Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Find the value of `4 tan^-1 (1/5) - tan^-1 (1/239) `

Answer» Here, we will use the following properties,
`tan^(-1)(x)+tan^(-1)(y) = tan^(-1)((x+y)/(1-xy))`
`tan^(-1)(x)-tan^(-1)(y) = tan^(-1)((x-y)/(1+xy))`
Now, `4tan^(-1)(1/5) = 2(tan^(-1)(1/5)+tan^(-1)(1/5))`
`=2(tan^(-1)((2/5)/(1-1/25)))`
`=2(tan^(-1)(5/12))`
`=tan^(-1)(5/12)+tan^(-1)(5/12)`
`= tan^(-1) (((5/12)+(5/12))/(1- (5/12)(5/12)))`
`=tan^(-1)((10/12)/(119/144))`
`4tan^(-1)(1/5)= tan^(-1) (120/119)`
Now, `4tan^(-1)(1/5) - tan^(-1)(1/239) = tan^(-1) (120/119)-tan^(-1)(1/239)`
`= tan^(-1)((120/119-1/239)/(1+(120/119)(1/239)))`
`=tan^(-1)((120*239-119)/(119*239+120))`
`=tan^(-1)(28561/28561) = tan^(-1)(1) = pi/4`
52.

If `vec(a)` and `vec(b)` are unit vectors inclined at an angle `theta` then prove that(i)`sin(theta/2)=1/2|vec(a-vec(b)|` (ii) `tan(theta/2)=(|vec(a)-vec(b)|)/(|vec(a)-vec(b)|)`

Answer» Here, `veca` and `vecb` are unit vectors.
`:. |hata| = |hatb| = 1`
(i)`|hata-hatb|^2 = (hata)^2+(hatb)^2-2hata*hatb`
`=|hata|^2+|hatb|^2-2|hata||hatb|cos theta`
`=1^2+1^2-2(1)(1)costheta`
`=>|hata-hatb|^2=2(1-costheta)`
`=>|hata-hatb|^2/2 = 1-costheta`
`=>|hata-hatb|^2/2 = 2sin^2(theta/2)`
`=>|hata-hatb|^2/4 = sin^2(theta/2)`
`=>sin (theta/2) =1/2 |hata-hatb| ->(1)`
(ii)`|hata+hatb|^2 = (hata)^2+(hatb)^2+2hata*hatb`
`=|hata|^2+|hatb|^2+2|hata||hatb|cos theta`
`=1^2+1^2+2(1)(1)costheta`
`=>|hata+hatb|^2=2(1+costheta)`
`=>|hata+hatb|^2/2 = 1+costheta`
`=>|hata+hatb|^2/2 = 2cos^2(theta/2)`
`=>|hata+hatb|^2/4 = cos^2(theta/2)`
`=>cos (theta/2) =1/2 |hata+hatb| ->(2)`

Now, dividing (1) by (2),
`sin (theta/2)/cos (theta/2) = |hata-hatb|/|hata+hatb|`
`=> tan (theta/2) = |hata-hatb|/|hata+hatb|`
53.

The value of `sec 20+sec 40 + sec 160` is

Answer» `sec40+sec80=1/cos40+1/cos80`
`=(cos40+cos80)/(cos40cos80)`
`=(2cos60*cos20)/(1/2*cos120+cos40)`
`=(4*1/2*cos20)/(cos40-1/2)`
`(4cos(20))/((2cos40)-1)`
`(4cos20)/(2cos40-1)+1/cos160`
`(4cos20)/(2cos40-1)-1/cos20`
`=(4cos^2(20)-2cos(40)+1)/((2cos40-1)cos20)`
`(2(1+cos40)-2cos40+1)/(cos60+cos20-cos20)`
`(2+1)/cos60=3/0.5=6`.
option c is correct.
54.

For what value of k is the followinf function continuous at x = `-pi/6`. Where `f(x) = (sqrt3 sin x + cos x)/( x + pi/6) , x != -pi/6 and f(x) = k, x = - pi/6`

Answer» `lim_(x->a^+)f(x)=f(a)=lim_(x->0^-)f(x)`
`lim_(x->-pi/6^+)(sqrt3sinx+cosx)/(x+pi/6)`
`lim_(x->-pi/6^+)(sqrt3/2sinx+cosx*1/2)^2/(x+pi/6)`
`lim_(h->0)(sinh/h)*2=2`
`f(-pi/6)=2`.
55.

Given: `vec a + vec b + vec c = 0`. Out off three vectors `vec a,vec b and vec c` two are equal in magnitude. The magnitude of third vector is `sqrt2` times that of either of the two having equal magnitude. The angle between vectors is

Answer» SD=11Rs
VR=7Rs
VC=8Rs
Price of one each=11+7+8=26Rs
Now we can spend(19-24)Rs
`3VR,3VC,2VR and 1VC`
`1VR and 2VC`
there are total 6 cases.
56.

