Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

If `cos25^0+sin25^0=p ,`then `cos50^0`is`sqrt(2-p^2)`(b) `-sqrt(2-p^2)``psqrt(2-p^2)`(d) `-psqrt(2-p^2)`A. `sqrt(2-p^(2))`B. `-sqrt(2-p^(2))`C. `p*sqrt(2-p^(2))`D. `-p*sqrt(2-p^(2))`

Answer» Correct Answer - C
102.

If `acostheta+bsintheta=m and asintheta-bcostheta=n`, then show that ` a^(2)+b^(2)=m^(2)+n^(2)`.

Answer» Given that, `" "acostheta+bsintheta=m" "…(i)` ltBrgt and `" "asintheta-bcostheta=n" "...(ii)`
On squaring and adding of Eqs. (i) and (ii), we get
`" "m^(2)+n^(2)=(acostheta+bsintheta)^(2)+(asintheta-bcostheta)^(2)`
`" "=a^(2)cos^(2)theta+b^(2)sin^(2) theta+2ab sintheta.costheta+a^(2)sin^(2)theta+b ^(2)cos^(2)theta-2ab""sintheta*costheta`
`rArr" "m ^(2)+n^(2)=a^(2)(cos^(2)theta+sin^(2)theta) +b^(2)(sin^(2)theta+ cos^(2) theta)`
`rArr" "m^(2) +n^(2)=a^(2) +b ^(2)" "` Hence proved.
103.

If `x/acostheta+y/bsintheta=1,x/asintheta-y/bcostheta=1`, then eliminate `theta`.

Answer» Correct Answer - `x^2/a^2+y^2/b^2=2`
Squaring and adding, we have `x^2/a^2+y^2/b^2=2`
104.

In `triangleABC`, if `a=18, b=24, c=30`, then `tan((A)/(2))=`A. `(1)/(3)`B. `(2)/(3)`C. `(4)/(3)`D. `1`

Answer» Correct Answer - A
105.

In `triangleABC`, if `a=18, b=24, c=30`, then `cos((A)/(2))=`A. `(4)/(sqrt(10))`B. `(3)/(sqrt(10))`C. `(2)/(sqrt(10))`D. `(1)/(sqrt(10))`

Answer» Correct Answer - B
106.

If `x=secphi -tanphi and y="cosec" phi+cotphi`, then show that `xy+x-y+1=0.`

Answer» Given that, `" "x=secphi-tanphi" "...(i)`
and `" "y="cosec"phi+cotphi" "...(ii)`
`" "1*xy=(secphi-tanphi)("cosec"phi+cotphi )`
`rArr" "xy=secphi*"cosec"phi-"cosec"phi*tanphi+secphi*cot phi -tanphi*cotphi`
`rArr" "xy=secphi*"cosec"phi-(1)/(cosphi)+(1)/(sinphi)-1`
`rArr" "1+xy=secphi"cosec"phi-sec phi+"cosec"phi" "...(iii)`
From Eqs. (i) and (ii), we get
`" "x-y=secphi-tanphi-"cosec"phi-cotphi`
`rArr" "x-y=secphi-"cosec"phi-(sinphi)/(cosphi)-(cosphi)/(sinphi)`
`rArr" "x-y=secphi-"cosec"phi-((sin^(2)phi+cos^(2)phi)/(sinphi*cosphi))`
`rArr" "x-y=sec phi-"cosec"phi-"cosec"phi*secphi`
`rArr" " x-y=-(secphi*"cosec"phi-secphi+"cosec"phi)`
`rArr" "x-y=-(xy+1)" "` [from Eq. (iii)]
`rArr" "xy+x-y+1=0" "` Hence proved.
107.

In `triangleABC`, if `angleC=90^(@)` then `tanA+tanB`=A. `(a^(2))/(bc)`B. `(b^(2))/(ca)`C. `(c^(2))/(ab)`D. `a+b`

Answer» Correct Answer - C
108.

If : `A+B = 90^(@),and tanA=3/4 "then" : cot B =`A. -1B. 0C. 1D. `sqrt2`

Answer» Correct Answer - C
109.

In `triangleABC`, if `a=18, b=24, c=30`, then `tanA=`A. `1`B. `(3)/(4)`C. `(2)/(4)`D. `(1)/(4)`

Answer» Correct Answer - B
110.

If `sin A=11//61, "where" 0ltAlt(pi//2),` `"then : (secA+tanA)/(cotA-cscA)=`A)`66//13` B)`-13//66` C)`-66//15` D)`-66//5`A. `66//13`B. `-13//66`C. `-66//15`D. `-66//5`

Answer» Correct Answer - D
111.

In `triangleABC`, `(b^(2)+c^(2)-a^(2))tanA=`A. `2abc`B. `abc`C. `2bcsinA`D. `bcsinA`

Answer» Correct Answer - C
112.

