Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

`int(1)/(xlogx)dx` का मान ज्ञात कीजिए।

Answer» माना `I = int(1)/(x.logx)dx`
माना `log x = t rArr (1)/(x)dx = dt`
`therefore " " I = int(dt)/(t) = log (log x) + c`
52.

`(1)/((a^(2)-x^(2))^(3//2))` का समाकलन कीजिये -

Answer» Correct Answer - `(1)/(a^(2))(x)/(sqrt(a^(2) - x^(2)))`
`I = int(acos theta)/(a^(3)cos^(3)theta)d theta = (1)/(a^(2))intsec^(2)thetad theta`
माना `x= a sin theta rArr dx = a cos theta d theta`
तब ` =(1)/(a^(2))tan theta = (1)/(a^(2))(x)/(sqrt(a^(2)-x^(2)))`
53.

`((sin^(-1)x)^(3))/(sqrt(1-x^(2)))` का समाकलन कीजिये -

Answer» Correct Answer - `sin^(-1)((x)/(3))`
54.

`int(d theta)/(sin(theta - alpha)sin(theta-beta))`का मान ज्ञात कीजिए।

Answer» माना `I = int(d theta)/(sin(theta - alpha)sin(theta -beta))`
` int(sin(alpha - beta)d theta)/(sin(alpha-beta)sin(theta-alpha)sin(theta-beta))`
` = (1)/(sin(alpha - beta))int(sin[(theta - beta)- (theta - alpha)])/(sin(theta-alpha)sin(theta-beta))d theta`
` = (1)/(sin(alpha-beta))`
` int(sin(theta-beta) cos(theta-beta)-sin(theta-beta)cos(theta-beta))/(sin(theta -alpha)sin(theta-beta))`
`=(1)/(sin(alpha -beta))int{(cos(theta - alpha))/(sin(theta-alpha))-(cos (theta - beta))/(sin(theta-beta))} d theta`
`=(1)/(sin(alpha-beta))[int(cos (theta -alpha))/(sin(theta-alpha))d theta-int(cos(theta - beta))/(sin(theta-beta))d theta]`
`=(1)/(sin(alpha-beta))[log sin(theta-alpha) - log sin (theta - beta)]`
` = (1)/(sin(alpha-beta))log[(sin(theta-alpha))/(sin(theta-beta))]" "(because log M - log N = log.(M)/(N))`
55.

`int cot theta^(3) cosec^(2) theta d theta` का मान ज्ञात कीजिए।

Answer» माना `cot theta = t rArr - coses^(2) theta d theta dt`
`therefore int cot^(3) theta cosec^(2) theta d theta = - int t^(3)dt = - (t^(4))/(4) - - (cot^(4) theta)/(4)`
56.

`int(tan x)/((sec x + cos x))dx` का मान ज्ञात कीजिए।

Answer» दिया है - `I = int(tanx)/((sec x+cos x))`
` = int(sin)/((1+cos^(2)x))dx`
यदि `cosx = t ` व `sin xdx = dt`
अब `I = - int(1)/((1+t^(2)))dt = - tan^(-1)t +c`
` = - tan^(-1)(cos x)+c`
57.

`(1)/(x(1-x))` का समाकलन कीजिये -

Answer» Correct Answer - `sin^(-1)(sqrt(x))`
माना `x = sin^(2) theta rArr dx = 2 sin theta cos theta d theta`
58.

`((a+bsin^(-1)x)^(n))/(sqrt((1-x^(2))))` का समाकलन कीजिये -

Answer» Correct Answer - `((sin^(-1)x)^(4))/(4)`
59.

`int sec^(p) x tan x dx` का मान है -A. `(sec^(p+1)x)/(p+1) + c`B. `(sec^(p)x)/(p)+c`C. `(tan^(p+1)x)/(p+1)+c`D. `(tan^(p)x)/(p)+c`

Answer» Correct Answer - B
60.

`int (sin 2 x dx)/(a cos^(2) x + b sin^(2))` का मान ज्ञात कीजिये ।

Answer» माना `I = int (sin 2x dx)/(a cos^(2) x + b sin^(2)x)`
माना `" "a cos^(2) x + b sin^(2) x = t`
`rArr " "(-2a sin x cos x + 2b sin x cos x) dx = dt`
`rArr " "(b-a) sin 2x dx = dt`
`rArr" "sin2x dx = (dt)/(b-a)`
`therefore" "I = ((1)/(b-a))int(dt)/(t) = (1)/(b-a) log t`
`=(1)/(b-a)log[a cos^(2) x + bsin^(2) x]`
61.