If the vectors `3 vec p + vec q`; `5 vec p - 3 vecq` and `2 vec p + vec q`; `4 vec p - 2 vec q` are pairs of mutually perpendicular then sin( `vec p` ^ `vec q)` is :

Answer» We know dot product of two perpendicular vectors is `0`.
`:. (3vecp+vecq).(5vecp-3vecq) = 0`
`=>15|vecp|^2-3|vecq|^2-4vecp*vecq = 0->(1)`
Now, `(2vecp+vecq).(4vecp-2vecq) = 0`
`=>8|vecp|^2-2|vecq|^2 = 0`
`=>|vecq|^2 = 4|vecp|^2`
`=>|vecq| = 2|vecp|`
Putting value of `|vecq|` in (1),
`15|vecp|^2-12|vecp|^2-4|vecp|*2|vecp|*costheta = 0`
`3|vecp|^2-8|vecp|^2costheta = 0`
`cos theta = 3/8`
`:. sin theta = sqrt(1-(3/8)^2) = sqrt55/8`
57.

The maximum number of equivalence relations on the set A = {1, 2, 3} areA. 1B. 2C. 3D. 5

Answer» Correct Answer - D
Given that, A = {1, 2, 3}
Now, number of equivalence relations as follows
`R_(1)={(1,1),(2,2),(3,3)}`
`R_(2)={(1,1),(2,2),(3,3),(1,2),(2,1)}`
`R_(3)={(1,1),(2,2),(3,3),(1,3),(3,1)}`
`R_(4)={(1,1),(2,2),(3,3),(2,3),(3,2)}`
`R_(5)={(1,2,3) hArr A xx A= A^(2)}`
` :. ` Maximum number of equivalence relation on the set A = {1, 2, 3} = 5
58.

If ` vec a, vec b and vec c` be any three vectors then show that ` vec a + ( vec b + vec c) = ( vec a + vec b) + vec c`

Answer» We can show it with the help of the diagram.
Please refer to video for the diagram.
`veca +(vecb+vecc) = veca+vecd`
Here, `vecd` is a vector joining tail of `vecb` and head of `vecc`.
` =>veca +(vecb+vecc)=veca+vecd = vece->(1)`
Here, `vece` is a vector joining tail of `veca` and head of `vecd`.
Now, `(veca+vecb)+vecc = vecf+vecc`
Here, `vecf` is a vector joining tail of `veca` and head of `vecb`.
If we join tail of `vecf` and head of `vecc`, then it will come `vece`.
`=>(veca+vecb)+vecc = vecf+vecc = vece->(2)`
From (1) and (2),
`veca +(vecb+vecc) = (veca+vecb)+vecc`
59.

`int_0^pi(xtanx)/(tanx+secx).dx=[pi(pi-2)]/2`

Answer» `I=int_0^pi (xtanx)/(tanx+secx)dx`
`=int_0^pi (xsinx/cosx)/(sinx/cosx+1/cosx)dx`
`I=int_0^pi (xsinx)/(1+sinx)-(1)`
`I=int_0^pi((pi-x)sin(pi-x))/(1+sin(pi-x)`
`I=int_0^pi((pi-x)sinx)/(1+sinx)-(2)`
`I=int_0^pi[(xsinx)/(1+sinx)+((pi-x)sinx)/(1+sinx)]dx`
`2I=int_0^pi[(xsinx+pisinx-xsinx)/(1+sinx)]dx`
`2I=pi int_0^pi sinx/(1+sinx)dx`
`I=pi/2 int_0^pi sinx/(1+sinx)dx`
`[secpi-sec0]-int_0^pi sec^2x dx+int_0^pi 1dx`
`-1-1-[tanx]_0^pi+(x)_0^pi`
`-2+pi`
`pi-2`
`I=pi/2(pi-2)`.
60.

The number of integral values of n such that the equation 2n{x} = 3x + 2[x]has exactly 5 solutions.

Answer» x=I+F
2nf=3(I+F)+2I
`f=(5I)/(2n-3)`
`0<=(5I)/(2n-3)<1`
`0<=I/(2n-3)<1/5`
`f=(5I)/(2n-3)=(5I)/(17)`
`f=(5I)/14`
`f=(5I)/21`
`f=(5I)/23`
`f=(5I)/25`
`f=(5I)/27`
option b is correct.
61.

lf a relation R on the set `{1, 2, 3}` be defined by `R ={(1,2)}`, then R is:A. reflexiveB. transitiveC. symmetricD. None of these

Answer» Correct Answer - B
R on the set {1, 2, 3} be defined by R = {(1, 2)}
It is clear that R is transitive.
62.

If ` vec a and vec b` are two non-zero vectors such that `| vec a xx vec b| = vec a . vec b`, then angle between `vec a` and `vec b`

Answer» `|veca*vecb|=|veca|*|vecb|*sintheta`
`veca*vecb=|veca|*|vecb|costheta`
`|veca*vecb|=veca*vecb`
`|veca|*|vecb|sintheta=|veca|*|vecb|costheta`
`sintheta=costheta`
`tantheta=1`
`theta=pi/4`
anglebetween`veca and vecb=pi/4`.
63.

Let `f(x)=x^[135]+x^[125] -x^[115]+x^5+1`.lf f(x) is divided by `x^3-x` then the remainder is some function of x say g(x). Find the value of g(10)

Answer» after dividing
g(x)=2x+1
g(10)=2*10+1=21
64.

