.025306`
` =-0.5213 - (-1.5968)`
` = 1.0755`
` =11.89`
So, it will take approximately 12 years.
20.

An initial number of bacteria presented in a culture is 10000. This number doubles every 30 minutes. How long will it take to bacteria to reach the number 100000 ?

Answer» Correct Answer - 100 minutes
Initially bacteria count is 10000.
After 30 min. it doubles i.e., ` 2xx 10000`.
After 60 min. it is`2^(2) xx 10000`.
So, after t minutes, bacteria count will be ` N = 10000 xx 2^(t/30)`
For ` N = 100000`,we have
`100000 = 10000 xx 2^(t/30)`
` :. 2^(t/30) = 10`
` t/30 log_(10) 2 = 1`
` rArr t = (30)/(log_(10) 2) = 30/(0.301) = 99. 67`
So, it will take approximately 100 minutes.
21.

`log_(4) 18 ` isA. a rational numberB. an irrational numberC. a prime numberD. none of these

Answer» Correct Answer - B
Let ` log_(4) 18 = p//q," where "p,q in I`
` rArr log_(4) 9+log_(4) 2 = p/q`
` rArr 1/2 xx 2 log _(2) 3 + 1/2 = p/q`
`rArr log_(2) 3 = p/q - 1/2 = m/n(say)`
where m, n` in I and n ne 0`
` rArr 3 = (2) ^(m//n)`
` or 3^(n) = 2^(m) ` (possible when m=n = 0 which is not true)
Hence, ` log_(4) 18` is an irrational number.
22.

Charles Richter defined the magnitude of an earthquake to be ` M = log_(10) I/S`, where I is the intensity of the earthquake (measured by the amplitude of a seismograph reading taken 100 km from the epicentre of the earthquake) and S is the intensity of a 'standed earthquake' (whose amplitude is 1 micron `=10^(-1)` cm). Each number increase on the Richter scale indicates an intensity ten times stronger. For example. an earthquake of magnitude 5. An earthquake of magnitude 7 is 100 times stronger then an earthquake of magnitude 5. An earthquake of magnitude 8 is 1000 times stronger than an earthquake of magnitude 5. The earthquake in city A registered `8.3` on the Richter scale. In the same year, another earthquake was recorded in city B that was four times stronger. What was the magnitude of the earthquake in city B ?

Answer» Correct Answer - ` 8.9020`
`M _(A) = log_(10). (I_(A))/S`
`:. 8.3 = log_(10). (I_(A))/S`
Now `M_(B) = log_(10). (I_(B))/S`
Where ` I_(B) = 4I_(A)*`
` :. M_(B) = log_(10). (4I_(A))/S`
` = log_(10) 4+ log_(10). (I_(A))/S`
` = 0.6020 + 8.3`
` = 8.9020`
So, magnitude of earthquake in city B is ` 8.9020`.
23.

Solve `(log)_(0. 04)(x-1)geq(log)_(0. 2)(x-1)`

Answer» ` log_(0.04) (x-1) ge log_(0.2)(x-1)`
` or log_((0.2^(2)))(x-1) ge log_(0.2)(x-1)`
` or 1/2 log_(0.2)(x-1) ge log_(0.2) (x-1)`
` or log_(0.2)(x-1) ge 2 log_(0.2)(x-1)`
` or log_(0.2)(x-1) ge log_(0.2)(x-1)^(2)`
` or (x-1) le (x-1)^(2)`
` or (x-1)^(2)-(x-1) ge 0`
` or (x-1)(x-1-1) ge 0`
`or (x-1)(x-2) ge 0`
` or x le 1 or x ge 2`
`"Also," x gt 1,`
`" Hence, "x ge 2.`
24.

Find the value of ` log_(2) (1/(7^(log_(7) 0.125)))`.

Answer» Correct Answer - 3
` log_(2)(1/(7^(log_(2)(2sqrt3)))+2/(log_(3)(2sqrt3)))^(2)=(4log_((2sqrt3))2+ 2log_((2sqrt3))3)^(2)`
`= (log_(2sqrt3)16+log_(2sqrt3)9)^(2)`
` = (log_(2sqrt3)144)^(2)`
` (log_(2sqrt3)(2sqrt3)^(4))^(2)`
` = 4^(2) = 16`
25.