`int(d theta)/(sin theta cos^(3) theta)`A. `log tan theta + tan^(2) theta+ c`B. `log tan theta -(1)/(2)tan^(2) theta + c`C. `log tan theta +(1)/(2)tan^(2) theta+c`D. इनमे से कोई नहीं

Answer» Correct Answer - C
62.

`(1)/(sqrt(1-x^(2))sin^(-1)x)` का समाकलन कीजिये -

Answer» Correct Answer - `((a+bsin^(-1)x)^(n+1))/(n+1)`
63.

`int e^(2x + 5)dx`का मान ज्ञात कीजिये ।

Answer» माना `I = int e^(3x +5) dx " "....(1)`
माना `3x + 5 = t`
`therefore" "3.1 + 0 = (dt)/(dx)`
`rArr" "dt = 3dx " "rArr dx = (1)/(3)dt`
अतः समय (1 ) से
`I = int e^(t)((1)/(3))dt = (1)/(3) int e^(t) dt = (1)/(3) e^(t) = (1)/(3)e^(3x+5)`
64.

`int (e^(x) (1 +x))/(cos^(2)(xe^(x)))dx` का मान ज्ञात कीजिये ।

Answer» माना `I = int (e^(x) (1+x))/(cos^(2) (xe^(x)))dx`
माना ` xe^(x) = t`
`therefore" "(e^(x) + ex^(x)) dx = dt`
`rArr" "e^(x)(1+ x)dx =dt`
`therefore" " I= int(dt)/(cos^(2)t) = int sec^(2) t dt = tan t`
`therefore " " I = tan (xe^(x))`
65.

`int(sin(tan^(-1)x))/(1+x^(2))dx = - cos tan^(-1)x+c` सिद्ध कीजिये -

Answer» बाया पक्ष`= int(sin(tan^(-1)x))/(1+x^(2))dx` माना `tan^(-1) x = t`
`rArr(1)/(1+x^(2))dx = dt`
`therefore int(sin(tan^(-1)x))/(1+x^(2))dx = intsin t dt = - cos t + c`
`= - cos (tan^(-1)x)+c=` दाया पक्ष
66.

`int(x)/(a^(2) +x^(2))dx = (1)/(2)log(a^(2) +x)+c` सिद्ध कीजिये -

Answer» बाये पक्ष `10^(x) + x(7) = t` रखने पर , तथा तब समाकलन करने पर
67.

`int(dx)/(sqrt(x+1)+sqrt(x+2)) = (2)/(3)[(x+2)^(3//2)-(x+1)^(3//2)]+c` सिद्ध कीजिये -

Answer» बाया पक्ष ` = int(dx)/(sqrt(x+1)+sqrt(x+2))`
`= int(dx)/(sqrt(x+2)+sqrt(x+1))`
`= int{(1)/(sqrt(x+2)+sqrt(x+1)).(sqrt(x+2)-sqrt(x+1))/(sqrt(x+2) - sqrt(x+1))}dx`
`=int(sqrt(x+2)- sqrt(x+1))/(x+2-x-1)dx`
`=int(sqrt(x+2)-sqrt(x+1))/(1)dx`
`=int(x+2)^(1//2)dx -int(x+1)^(1//2)dx`
` =(2)/(3)(x+2)^(3//2)- (2)/(3)(x+1)^(3//2)+c`
` = (2)/(3)[(x+2)^(3//2)-(x+1)^(3//2)]+c`= दाया पक्ष
68.

`int x^(3)e^(x^(2)) dx` का मान हैA. `x^(2)(e^(x^(2)) - 1) + c`B. `(1)/(2)x^(2)(e^(x^(2))-1)+c`C. `(1)/(2)e^(x^(2))(x^(2) -1)+c`D. `(1)/(2)(e^(x^(2))-1)+c`

Answer» Correct Answer - C
69.