`f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)]` where [.] greatest integer function thenA. domain of `f(x) " is " (-log_(e)2,log_(e)2)`B. range of `f(x) ={pi}`C. Range of `f(x) " is " {(pi)/(2),pi}`D. `f(x) =cos^(-1)x` has only one solution

Answer» Correct Answer - A::C
We have `f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)]`
We must have
`0 lt e^(x) lt 2 and 0 lt e^(-x) lt 2`
`implies x in (-log_(e) 2, log_(e)2)`
`implies f(x) ={(pi",",x=0),((pi)/(2)"," , x in (-log_(e)2","0)cup (0","log_(e)2)):}`
65.

Prove that: ` cos ((2pi)/15) . cos ((4pi)/15) . cos ((8pi)/15) . cos ((16pi)/15) = 1/16`

Answer» `cos2pi/15*cos4pi/15*cos8pi/15*cos(pi+pi/15)`
`(2sinpi/15*cospi/15*cos2pi/15*cos4pi/15*cos8pi/15)/(2sinpi/15`
`(-2sin2pi/15cos2pi/15*cos4pi/15*cos8pi/15)/(2*2sinpi/15)`
`(-sin4pi/15cos4pi/15*cos8pi/15)/(24sinpi/15)`
`(sinpi/15)/(16sinpi/15)=1/16`
proved.
66.

lf the fundamental period of function `f(x)=sinx + cos(sqrt(4-a^2))x` is `4pi`, then the value of a is/areA. `(sqrt(15))/(2)`B. `-(sqrt(15))/(2)`C. `(sqrt(7))/(2)`D. `-(sqrt(7))/(2)`

Answer» Correct Answer - A::B::C::D
Period of `sinx " is " 2pi` and period of `cos (sqrt(4-a^(2))x) " is " (2pi)/(sqrt(4-a^(2))).`
`implies LCM (2pi,(2pi)/(sqrt(4-a^(2))))=4pi` (given)
i.e., `sqrt(4-a^(2))=(p)/(2) " where " p=1,3.`
Hence ` a^(2) =(15)/(4),(7)/(4),a=+-(sqrt(15))/(2),+-(sqrt(17))/(2)`
67.

`cos^2(3pi/5)*cos^2(4pi/5)`

Answer» Here, we will use ,
`cos 36^@ = (sqrt5+1)/4 and cos72^@ = (sqrt5-1)/4`
Now, `cos^2((3pi)/5) = (cos(108^@))^2 = (cos(pi - 72^@))^2 = (-cos72^@)^2`
`=((sqrt5-1)/4)^2 = (5+1-2sqrt5)/16 = (3-sqrt5)/8`
Now, `cos^2((4pi)/5) = (cos(144^@))^2 = (cos(pi - 36^@))^2 = (-cos36^@)^2`
`=((sqrt5+1)/4)^2 = (5+1+2sqrt5)/16 = (3+sqrt5)/8`
`:. cos^2((3pi)/5)*cos^2((4pi)/5) = (3-sqrt5)/8 ** (3+sqrt5)/8 = (9-5)/64 = 4/64 = 1/16`
`:. cos^2((3pi)/5)*cos^2((4pi)/5) = 1/16`
68.

If `theta` is the fundamental period of the function `f(x) = sin^99 x+sin^99(x+(2pi)/3)+sin^99(x+(4pi)/3)` , then the complex number `z=|z|(cos theta+i sintheta)` lies in the quadrant number.

Answer» Correct Answer - 3
Clearly, fundamental period is `(4pi)/(3)`. Then z lies in the third quadrant.
69.

If `f(x)=10x-7 and (fog)(x)=x`, then `g(x)` is equal to:A. `(x+7)/(10)`B. `(x-7)/(10)`C. `(1)/(10x-7)`D. None of these

Answer» Correct Answer - a
70.

If the function `f:A to B` is one-one onto and `g:B to A `, is the inverse of f, then fog =?A. fB. gC. `I_(A)`D. `I_(B)`

Answer» Correct Answer - D
71.

Solve the following : (a) `1 le |x-2| le 3 " (b) "0 lt |x-3|le 5` (c ) `|x-2|+|2x-3|=|x-1| " (d) " |(x-3)/(x+1)| le1`

Answer» Correct Answer - (a) `[-1,1]cup [3,5] " (b) " [-2,8]-{3} " (c ) " [3//2,2] " (d) "[1,oo)`
(a) ` 1 le |x-2| le 3`
`implies-3 le x-2 le -1 " or " 1 le x-2 le 3`
`implies -1 le x le 1 " or "3 le x le 5`
(b) ` 0 lt |x-3| le 5`
`implies -5 le x-3 le 5, x-3 ne 0`
`implies -2 le x le 8, x ne 3`
(c ) `|x-2| +|2x-3|=|x-1|`
`implies |x-2|+|2x-3|=|(2x-3)-(x-2)|`
`implies (x-2) (2x-3) le 0`
`implies 3//2 le x le 2`
(d) `|(x-3)/(x+1)| le 1`
`implies -1 le (x-3)/(x+1) le 1`
`implies 0 le (x-3)/(x+1)+1 " and " (x-3)/(x+1)-1 le 0`
`implies0 le (2x-2)/(x+1) " and " (-4)/(x+1) le 0`
`implies x le -1 " or " x ge 1 " and " x gt -1`
`implies x ge 1`
72.