Find the value of `log_(2sqrt3) 1728`.

Answer» Let ` log_((2)sqrt3) 1728 = x`
`rArr1728 = (2sqrt3)^(x)`
` rArr(2^(6)3^(3))=(2sqrt3)^(x)`
` rArr (2 sqrt3)^(6) = (2sqrt3)^(x)`
` rArr x = 6`
26.

Prove that `2/5 lt log_(10) 3 lt 1/2`.

Answer» Let ` log_(10) 3 gt 2/5`
` rArr 3 gt 10^(2/5)`
` rArr 3^(5) gt 10^(2)`, which is true
Now, ` log_(10) 3 lt 1/2`
` rArr 3 lt 10^(1/2)`
` rArr 3^(2) lt 10`, which is true
Hence, `2/5 lt log_(10) 3 lt 1/2`
27.

Show that the number `log_2(7)` is an irrational number

Answer» Let us assume given expression is a rational number.
Let `log_2(7) = p/q`
Here, `p/q` is a rational number.
`log_2(7) =p/q=>2^(p/q) = 7`
Raising both sides with power of `q`,
`2^(p/q**q) = 7^q=>2^p = 7^q`
As, `2^p` is always even and `7^q` is always odd.
So, our assumption is wrong that given expression is equal to a rational number.
Thus, `log_2(7)` is an irrational number.
28.

Arrange ` log_(2) 5, log_(0.5) 5, log_(7) 5, log_(3) 5` in decreasing order.

Answer» ` log_(2) 5 ` = exponent of 2 for which we get 5
` log_(7) 5 ` = exponent of 7 for which we get 5
Clearly, ` log_(2) 5 gt log_(7) 5`
With similar reasons, we have ` log_(2) 5 gt log_(3) 5 gt log_(7) 5`.
Also ` log_(0.5) 5 lt 0`
`:. log_(2) 5 gt log_(3) 5 gt log_(7) 5 gt log_(0.5) 5`
29.

Which of the following numbers are positive/negative : `(i) log_(sqrt(3))sqrt(2)` `(ii)log_3(4)`

Answer» (i) Let ` log_(2)7=xrArr7=2^(x) rArrx gt 0`
(ii)Let ` log_(0.2)3= x rArr 3 = 0.2^(x) rArr x lt 0`
(iii) Let ` log_(1//3)(1//5)=x rArr 1//5 = (1//3)^(x) rArr 5 = 3^(x) rArr x gt 0`
(iv) Let ` log_(4) 3 = x rArr 3 = 4^(x) rArr x lt 0`
(v) Let ` log_(2) (log_(2)9) = x rArr log_(2) 9 = 2^(x) rArr 9 =2^(2^(x)) rArr x gt 0`
30.

Prove that number ` log_(2)` 7 is an irrational number.

Answer» Let ` log_(2) 7 ` is a rational number. Then,
` log_(2)7=p/q , p,q in Q or 7 = 2^(p//q) or 7^(q) = 2^(p)`
which is not possible for any integral values of p and q.
Hence, ` log_(2) 7 ` is not rational.
31.

If ` log_(3) y = x and log_(2) z = x , " find " 72^(x)` in terms of y and z.

Answer» ` log_(3) y = x`
` rArr y = 3^(x)`
` log_(2) z=x`
` rArr z = 2^(x)`
Now, ` 72^(x) = (2^(3)3^(2))^(x) = 2^(3x)3^(2x) =( 2^(x))^(3)(3^(x))^(2)=y^(3)z^(2)`
32.

If sum ` log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6,` then find the value of x.

Answer» `log_(2)x+log_(4)x+log_(16)x+log_(32)x+ * * * = 6`
` rArr log_(2) x+ log_(2^(2))x+log_(2^(4))x+log_(2^(5))x+ * * * = 6`
`rArr (1+1/2+1/4+1/8+...)log_(2) x= 6`
` rArr 1/(1-1/2)log_(2) x = 6`
` rArr log_(2) x = 3`
` rArr x = 8`
33.

Evaluate `root(7)(0.00003587)`.