For acute angle `theta`, prove the following: (i) `sec^2thetacosecthetage4` (ii) `sec^2theta+cosec^2thetage4`

Answer» Using `A.M.geG.M.`
`(sin^2theta+cos^2thet)/2ge(sin^2thetacos^2theta)^(1//2)`
`rArr 1/2ge(sin^2thetacos^2theta)^(1//2)rArrsin^2thetacos^2thetale1/4`
`=sec^2thetacosec^2thetage4rArr(sin^2theta+cos^2theta)/(sin^2thetacos^2theta)ge4`
`rArr sec^2theta+cosec^2thetage4`
113.

Find the general solution of the equation `5cos^(2)theta+7sin^(2)theta-6=0`.

Answer» Given equation, `5cos^(2)theta+7sin^(2)theta-6=0`
`rArr" "5cos^(2)theta+7(1-cos^(2)theta)-6=0`
`rArr" "5cos^(2)theta+7-7cos^(2)theta-6=0`
`rArr" "5cos ^(2)theta+7-7cos^(2)theta-6=0" "rArr" "-2cos^(2)theta+1=0`
`rArr" "2cos^(2)theta -1=0" "[because cos^(2)theta=cos^(2)alpha thereforetheta=npipmalpha]`
`rArr" "cos^(2)theta=(1)/(2)`
`rArr" "cos^(2)theta=cos^(2)""(pi)/(4)`
`therefore" "theta=npipm(pi)/(4)`
114.

If `theta` lies in the first quardrant and `costheta=(8)/( 17 )`, then find the value of `cos(30^(@)+theta)+cos(45^(@)-theta)+cos(120^(@)-theta)`.

Answer» Given that, `" "cos3theta=(8)/(17)rArrsintheta=sqrt(1-(64)/(289))`
`rArr" "sintheta=sqrt((289-64)/(289))rArrsintheta=pm(15)/(17)`
`rArr" "sintheta=(15)/(17)" "` [since, `theta` lies in the first quadrant]
Now, `cos(30^(@)+theta)+cos(45^(@)-theta)+cos(120^(@)-theta)`
`" "=cos(30^(@)+theta)+cos(45 ^(@)-theta)+cos(90^(@)+30^(@)-theta)`
`" "=cos(30^(@)+theta)+cos(45^(@) -theta)-sin(30^(@)-theta)`
`" "=cos30^(@)costheta-sin 30^(@) sin theta+cos45^(@) cos theta+sin45^(@) sintheta-sin30^(@) costheta+cos30^(@)sintheta`
`" "=(sqrt(3) )/(2)costheta-(1)/(2) sintheta+(1)/(sqrt(2))costheta+ (1)/(sqrt (2)) sintheta-(1)/(2)costheta(sqrt(3))/(2)sintheta`
`" "=((sqrt(3))/(2)+(1)/(sqrt(2))-(1)/(sqrt(2)))costheta+((1)/(sqrt(2))-(1)/(2)+(sqrt(3))/(2))sintheta`
`"" =((sqrt(6)+2-sqrt(2))/(2sqrt(2)))costheta+((2-sqrt(2)+sqrt(6))/(2sqrt(2)))sintheta`
`" "=((sqrt(6)+2-sqrt(2))/(2sqrt(2)))(8)/(17)+((2-sqrt(2)+sqrt(6))/(2sqrt(2)))(15)/(17)`
`" "=(1)/(17(2sqrt2))(8sqrt(6)+16-8sqrt(2)+30-15sqrt(2)+15sqrt(6)`
`" "=(1)/(17(2sqrt(2)))(23sqrt(6)-23sqrt(2)+46)`
`" "=(23sqrt(6))/(17(2sqrt(2)))-(23sqrt(2))/(17(2sqrt(2)))+(46)/(17(2sqrt2))`
`" "=(23sqrt(3))/(17(2))-(23)/(17(2))+(23)/(17sqrt(2))`
`" "=(23)/(17)((sqrt(3)-1)/(2)+(1)/(sqrt(2)))`
115.

If `tanA=(sqrt3-1)/(sqrt3+1),"then": cos A=`A. `(sqrt3-1)/(2sqrt2)`B. `(sqrt3+1)/(2sqrt2)`C. `(sqrt3+1)`D. `(sqrt3-1)`

Answer» Correct Answer - B
116.