If `f: R to R` be defined by `f(x)={(2x:xgt3),(x^(2):1lt x le 3),(3x:x le 1):}` Then,`f(-1)+f(2)+f(4)` isA. 9B. 14C. 5D. None of these

Answer» Correct Answer - A
Given that, `f(x)={(2x:xgt3),(x^(2):1lt x le 3),(3x:x le 1):}`
`f(-1)+f(2) +f(4)=3(-1)+(2)^(2)+2xx4`
` " " = -3 +4 +8=9`
73.

Consider the function `f(x)` satisfying the identity `f(x) +f((x-1)/(x))=1+x AA x in R -{0,1}, and g(x)=2f(x)-x+1.` The domain of `y=sqrt(g(x))` isA. `(-oo,(1-sqrt(5))/(2)] cup [1,(1+sqrt(5))/(2)]`B. `(-oo,(1-sqrt(5))/(2)] cup (0,1)cup [(1+sqrt(5))/(2),oo)`C. `[(-1-sqrt(5))/(2),0] cup [(-1+sqrt(5))/(2),1)`D. None of these

Answer» Correct Answer - B
`f(x)+f((x-1)/(x))=1+x " (1)" `
In (1), replace x by `(x-1)/(x)`. Then
`f((x-1)/(x))+f(((x-1)/(x)-1)/((x-1)/(x)))=1+(x-1)/(x)`
`or f((x-1)/(x))+f((1)/(1-x))=1+(x-1)/(x) " (2)" `
Now, from `(1) -(2)`, we have
`f(x)-f((1)/(1-x))=x-(x-1)/(x) " (3)" `
In (3), replace x by `(1)/(x-1)`. Then
`f((1)/(1-x))-f((x-1)/(x))=(1)/(1-x)-((1)/(1-x)-1)/((1)/(1-x))`
` or f((1)/(1-x))-f((x-1)/(x))=(1)/(1-x)-x " (4)" `
Now, from `(1)+(3)+(4)`, we have
`2f(x)=1+x+x-(x-1)/(x)+(1)/(1-x)-x`
` or f(x)=(x^(3)-x^(2)-1)/(2x(x-1))`
`g(x)=(x^(3)-x^(2)-1)/(x(x-1))-x+1=(x^(2)-x-1)/(x(x-1))`
Now, for `y=sqrt(g(x)),` we must have `(x^(2)-x-1)/(x(x-1)) ge 0`
`or ((x-(1-sqrt(5))/(2))(x-(1+sqrt(5))/(2)))/(x(x-1)) ge 0`
`or x in (-oo,(1-sqrt(5))/(2)] cup (0,1)cup [(1+sqrt(5))/(2),oo)`
74.

If f = {(2,3) ,(3,4) , (4,5}, then its inverse is :A. {(3,4) , (4,5) , (3,2)}B. {(3,2) , (4,3) , (5,4)}C. {(2,3) , (4, 3) , (5,4)}D. None of these

Answer» Correct Answer - b
75.

If `f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0),`then find the value of`sum_(r=1)^(2n1)2f(r/(2n))`

Answer» `f(x)=(a^(x))/(a^(x)+sqrt(a))`
or `f(1-x)=(a^(1-x))/(a^(1-x)+sqrt(a))`
`=(a^(1))/(a^(1)+sqrt(a)a^(x))`
`=(sqrt(a))/(sqrt(a)+a^(x))`
` or f(x)+f(1-x)=1`
` :. f((1)/(2))=(1)/(2)`
so, `sum_(r=1)^(2n-1)2f((r)/(2n))=2[f((1)/(2n))+f((2)/(2n))+ ... +f((n-1)/(2n))+f((n)/(2n))+f((n+1)/(2n))+ ... +f((2n-1)/(2n))]`
`=2{[f((1)/(2n))+f((2n-1)/(2n))]+[f((2)/(2n))+f((2n-2)/(2n))]+ ... +[f((n-1)/(2n))+f((n+1)/(2n))]+f((1)/(2))}`
`=2{[f((1)/(2n))+f(1-(1)/(2n))]+[f((2)/(2n))+f(1-(2)/(2n))]+ ... +[f((n-1)/(2n))+f(1-(n-1)/(2n))]+(1)/(2)}`
`=2[1+1+1+...+(n-1)" times "]+1`
`=2n-1`
76.

Let `f(x)` be defined on `[-2,2]` and be given by `f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)|`. Then find `g(x)`.

Answer» We have
`f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):}`
or `f(|x|)={(-1",",-2 le |x| le 0),(|x|-1",",0 le |x| le 2):}`
`=|x|-1,0 le |x| le 2`
` " " `(As `-2 le |x| lt 0` is not possible)
`={(-x-1",",-2 le x le 0),(x-1",",0 lt x le 2):} " (1)" `
Again, `f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):}`
or `|f(x)|={(|-1|",",-2 le x le 0),(|x-1|",",0 lt x le 2):}`
or `|f(x)|={(1",",-2 le x le 0),(-(x-1)",",0 lt x le 1),(+(x-1)",",1 lt x le 2):} " (2)" `
Therefore, `g(x)=f(|x|)+|f(x)|` can be expressed as
`g(x)={((-x-1)+1",",-2 le x le 0),((x-1)+(1-x)",",0 lt x le 1),((x-1)+(x+1)",",1 lt x le 2):}` [Using (1) and (2) ]
`={(-x",",-2 le x le 0),(0",",0 lt x le 1),(2(x-1)",",1 lt x le 2):}`
77.