`int(7x^(6)+10^(x)log_(e) 10)/(10^(x) +x^(7))dx = log(10^(x) + 7^(x))+c` सिद्ध कीजिये

Answer» बाये पक्ष में `e^(x) = t rArr e^(x) dx = dt` रखने पर, तथा तब समाकलन करने पर
70.

`int(2x^(3))/((x^(2)+1)^(2))dx = log (x^(2) +1)+(1)/(x^(2) +1)+c` सिद्ध कीजिये -

Answer» माना `x^(2) + 1 = trArr 2xdx = dt rArr int(2x^(3))/((x^(2)+1)^(2))dx = int(t-1)/(t^(2))dt = int[(1)/(t)-t^(-2)] dt = log t - (t^(-1))/(-1)+c`
71.

`(xtan^(-1) x^(2))/(1+x^(4))` का समाकलन कीजिये -

Answer» Correct Answer - `log(sin^(-1)x)`
72.

`(1)/(xlog x log log x)` का समाकलन कीजिये -

Answer» Correct Answer - `log log log x`
माना `log logx = t rArr(1)/(logx) .(1)/(x)dx=dt`
तब `I = int(1)/(t)dt = logt = log log log x `
73.

`int(x^(2)dx)/(sqrt(x+2))`का माना ज्ञात कीजिये |

Answer» माना ` I = int(x^(2)dx)/(sqrt((x+)))" "....(1)`
माना `x + 2 = t rArr x = t - 2`
तथा `dx = dt`
अतः समी से `I = int((t-2))/((t)^(1//2)) = int ((t^(2) - 4t + 4)/(t^(1//2)))dt`
` = int(t^(3//2) -4t^(1//2) + 4t^(-1//2))dt `
`= (2)/(5)t^(5//2) - (8)/(3)t^(3//2) + 8t^(1//2)`
`= (2)/(5)(x+2)^(5//2) - (8)/(3)(x+2)^(3//2)+8(x+2)^(1//2)`
74.

`int(dx)/(e^(x) -1)` का मान ज्ञात कीजिये |

Answer» माना `I = int (dx)/(e^(x) -1)`
`= int (dx)/(e^(x)( 1-e^(-x)))" "("नोट कीजिये ")`
`= int (e^(-x) dx)/(1-e^(-x))`
माना `1 -e^(-x)= t rArr e^(-x) dx = dt`
`therefore" "I = int(dt)/(t) = log t = log (1- e^(x))`
75.

`int(sin^(-1))/(sqrt(1-x^(2)))dx = (1)/(2)(sin^(-1)x)^(2)+c` सिद्ध कीजिये -

Answer» बाया पक्ष `= int(sin^(-1)x)/(sqrt(1-x^(2)))dx` माना `sin^(-1) x = t rArr (1)/(sqrt(1-x^(2)))dx = dt`
76.

`int(sinx)/(sin(x-alpha))dx = sinalpha log sin (x-alpha)+(x-alpha)cos alpha + c` सिद्ध कीजिये -

Answer» बाया पक्ष `=int(sin(tan^(-1)x))/(1+x^(2))dx` माना `tan^(-1)x = t`
`rArr " "(1)/(1+x^(2))dx = dt`
`therefore int(sin(tan^(-1)x))/(1+x^(2))dx = int sin t dt =- cos t + c = - cos (tan^(-1)x)+c =` दाया पक्ष
77.

`(1-(1)/(x^(2)))e^(x+(1)/(x))` का समाकलन कीजिये -

Answer» Correct Answer - `e^(x+(1)/(5))`
माना `x +(1)/(x) = t rArr (1-x^(-2))dx = dt`
78.

`int(xtan^(-1)x^(2))/(1+x^(4)) dx` का मान हैA. `(1)/(2)(tan^(-1) x^(2))^(2)+c`B. `(1)/(3)(tan^(-1)x^(2))+c`C. `(1)/(4)(tan^(-1)x^(2))^(2)+c`D. इनमे से कोई नहीं

Answer» Correct Answer - A
79.

निम्न फलनों का समाकलन कीजिये - `cos^(2) x sin x`

Answer» माना `I = int cos^(2) x sin x dx " "....(i)`
माना `cos x = t rArr - sin xdx = dt`
`rArr " "sin x dx = - dt`
अतः समीकरण (1 ) से
`I = - intt^(2) dt = -(1)/(3)t^(3) = - (1)/(3) cos^(3) x`
80.