Answer» Let `x = root(7)(0.00003587).` Then,
log `x = 1/7` log (0.00003587)
`= 1/7 (bar(5).5548) = 1/7 (-5 + 0.5548)`
`= 1/7 (-4.4452) = -0.6350`
` = -1 + (1 - 0.6350) = bar(1).3650`
`rArr` x = antilog `(bar(1).3650) = 0.2317.`
Hence, the required value is 0.2317.
34.

Evaluate `root(3)(0.08034).`

Answer» Let `x = root(3)(0.08034).` Then,
log `x = 1/3` log (0.08034).
`= 1/3 (bar(2).9049) = 1/3(-2 + 0.9049) = 1/3(-1.0951)`
`= -0.3650 = -1 + (1 - 0.3650) = bar(1).6350`
`rArr` x = antilog `(bar(1).6350) = 0.4315.`
35.

Evaluate `(563.4 xx root(3)(0.4773))/((6.15)^(3)).`

Answer» Let `x = (563.4 xx root(3)(0.4773))/((6.15)^(3)).` Then,
log x = log `563.4 + 1/3` log (0.4573) - 3 log (6.15)
`= 2.7508 + 1/3 (bar(1).6602) - 3 xx 0.7889`
`= 2.7508 + 1/3 (-3398) - 2.3667`
`= 2.7508 - 0.1133 - 2.3667`
= 0.2708
`rArr` x = antilog (0.2708) = 1.865.
Hence, the value of the given expression is 1.865.
36.

Evaluate `sqrt(((76.24)^(5) xx root(3)(65))/((3.2)^(7) xx sqrt(17)))`.

Answer» Let `x = sqrt(((76.24)^(5) xx root(3)(65))/((3.2)^(7) xx sqrt(17)))`. Then,
log `x = 1/2 * log {((76.24)^(5) xx (65)^(1/3))/((3.2)^(7) xx (17)^(1/2))}`
`= 1/2 * {5 log (76.24) + 1/3 log 65 - 7log (3.2) - 1/2 log 17}`
`= 1/2 * {5 xx 1.8822 + 1/3 xx 1.8129 - 7 xx 0.5051 - 1/2 xx 1.2304}`
`= 1/2 * {9.4110 + 0.6043 - 3.5357 - 0.6152}`
`= 1/2 xx (10.0153 - 4.1509) = 1/2 xx 5.8644 = 2.9322`
`rArr` x = antilog (2.9322) = 855.5.
Hence, the required value of the given expression is 855.5.
37.

If ` f.(x)= log((1+x)/(1-x))`, thenA. `f(x_(1))*f(x_(2))=f(x_(1)+x_(2))`B. `f(x+2)-2f(x+1)+f(x)=0`C. `f(x)+f(x+1)=f(x^(2)+x)`D. `f(x_(1))+f(x_(2)) = f ((x_(1)+x_(2))/(1+x_(1)x_(2)))`

Answer» Correct Answer - D
` f(x_(1)) + f(x_(2)) = log ((1+x_(1))/(1- x_(1))*(1+x_(2))/(1-x_(2)))`
`= log((1+x_(1)x_(2)+x_(1)+x_(2))/(1+x_(1)x_(2)-x_(1)-x_(2)))`
`= log((1+(x_(1)+x_(2))/(1+x_(1)x_(2)))/(1-(x_(1)+x_(2))/(1+x_(1)x_(2))))= f ((x_(1)+x_(2))/(1+x_(1)x_(2)))`
38.

Solve:`4^(log_2 x)-2x-3=0`

Answer» `4^(log_2x) - 2x- 3 = 0`
`=>2^(2(log_2x)) - 2x - 3 = 0`
`=>2^(log_2x^2) -2x -3 = 0`
`=>x^2-2x-3 = 0` (As `a^(log_ab) = b`)
`=>x^2 - 3x+x-3 = 0`
`=>x(x-3)+1(x-3) = 0`
`=>(x-3)(x+1) = 0`
`x=3 and x =-1`
But, `x` can not be negative,
So, `x = 3`
39.