`f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):}` and `g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):}`. Then find `g(f(x)).`

Answer» Correct Answer - `g(f(x))={(1+"In "x",",0lt x lt 1),(x^(2)",",1 le x lt sqrt(3)),((x^(2)-1)^(2)-1 ",",x ge sqrt(3)):}`
`f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):}` and `g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):}`
`g(f(x))={(f(x)+1",",f(x) lt 2),((f(x))^(2)-1 ",",f(x) ge 2):}`
`={(log_(e)x+1",",log_(e)x lt 2","0lt x lt 1),(x^(2)-1+1",",x^(2)-1 lt 2","x ge 1),((log_(e)x)^(2)-1",",log_(e)x ge 2","0lt x lt 1),((x^(2)-1)^(2)-1 ",",x^(2)-1 ge 2"," x ge 1):}`
`={(log_(e)x+1",", x lt e^(2)","0lt x lt 1),(x^(2)",",-sqrt(3)lt x lt sqrt(3)","x ge 1),((log_(e)x)^(2)-1",",x ge e^(2)","0lt x lt 1),((x^(2)-1)^(2)-1 ",",x le -sqrt(3) " or "x ge sqrt(3)"," x ge 1):}`
`={(log_(e)x+1",",0lt x lt 1),(x^(2)",",1 le x lt sqrt(3)),((x^(2)-1)^(2)-1 ",",x ge sqrt(3)):}`
78.

Find the value of `x^(2)` for the following values of x: (a) `[-5,-1] " (b) "(3,6) " (c ) "(-2,3]` (d) `(-3,oo) " (e ) "(-oo,4)`

Answer» Correct Answer - (a) `[1,5] " (b) "(9,36)" (c ) " [0,9] " (d) " [0, oo) " (e ) "[0, oo)`
(a) `-5 le x le -1`
`implies x^(2) in [1,5]`
(b) `3 lt x lt 6`
(c ) `-2 lt x le 3`
`implies -2 lt x le 3`
For `-2 lt x lt 0, x^(2) in (0,4) " (1)" `
and for `0 le x le 3, x^(2) in [0,9] " (2) `
From (1) and (2), `x^(2) in [0,9] `
Alternatively, ` x in (-2,3],` now least value of `x^(2)` is 0 which occurs when `x=0`
Greatest value of `x^(2)` is 9 for `x=3`
`implies x^(2) in [0,9]`
(d) `(-3,oo)`
Here least value of `x^(2)` is 0 for `x = 0`, and when x goes up to infinity, `x^(2)` also goes up to infinity
`implies x^(2) in [0,oo)`
(e) `(-oo,4)`
Here least value of `x^(2)` is 0 for `x = 0` and `x^(2) to oo`, when `x to -oo`
Hence, `x^(2) in [0,oo)`
79.

Let there be n circles no three of which have collinear centres. If the total number of radical axes is equal to total number of possible radical centres, then possible value of n is

Answer» ` ^n C_2 = ^n C_3 `
`(n(n-1))/2=(n(n-1)(n-2))/(3xx2)`
`n=5`
answer`(3)`
80.

Find all possible values of the following expressions : `(i) sqrt(x^(2)-4) (ii) sqrt(9-x^(2)) (iii) sqrt(x^(2)-2x+10)`

Answer» (i) `sqrt(x^(2)-4)`
Least value of square root is 0 when `x^(2)=4 " or " x= +-2.` Also `x^(2)-4 ge 0`
Hence, `sqrt(x^(2)-4) in [0, oo).`
(ii) `sqrt(9-x^(2))`
Least value of square root is 0, when `9-x^(2)=0` or `x= +-3.`
Also, the greatest value of `9-x^(2)` is 9, when `x = 0`.
Hence, we have `0 le 9 - x^(2) le 9 impliessqrt(9-x^(2)) in [0,3].`
(iii)`sqrt(x^(2)-2x+10)=sqrt((x-1)^(2)+9)`
Here, the least value of `sqrt((x-1)^(2)+9)` is 3 , when `x-1=0`.
Also `(x-1)^(2)+9 ge 9impliessqrt((x-1)^(2)+9) ge 3`
Hence, `sqrt(x^(2)-2x+10) in [3, oo).`
81.

Let `f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):}` and `g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):}` `g(f(x))` is not defined ifA. `a in (10,oo), b in (5,oo)`B. `a in (4,10), b in (5,oo)`C. `a in (10,oo), b in (0,1)`D. `a in (4,10), b in (1, 5)`

Answer» Correct Answer - A
`g(f(x))` is not defined if
(i) `-2+a gt 8 and " (ii) "b+3 gt 8`
`or a gt 10 and b gt 5`
82.