निम्न फलनों का समाकलन कीजिये - `x^(2) sin x^(3)`

Answer» माना `I = intx^(2) sin x^(3) dx" "....(1)`
माना `x^(3) = t therefore 3x^(2)dx = dt rArr " "x^(3)dx = (1)/(3)dt`
अतः समी (1 ) से
`I = (1)/(3)intsin t dt = - (1)/(3) cos t = (1)/(3) cos x ^(3)`
81.

निम्न फलनों का समाकलन कीजिये - `x cos ^(2)`

Answer» माना `I = int x cos x^(2) dx`
माना ` x^(2) = t " "therefore 2dx = dt`

`rArr" "xdx= (1)/(2) dt`
अतः समी (1 ) से
`I = (1)/(2)int cos t dt = (1)/(2)sin t = (1)/(2) sin x^(2)`
82.

`intsin^(2)x cos^(2) xdx = (1)/(8)[x - (sin 4x)/(4)]+c` सिद्ध कीजिये -

Answer» बाया पक्ष `=intsin^(2)x cos^(2)x dx`
` = int(sinx cos x)^(2)dx = (1)/(4)(2sin x cos x)^(2)dx`
`=int(1)/(4)(sin 2x)^(2)dx = int(1)/(4)[(1-cos 4x)/(2)]dx`
`= (1)/(8)(1-cos 4x)dx`
83.

`int e^(log(sinx))dx` का मान हैA. `sin x+c`B. `-cos x + c`C. `e^(log(cosx))+c`D. इनमे से कोई नहीं

Answer» Correct Answer - B
84.

निम्न फलनों के मान ज्ञात कीजिये - `int(e^(x))/(1+e)^(x)dx`

Answer» माना `I = int (e^(x))/(1+e^(x)) dx`
माना `1+e^(x) = t " " therefore" "e^(x) dx = dt`
अतः ` I = int (dt)/(t) = log t`
`therefore " " I = log (1 + e^(x))`
85.

`int(1+sinx)/(1+cos x)dx` का मान ज्ञात कीजिए।

Answer» दिया है - `int((1+sin x))/((1+cosx))dt`
` = int(1)/(1+cosx)dt + int(sinx)/((1+cosx))dx`
`= int(1)/(2cos^(2)(x//2))dx + int(2sin(x//2)cos(x//2))/(2cos^(2)(x//2))`
` = (1)/(2)intsec^(2)((x)/(2))dx + int tan((x)/(2))dx`
यदि `t = x//2` व `dx = 2dt`
`=intsec^(2) t dt + 2 int tan tdt `
` = tan t - 2 log (cos t) + c`
` = tan((x)/(2)) - 2 log cos((x)/(2))+c`
86.

निम्न फलनों के मान ज्ञात कीजिये - `int(cotx)/(log sin x)dx`

Answer» माना ` I = int (cot x)/(log sinx)`
माना `log sin x = t`
`rArr (1)/(sinx) . cos x dx = dt`
`rArr " " cot x dx = dt`
अतः `I = int (dt)/(t) = log t`
`therefore " " I = log (log sin x)`
87.

निम्न फलनों का समाकलन कीजिये - `(1)/(x+sqrt(x))`

Answer» माना `I = int (dx)/(x+sqrt(x)) = int =(dx)/(sqrt(x)(sqrt(x) +1))`
माना `sqrt(x) + 1 = t`
`therefore (1)/(2sqrt(x))dx = dt rArr (dx)/(sqrt(x)) = 2dt`
अतः समी (1 ) से
`I = 2int (dt)/(t) = 2 log t = 2 log(sqrt(x+1))`
88.

निम्न फलनों के मान ज्ञात कीजिये - `int(cos theta d theta)/(a+b sin theta)`

Answer» माना `I = int(cos theta d theta)/(a + b sin theta)`
माना `a + b sin theta = t`
`rArr " " bcos theta d theta = dt rArr cos theta = (1)/(b) dt`
`therefore " "I = (1)/(b) int (dt)/(t) = (1)/(b) log t`
` therefore" "I = (1)/(b) log (a+b sin theta)`
89.