Solve `log_2|x-1|

Answer» `log_2 |x-1| lt 1`
`=>|x-1| lt 2^1`
`=>|x-1| lt 2`
Case 1: When `x ge1`,
Then, `x -1 lt 2`
`=> x lt 3`
`:. x in [1,3)`
Case 2: When `x le 1`,
Then, `-x +1 lt 2`
`=> -x lt 1`
`=> x gt -1`
`:. x in (-1,1]`
So, common solution for these two cases will be,
`x in (-1,3).`
40.

The value of ` (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9))` is ________.

Answer» Correct Answer - 6
`3+2sqrt2=(sqrt2+1)^(2) and 3-2sqrt2=(sqrt2-1)^(2)`
` rArr log_((sqrt(3+2sqrt2)+sqrt(3-2sqrt2)))2^(9)`
` = 1/(log_(2^(9))((sqrt2+1)+(sqrt2-1)))`
` = 1/(log_(2^(9))2^(3//2))`
` = 9/(3//2)=6`
41.

Find the value of ` log_(2) (2root(3)9-2) + log_(2)(12root(3)3+4+4root(3)9)`.

Answer» `log_(2)(2root(3)9-2)+log_(2)(12root(3)3+4+4root(3)9)`
`=log_(2)((72)^(1//3)-(8)^(1//3)))+log_(2)((72)^(2//3)+(8)^(2//3)+(72)^(1//3)(8)^(1//3))`
`=log_(2)((72)^(1//3)-(8)^(1//3)))((72)^(2//3)+(8)^(2//3)+(72)^(1//3)(8)^(1//3))`
`= log_(2)(72-8)`
` = log_(2)64=6`
42.

What is logarithm of ` 32 root(5) 4" to the base "2sqrt2`?

Answer» `log_(2sqrt2)32root(5)4=log_((2^(3//2)))(2^(5)4^(1/5))`
` = log_((2^(3//2)))(2^(5+2/5))`
`=2/3 27/5 log_(2) 2`
` 18/5`
` = 3.6`
43.

If ` log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1)`,then x belongs toA. `(1, 2]`B. `[3, 4)`C. `(1, 3]`D. `[1, 4)`

Answer» Correct Answer - A::B
`log_(1//2)(4-x) ge log_(1//2)2-log_(1//2) (x-1)`
`or log_(1//2)(4-x)(x-1) ge log_(1//2) 2`
` or (4-x)(x-1) le 2`
` or x^(2) - 5x + 6 ge 0`
` or (x-3)(x-2) ge 0`
` or x ge 3 or x le 2`
But ` x in (1, 4)`
` rArr x in (1, 2] cup [3, 4)`
44.

If the equation `x^(log_(a)x^(2))=(x^(k-2))/a^(k),a ne 0`has exactly one solution for x, then the value of k is/areA. `6+4sqrt2`B. `2+6sqrt3)`C. `6-4sqrt2`D. `2-6sqrt3`

Answer» Correct Answer - A::C
` (log_(a)x^(2)) log_(a)x =(k-2)log_(a) x - k`
(taking log on base a )
Let ` log_(a) x = t`, we get
` 2t^(2) - (k-2) t+k = 0`
Putting D= 0 (has only one solution), we have
` (k-2)^(2) - 8k=0`
` or k^(2) - 12k+4 = 0`
` or k=(12 pm sqrt(128))/2`
` or k = 6 pm 4 sqrt2`
45.

The value of ` (6 a^(log_(e)b)(log_(a^(2))b)(log_(b^(2))a))/(e^(log_(e)a*log_(e)b))` isA. independent of aB. independent of bC. dependent on aD. dependent on b

Answer» Correct Answer - A::B
`(6a^(log_(e)b)log_(a^(2))b*log_(b^(2))a)/(e^(log_(e)a*log_(e)b))=(6a^(log_(e)b)1/2log_(a)b*1/2log_(b)a)/((e^(log_(e)a))^(log_(e)b))`
` (6/4 a^(log_(e)b))/(a^(log_(e)b))`
`= 3/2`
46.

if `log_10 5=a` and `log_10 3=b` then:A. ` log_(30) 8 = (3(1-a))/(b+1) `B. ` log_(40)15= (a+b)/(3-2a)`C. ` log_(243) 32 = (1-a)/b`D. none of these