Find the values of 1/x for the following values fo x: (a) `(2,5) " (b) "[-5,-1) " (c ) "(3,oo)` (d) `(-oo,-2] " (e ) "[-3,4]`

Answer» Correct Answer - (a) `((1)/(5),(1)/(2)) " (b) "(-1,-(1)/(5)]" (c ) " (0,(1)/(3)) " (d) " [-(1)/(2), 0) " (e ) "(- oo, -(1)/(3)] cup [(1)/(4),oo)`
(a) `2 lt x lt 5`
`implies (1)/(2) gt (1)/(x) gt (1)/(5)`
`implies (1)/(x) in ((1)/(5),(1)/(2))`
(b) `-5 le x lt -1`
`implies -(1)/(5) ge (1)/(x) gt -1`
`implies (1)/(x) in (-1,-(1)/(5)]`
(c ) ` x gt 3 or 3 lt x lt oo`
`implies(1)/(3) gt (1)/(x) gt 0`
`(1)/(x) in (0,(1)/(3))`
(d) `x le -2 or -oo lt x le -2`
`implies 0 gt (1)/(x) ge -(1)/(2)`
`implies (1)/(x) in [-(1)/(2),0)`
(e) ` x in [-3,4] or -3 le x le 4`
Now for `(1)/(x)` to get defined, we must have `-3 le x lt 0 or 0 lt x le 4`
`implies -(1)/(3) ge (1)/(x) gt -oo or (1)/(4) le (1)/(x) lt oo`
`implies (1)/(x) in (-oo,-(1)/(3)] cup [(1)/(4),oo)`
83.

If ` f(x) ={(x^(3)", " x lt1),(2x-1", " x ge 1):} " and " g(x)={(3x", " x le2),(x^(2)", " x gt 2):} " then find " (f-g)(x).`

Answer» ` f(x) ={(x^(3)", " x lt1),(2x-1", " 1 le x le 2),(2x-1", " x gt 2):} " and " g(x)={(3x", " x lt1),(3x", "1 le x le2),(x^(2)", " x gt 2):}`
` implies (f+g)(x) ={(x^(3)+3x", " x lt1),(2x-1+3x", " 1 le x le 2),(2x-1+x^(2)", " x gt 2):}`
`={(x^(3)+3x", " x lt1),(5x-1", " 1 le x le 2),(x^(2)+2x-1", " x gt 2):}`
84.

8. Show that the points A (1,-2,-8), B 0,-2) and C (11, 3, 7) are collinear and find the ratio in which B divides AC.

Answer» `m/n=(x-1)/(11-x)=2/3`
`m/n=(x-1)/(11-x)=2/3`
`m/n=2/3=(x-1)/(11-x)`
`22-2x=3x-3`
`25=5x,x=5`.
85.

Find the value of `x`for which following expressions are defined:`1/(sqrt(x-|x|))`(ii) `1/(sqrt(x+|x|))`

Answer» ` "(i) " x-|x|= {(x-x=0", if " x ge 0),(x+x=2x", if "x lt 0):}`
`impliesx-|x| le 0,` for all `x`
Thus, `(1)/(sqrt(x-|x|))` does not take real values for any `x in R`
So, `(1)/(sqrt(x-|x|))` is not defined for any `x in R.`
` "(ii) " x+|x|= {(x+x=2x", if " x ge 0),(x-x=0", if "x lt 0):}`
Thus, `(1)/(sqrt(x+|x|))` is defined only when `x gt 0`
86.

Find all possible values of expressions `(2+x^2)/(4-x^2)`

Answer» Correct Answer - `(-oo, -1)cup[(1)/(2),oo)`
`(2+x^(2))/(4-x^(2))=(6-(4-x^(2)))/(4-x^(2))=(6)/(4-x^(2))=1`
Now, `x^(2) ge 0`
` :. -x^(2) le 0`
`implies 4-x^(2) le 4`
`implies (4-x^(2))/(6) le (2)/(3)`
`implies -oo lt (4-x^(2))/(6) lt 0 " or "0 lt(4-x^(2))/(6) le (2)/(3)`
`implies 0 gt (6)/(4-x^(2)) gt -oo gt (4-x^(2))/(6) ge (3)/(2)`
`implies (6)/(4-x^(2)) in (-oo,0) cup [(3)/(2),oo)`
`implies ((6)/(4-x^(2))-1) in (-oo,-1) cup [(1)/(2),oo)`
87.

Find all possible values ( range) of the following quadratic expressions when `x in R` and when `x in [-3,2]` (a) `4x^2+28x+41` (b) `1+6x -x^2`

Answer» Correct Answer - (a) `[-8,oo)` when `x in R; [-7,113]` when `x in [-3,2]`
(b) `(-oo,10]` when `x in R;[-26,9]` when ` x in [-3,2]`
(a) `4x^(2)+28x+41=(2x+7)^(2)-8`
Now,`(2x+7)^(2)-8 ge 0 AA x in R.`
`implies (2x+7)^(2)-8 ge -8 AA x in R`
So, the values of the expression are `[-8, oo).`
For ` x in [-3,2]`
`-3 le x le 2`
`implies -6 le 2x le 4`
`implies 1le 2x+7 le 11`
`implies 1 le (2x+7)^(2) le 121`
`implies -7 le (2x+7)^(2)-8 le 113`
Thus, for `x in [-3,2],` the values of the expression are `[-7,113].`
(b) `1+6x-x^(2)=10-(x-3)^(2)`
Now, `(x-3)^(2) ge 0 AA x in R.`
`implies -(x-3)^(2) le 0 AA x in R`
`implies 10-(x-3)^(2) le 10 AA x in R`
So, the value of the expression are `(-oo,10].`
For ` x in [-3,2]`
` -3 le x le 2`
`implies -6 le x -3 le -1`
`implies 1 le (x-3)^(2) le 36`
`implies -36 le -(x-3)^(2) le -1`
`implies -26 le 10-(x-3)^(2) le 9`
Thus, for ` x in [-3,2]` values of the expression are `[-26,9].`
88.