निम्न फलनों के मान ज्ञात कीजिये - `int (x^(3))/(1+x^(4))dx`

Answer» माना `I = int(x^(3) dx)/(1+x^(4))`
माना `1 +x^(4) = t " "(because 4x^(3) dx = dt)`
`rArr x^(3) dx = (1)/(4)dt`
अतः ` I = (1)/(4) int(dt)/(t) = (1)/(4)log t`
`rArr" "I =(1)/(4)log(1+x^(4))`
90.

`int((1+cos x)/(1-cos x))` का मान ज्ञात कीजिए।

Answer» माना `int ((1+cosx)/(1-cosx)) dx = int (2cos^(2)(x//2))/(2sin^(2)(x//2))`
` = int cot^(2)((x)/(2))dx - int (cosec^(2)(x)/(2)-1)`
` = int cosec^(2)((x)/(2))dx - int dx` यदि `(x)/(2) = t` व ` dx = 2dt`
` =- 2cot t -x + c`
`= -2 cot ((x)/(2)) - x+c`
91.

`int(x+sqrt(x+1))/(x+2)dx` का मान ज्ञात कीजिए।

Answer» माना `I =int(x+sqrt(x+1))/(x+2)dx`
यदि `sqrt(x +1) = t, x + 1 = t^(2)`व` dx = 2tdt`
अब `I = int(x+sqrt(x+1))/(x+2)dx = 2int((t^(2) -1 +t)t)/((t^(2) +1))dt`
`=2int((t^(3) + t^(2) - t)/(t^(2) +1))dt = 2int(t+1-(2t+1)/(t^(2) +1))dt`
` = 2int(t+1-(2t)/(t^(2)+1) - (1)/(t^(2) +1))dt`
` = 2int t dt +2 int ddt - 2 int (2t)/(t^(2) +1)dt - 2 int (1)/(t^(2)+1)dt`
`=t^(2) + 2t - 2 log(t^(2) +1) - 2tan^(-1) t+C`
`=(x+1)+2sqrt(x+1)-2log (x+2) - 2tan^(-1) sqrt(x+1)+c`
92.

`intsin^(3) x dx` का माना होगा -A. `sin^(2)x+1`B. `sin x^(2) + x^(2) + 1`C. `(cos^(3)x)/(3)-cosx`D. `(1)/(4)sin^(4)x - (3)/(4)sin^(2)x`

Answer» Correct Answer - C
93.

यदि `int sin 5x cos 3x dx = - (cos 8x)/(16)+A` तब A का मान है -A. `(sin 2x)/(16)+` अचरB. `-(cos 2x)/(4)+` अचरC. अचरD. इनमे से कोई नहीं

Answer» Correct Answer - B
94.

`int(sinx)/sqrt(1+sinx)dx` का मान ज्ञात कीजिए।

Answer» दिया है -` I = int(sinx)/(sqrt(1+sin x))dx = int((1+sin x) - 1)/(sqrt(1+sin x))`
` = int sqrt(1+sinx)dx - int(dx)/(sqrt(1+sin x))`
`= intsqrt(cos^(2).(x)/(2)+sin^(2)+(x)/(2)+2sin.(x)/(2)cos.(x)/(2)dx)`
`-int(dx)/(sqrt(cos^(2)(x//2)+sin^(2)(x//2)+2sin(x//2))cos(x//2))`
`= int[cos((x)/(2))+sin((x)/(2))]dx - int(dx)/([cos (x//2)+sin(x//2)])`
` = (2sin.(x)/(2) - cos .(x)/(2)) -(1)/(2).int(dx)/((1)/(sqrt(2)cos.(x)/(2)+(1)/(sqrt(2))sin.(x)/(2)))`
`=(2sin.(x)/(2)-2cos.(x)/(2)) - (1)/(sqrt(2)) . int(dx)/(sin((pi)/(2) +(pi)/(2)))`
` = (2sin.(x)/(2) - 2cos.(x)/(2)) -(1)/(sqrt(2)). intcosec((x)/(2) +(pi)/(4))dx`
` = 2 (sin.(x)/(2)-cos.(x)/(2)) - (1)/(sqrt(2)) xx 2 log[ tan ((x)/(4) +(pi)/(8))]+c`
` = 2(sin.(x)/(2) - cos.(x)/(2))- sqrt(2)[ tan ((pi)/(4) +(pi)/8)]+c`
95.