Answer» Correct Answer - A::B::C
(1) ` log_(30) 8 = (3log_(10)2)/(log_(10)5+log_(10) 3+log_(10)2)`
` = (3(1-log_(10)5))/(log_(10)5+log_(10)3+log_(10)2)`
` = (3(1-log_(10)5))/(1+log_(10)3) = (3(1-a))/(1+b)`
(2)` log_(40) 15=(log_(10)15)/(log_(10)40)`
` = (log_(10)3+log_(10)5)/(log_(10)5+3[1-log_(10)5])=(a+b)/(3-2a)`
(3) `log_(243)32 = (log_(10)2)/(log_(10)3)=(1-log_(10)5)/(log_(10)3) = (1-a)/b `
47.

In which of the following, ` m gt n (m,n in R)`?A. `m = (log_(2)5)^(2) and n = log_(2) 20`B. `m = log_(10)2 and n = log_(10) root(3) 10`C. ` m = log_(10) 5 * log_(10) 20 and n = 1`D. ` m = log_(1//2) (1/3) and n = log_(1//3) (1/2)`

Answer» Correct Answer - A::D
(1) `m - n = (log_(2)5)^(2) - (log_(2)5+2)`
` = (log_(2)5-2)(log_(2)5+1) gt 0`
` :. m gt n `
(2) ` 2^(3) lt 10`
` or 2 lt 10^(1//3)`
` or log_(10) 2 lt log_(10)10^(1//3)`
` :. M lt n`
(3) ` m = log_(10)5* log_(10) 20`
` = (log_(10)10-log_(10)2)(log_(10)10+log_(10) 2)`
` (1-log_(10)2)(1+log_(10)2)`
` = 1 - (log_(10)2)^(2)`
` lt 1`
` :. m lt n`
(4) ` m = log_(1//2)(1/3) = log_(2) 3 and n = log_(1//3)(1/2) = log_(3) 2`
`:. m/n = (log_(2)3)/(log_(3)2) = (log_(2)3)^(2) gt 1`
` :. m gt n ("as " n gt 0)`
48.

The set of real values of `x` satisfying the equation`|x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7`A. `1/sqrt3`B. 1C. 2D. 81

Answer» Correct Answer - C::D
`|x-1|^(log_(3)x^(2)-2log_(x)9*)= (x-1)^(7)`
Since L.H.S. ` gt 0." So, "x gt 1`
` :. (x-1)^(log_(3)x^(2)-2 log_(x)9)=(x-1)^(7)`
`rArr x - 1 = 1 or log_(3)x^(2) - 2log_(x)9=7`
` rArr x = 2 or 2 log_(3) x - 4 1/(log_(3)x) - 7 = 0`
` rArr x = 2 or 2(log_(3)x)^(2) - 7 log_(3)x-4 = 0`
` rArr x = 2 or log _(3) x =- 1//2, 4`
` rArr x = 2 or x = 3^(-1//2) , 3^(4)`
` rArr x = 2, 81`
49.

If ` a = log_(245) 175 and b = log_(1715) 875,` then the value of `(1-ab)/(a-b)` is ________.

Answer» Correct Answer - 5
` a=(log_(5)175)/(log_(5)245) = (2+log_(5)7)/(1+2 log_(5)7)`
` or a+ 2a log_(5) 7 = 2 + log_(5) 7`
` or log_(5) 7 = (a-2)/(1-2a) ` ...(i)
Now ` b = (log_(5)875)/(log_(5)1715) = (3+log_(5)7)/(1+3log_(5)7)`
` or b+3b log_(5) 7 = 3 + log_(5) 7`
` or log_(5) 7 = (b-3)/(1-3b) ` ...(ii)
From Eqs. (i) and (ii), we get
`(a-2)/(1-2a) = (b-3)/(1-3b)`
` rArr (1-ab)/(a-b) = 5`
50.

Solve : `(log)_(0. 3)(x^2-x+1)>0`

Answer» `log_(0.3) (x^2-x+1) gt 0`
As `0.3 lt 1`, so, sign will change.
`=> x^2-x+1 lt (0.3)^0`
`=> x^2-x+1 lt 1`
`=>x^2-x lt 0`
`=>x(x-1) lt 0`
`:. x in (0,1)` is the solution for the given equation.