Find the value of `x^(2)` for the given values of x. `(i) x lt 3 (ii) x gt -1 (iii) x ge 2 (iv) x lt -1`

Answer» (i) When `x lt 3`, we have `x in (-oo,0)cup[0,3)`
for `x in [0,3),x^(2) in [0,9)`
for `x in (- oo,0),x^(2) in (0,oo)`
`implies "for " x lt 3, x^(2) in [0,9) cup(0,oo)`
`implies x in [0,oo)`
(ii) When `x gt -1`, we have `x in (-1,0)cup[0,oo)`
for `x in [-1,0),x^(2) in [0,1)`
for `x in [-0,oo),x^(2) in [0,oo)`
`implies "for " x gt -1, x^(2) in (0,1) cup(0,oo)`
`implies x in [0,oo)`
(iii) Here `x in [2,oo)`
`implies x^(2) in {4, oo)`
Here `x in (-oo, -1)`
`implies x^(2) in (1, oo)`
89.

For `2 lt x lt 4` find the values of |x|. (ii) For `-3 le x le -1`, find the values of |x|. (iii) For `-3 le x lt 1,` find the values of |x| (iv) For `-5 lt x lt 7 ` find the values of |x-2| (v) For `1 le x le 5` find fthe values of |2x -7|

Answer» (i) `2 lt x lt 4`
i.e., values on real number line whose distance from zero lies between 2 and 4.
Here values of x are positive `implies|x| in (2,4)`
(ii) `-3 le x le -1`
Here values on real number line whose distance from zero lies between 1 and 3 or equal to 1 or 3.
`implies 1 le |x| le 3`
(iii) ` -3 le x lt 1`
For `-3 le x lt 0, |x| in (0,3]`
For ` 0 le x lt 1, |x| in [0,1)`
So for `-3 le x lt 1,|x| in [0,1)cup(0,3]" or " |x| in [0,3]`
(iv) `-5 lt x lt 7`
or `-7 lt x-2 lt 5`
`implies 0 le |x-2| le 7`
(v) `1 le x le 5`
or `2 le2x le10`
`implies -5 le 2x-7 le 3`
`implies |2x-7| in[0,5]`
90.

maximize `Z=25x_1+20x_2` subject to constraints`3x_1+2x_2

Answer» `2x_1+1050=1400`
`x_1=175`
`700+x_2=1400`
`x_2=100`
`Z=25x_1+20x_2`at A(0,150)
Z=0+3000=3000
at B(175,150)
Z=25*175+20*150=7375
at C(350,100)
Z=350*25+100*20=10750
at D(350,0)
Z=350*25=8750
Z is maximum at C
91.

Solve the following : (i) `|x-2|=(x-2) " (ii) " |x+3| = -x-3` (iii) `|x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)`

Answer» (i) `|x-2|=(x-2), " if " x-2 ge 0 " or " x ge 2`
(ii) `|x+3|= -x-3, " if " x+3 le 0 " or " x le -3`
(iii) `|x^(2)-x|=x^(2)-x, " if " x^(2)-x ge 0`
or `x(x-1) ge 0`
`implies x in (-oo,0] cup [1,oo)`
(iv) `|x^(2)-x-2|=2+x-x^(2)`
or `x^(2) -x-2 le 0`
or `(x-2)(x+1)le0`
or `-1 le x le 2`
92.

For `x in R ,`find all possible values of`|x-3|-2`(ii) `4-|2x+3|`

Answer» We know that `|x-3| ge 0 AA x in R`
`implies|x-3|-2 ge -2`
`implies |x-3|-2 in [-2, oo)`
(ii) We know that `|2x+3| ge 0 AA x in R`
`implies -|2x+3|le 0`
`implies 4-|2x+3|le4`
or `4-|2x+3| in (-oo,4]`
93.

Prove that`sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x1`

Answer» `sqrt(x^(2)+2x+1)-sqrt(x^(2)-2x+1)`
`=sqrt((x+1)^(2))-sqrt((x-1)^(2))`
`=|x+1|-|x-1|`
`= {(-x-1-(1-x)", "x lt -1),(x+1-(1-x)", "-1le x le1),(x+1-(x-1)", "x gt1):}`
`= {(-2", "x lt -1),(2x","-1le x le1),(2", "x gt1):}`
94.

Find the inverse of`f(x)={x ,4`

Answer» Given `f(x)={(x",", x lt1),(x^(2)",",1le x le 4),(8sqrt(x)",", x gt 4):}`
Let `f(x)=y`
or `x=f^(-1)(y) " (1) " `
` :. x={(y",", y lt1),(sqrt(y)",",1le sqrt(y) le 4),(y^(2)//64",", y^(2)//64 gt 4):}={(y",", y lt1),(sqrt(y)",",1le y le 16),(y^(2)//64",", y gt 16):},`
`f^(-1)(y)={(y",", y lt1),(sqrt(y)",",1le y le 16),(y^(2)//64",", y gt 16):}, " [From (1)]" `
Hence, `f^(-1)(y)={(x",", x lt1),(sqrt(x)",",1le x le 16),(x^(2)//64",", x gt 16):},`
95.