निम्न फलनों के मान ज्ञात कीजिये - `int(e^(x) -sinx)/(e^(x) + cosx)dx`

Answer» माना `I = int(e^(x) - sinx)/(e^(x) + cosx) dx`
माना `(e^(x) + cos x)= t`
`rArr " "(e^(x) - sin x) dx = dt rArr I = int (dt)/(t) = log t`
`therefore" " I = log (e^(x) + cosx)`
96.

फलन `int x sin^(3) x^(2) cosx^(2) dx` का मान ज्ञात कीजिये |

Answer» माना `I = int x sin^(3) x^(2) cos x^(2) dx`
माना `sin x^(2) = t rArr 2xcos x^(2) dx = dt`
`rArr" "x cosx^(2) dx = (1)/(2) dt`
`therefore " "I= (1)/(2) intt^(3) dt = (1)/(8) t^(4) = (1)/(8)sin^(4) x^(2)`
97.

`int((3sinx - 2)cosx)/((5-cos^(2) x - 4sinx))` का मान ज्ञात कीजिए।

Answer» माना `I int ((3sinx - 2)cosx)/((5 - cos^(2) x - 4 sinx))`
` = int ((3sin x - 2)cos x)/((4+sin^(2)x - 4sinx))`
` =int ((3sinx - 2) cosx)/((2-sinx)^(2))dx`
यदि `2-sin x = t, sin x = 2 - t `व` cos xdx = dt`
अब ` I = - int({3(2-t)-2})/(t^(2))`
` = - int((4-3t))/(t^(2))dt = int((3t - 4))/(t^(2))dt`
` = int((3)/(t) - (4)/(t^(2)))dt = 3 log (t) +(4)/(t) +c`
`= 3log (2-sinx)+(4)/((2-sinx))+c`
98.

यदि `x in ((pi)/(4),(3pi)/(4))`तब `int(sinc - cosx)/(sqrt(1-sin 2x))e^(sin) cos x dx ` का मान है -A. `e^(sinx)+c`B. `e^(sinx-cosx)+c`C. `e^(sin x + cosx)+c`D. `e^(cosx - sin x)+c`

Answer» Correct Answer - A
99.

`int(cosx)/((cos.(x)/(2)+sin.(x)/(2)))` का मान ज्ञात कीजिए।

Answer» दिया है - `I = int (cosx)/((cos.(x)/(2)+sin.(x)/(2)))`
` int (cos^(2)(x//2) -sin^(2)(x//2))/([cos(x//2) +sin(x//2)]^(3))`
` = int(cos (x//2) - sin^(2) (x//2))/([cos(x//2)+sin(x//2))]`
` = int (cos(x//2) - sin(x//2))/((cos.(x)/(2)+sin.(x)/(2)))`
यदि `t= cos.(x)/(2)+sin.(x)/(2)rArr [cos((x)/(2)) -sin((x)/(2))]dx = 2dt`
तब `I = 2int(1)/(t^(2)) dt = -(2)/(t) +c`
` = (-2)/(cos(x//2) +sin(x//2))+c`
100.

`int cos x cos 2x cos 3x dx` का मान ज्ञात कीजिए।

Answer» दिया है - `int cos x cos 2xcos 3x dx`
` = (1)/(2)int(2cos x cos 2x) cos 3x dx`
` = (1)/(2)int (cos 3x + cos x)cos 3x dx`
` = (1)/(2)int(cos^(2) 3x + cos x cos 3x)dx`
` = (1)/(4)int(2cos^(2) 3x)dx+(1)/(4)int(2cos x cos 3x) dx`
` = (1)/(4)int(1+cos 6x )dx +(1)/(4) int(cos 4x + cos 2x)dx`
` =(1)/(4) intdx +(1)/(4) int cos 6x dx = (1)/(4) int cos 6dx +(1)/(4) int cos 4xdx +(1)/(4) int cos 2xdx`
` = (1)/(4) x+(1)/(4).(sin 6x)/(6)+(1)/(4).(sin 4x)/(4) +(1)/(4).(sin 2x)/(2)+c`
` = (x)/(4) +(sin 6x)/(24) +(sin 4x)/(16) +(sin 2x)/(8)+e`