Find the inverse of the function `f:[-(pi)/(2)-"tan"^(_1)(3)/(2),(pi)/(2)-"tan"^(-1)(3)/(4)] to [-1,1],` `f(x)=3cosx+4sinx +7.`

Answer» We have,
`f(x)= y=3cosx +4sinx+7`
`implies y=sqrt(3^(2)+4^(2))[(3)/(sqrt(3^(2)+4^(2)))cosx+(4)/(sqrt(3^(2)+4^(2)))sinx]+7`
`=5[(3)/(5)cosx+(4)/(5)sinx]+7`
`=5[sin theta cos x+cos theta sinx]+7," where " tan theta=(3)/(4)`
`=5 sin(x+theta)+7`
`implies y-7=5sin(x+theta)`
`implies (y-7)/(5)=sin(x+theta)`
`implies "sin"^(-1)(y-7)/(5)=x+theta`
`implies x="sin"^(-1)(y-7)/(5)-theta`
`f^(-1)(x)="sin"^(-1)(x-7)/(5)-"tan"^(-1)(3)/(4)`
96.

Find the inverse of the function `f: [-1,1] to [-1,1],f(x) =x^(2) xx sgn (x).`

Answer» `f(x) =x^(2) xx sgn (x)`
`={(x^(2)(1)",", x gt 0),(0"," , x=0),(x^(2)(-1)",", x lt 0):}`
` :. f(x) ={(x^(2)",", 0le x le1),(-x^(2)",", -1 le x lt0):}`
Now `y=x^(2),0 le x le 1`
Since `y in [0,1],` we have `x=sqrt(y)`
For `y=-x^(2),-1 le x le 0.`
Since `y in [-1,0], " we have " x= -sqrt(-y)`
Thus, `f^(-1)(x)={(sqrt(x)",", 0le x le1),(-sqrt(-x)",", -1 le x lt0):}`
97.

Which of the following function/functions is/are periodic ? (a) `sgn(e^(-x)) " (b) " sinx + |sinx|` (c ) `min(sinx, |x|) " (d) " (x)/(x)`

Answer» Correct Answer - a,b,c
(a) `f(x) = sgn (e^(-x))=1 " as " e^(-x) gt 0 AA x in R`.
Therefore, `f(x)` is periodic function.
(b) `g(x)=sinx +|sin x|` is periodic with period `2pi` as
`f(x+2pi)=f(x).`
(c ) `h(x) = min(sinx, |x|)=sinx,` which is periodic.
(d) `p(x)=(x)/(x)=1, x ne 0, ` which is nonperiodic.
98.

If `cos^(-1) (x/2) + cos^(-1) (y/3) =alpha` then prove that `9x^2-12xycosalpha+4y^2=36sin^2alpha`.

Answer» `cos^-1(x/2)+cos^-1(y/3) = alpha`
`=>cos^-1((x/2)(y/3) - sqrt(1-(x^2)/4)sqrt(1-y^2/9)) = alpha`
`=>((xy)/6) - sqrt((4-x^2)/4)sqrt(9-y^2)/9) = cosalpha`
`=>xy - sqrt(4-x^2)sqrt(9-y^2) = 6cos alpha`
`=>xy - 6cos alpha= sqrt(4-x^2)sqrt(9-y^2)`
Squaring both sides,
`=>x^2y^2+36 cos^2 alpha - 12xy cosalpha = (4-x^2)(9-y^2)`
`=>x^2y^2+36 cos^2 alpha - 12xy cosalpha = 36-4y^2-9x^2+x^2y^2`
`=> 36(1-sin^2 alpha) - 12xy cosalpha = 36-4y^2-9x^2+x^2y^2`
`=>9x^2+4y^2- 12xy cosalpha = 36sin^2alpha`
99.

Range ofthe function `f(x)=cos(Ksin x)` is `[-1,1]`, then the least positive integral value of K will beA. 1B. 2C. 3D. 4

Answer» Correct Answer - D
`y=cos(K sinx)`
`(cos^(-1)y)/(K)=sinx`
`implies -1 le (cos^(-1)y)/(K) le 1`
`implies -K le cos^(-1)y le K`
Now `cos ^(-1) y in [0,pi]`
`implies K=4`
100.

If `f(x)=(h_1(x)-h_1(-x))(h_2(x)-h_2(-x))(h_(2n+1)(-x)a n df(200)=0,`then prove that `f(x)`is many one function.

Answer» `f(-x)=(h_(1)(-x)-h_(1)(x))(h_(2)(-x)-h_(2)(x))…(h_(2n+1)(-x)-h_(2n+1)(x))`
` :. f(-x)=(-1)^(2n+1)f(x)=-f(x)`
or `f(x)+f(-x)=0`
So, f(x) is odd. Therefore,
`f(-200)=-f(200)=0`
So, f(x) is many-one.