Let `f:(-1,1)vecR`be such that `f(cos4theta)=2/(2-sec^2theta)`for `theta in ``(0,pi/4)uu(pi/4,pi/2)`. Then the value(s) of `f(1/3)`is (are)(a)`1-sqrt(3/2)`(b) `1+sqrt(3/2)`(c) `1-sqrt(2/3)`(d) `1+sqrt(2/3)`

Answer» It is given that,
`f(cos4theta) = 2/(2-sec^2theta)`
We have to find `f(1/3)`.
So, we can consider,
`cos4theta = 1/3`
Now,
`cos4theta = 2cos^2 2theta -1`
`=>cos2theta = +-sqrt((1+cos4theta)/2 )`
`=>cos2theta = +-sqrt((1+(1/3))/2 )`
`=>cos2theta = +-sqrt(2/3)`
Now,
`f(1/3) = 2/(2-sec^2theta)`
`=(2cos^2theta)/(2cos^2theta - 1)`
`=(1+cos2theta)/(cos2theta)`
`=1/(cos2theta)+1`
`=+-sqrt(3/2) +1`
`=>f(1/3) = 1+-sqrt(3/2)`
So, option `a` and `b` are the correct options.
117.

If : `tantheta=(1)/(7), "then" : (2sintheta+3costheta)/(3sintheta+4costheta)=`A. `(32)/(13)`B. `(23)/(13)`C. `(23)/(31)`D. `(13)/(23)`

Answer» Correct Answer - C
118.

The value of `(sin300^(@).tan330^(@).sec420^(@))/(tan135^(@).sin210^(@).sec315^(@))` isA. `-1`B. 1C. `sqrt(2)`D. `sqrt(3)`

Answer» Correct Answer - C
Given expression
`=(sin(360^(@)-60^(@)).tan(360^(@)-30^(@)).sec(360^(@)+60^(@)))/(tan(180^(@)-45^(@)).sin(180^(@)+30^(@)).sec(360^(@)-45^(@)))`
`=((-sin 60^(@)).(-tan 30^(@)).sec 60^(@))/((-tan 45^(@)).(-sin 30^(@)).sec 45^(@))`
`=(sin 60^(@).tan30^(@).sec60^(@))/(tan 45^(@).sin 30^(@).sec 45^(@))`
`= ((.sqrt(3))/(2).(1)/(sqrt(3)).2)/(1.(1)/(2).sqrt(2))=sqrt(2)`
119.

`tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9)`is equal to(a)0 (b) `sqrt3` (c) 3(d)9

Answer» We know, `tan 3theta = (3tantheta - tan^3theta)/(1-3tan^2theta)`
If `theta = pi/9`
`=>tan(pi/3) = (3tan(pi/9) - tan^3(pi/9))/(1-3tan^2(pi/9))`
`=>(sqrt3(1-3tan^2(pi/9))) = (3tan(pi/9) - tan^3(pi/9))`
Squaring both sides,
`=>3(1+9tan^4(pi/9) - 6tan^2(pi/9)) = 9tan^2(pi/9)+tan^6pi/9 - 6tan^4(pi/9)`
`=>3+33tan^4(pi/9)-27tan^2(pi/9) = tan^6(pi/9)`
`=>tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9) = 3.`
120.

`cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=`

Answer» Given expression, `cos^(4)""(pi)/(8)+cos^(4)""(3pi)/(8)+cos^(4)""(5pi)/(8)+cos^(4)""(7pi)/(8)`
`" "=cos^(4)""(pi)/(8)+cos^(4)""(3pi)/(8)+cos^(4)(pi-(3pi)/(8))+cos^(4)(pi-(pi)/(8))`
`" "=cos^(4)""(pi)/(8)+cos^(4)""(3pi)/(8)+cos^(4)""(3pi)/(8)+cos^(4)""(pi)/(8)`
`" "=2[cos^(4)""(pi)/(8)+cos^(4)""(3pi)/(8)]=2[cos^(4)""(pi)/(8)+cos^(4)""((pi)/(2)-(pi)/(8))]`
`" "=2[cos^(4)""(pi)/(8)+sin^(4)""(pi)/(8)]`
`" "=2[(cos^(2)""(pi)/(8)+sin^(2)""(pi)/(8))^(2)-2cos^(2)""(pi)/(8)*sin^(2)""(pi)/(8)]`
`" "=2[1-2cos^(2)""(pi)/(8)*sin^(2)""(pi)/(8)] = 2-(2sin""(pi)/(8)*cos"(pi)/(8))^(2)`
` " "=2-(sin""(2pi)/(8))^(2)=2-((1)/(sqrt(2)))^(2)`
`" "=2-(1)/(2)=(3)/(2)`
121.

The expression `(tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x))`simplifies toA. `(1+cos^(2)x)`B. `sin^(2)x`C. `-(1+cos^(2)x)`D. `cos^(2)x`

Answer» Correct Answer - B
`(tan.(x-(pi)/(2)).cos.((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x))`
`=((-cot)(sin x)+cos^(3)x)/((sin x).(-ct x))`
`=(-cos x + cos^(3)x)/(-cos x)`
`=1-cos^(2)x`
`=sin^(2)x`
122.

If `tan theta=1/sqrt7`,then `(c o s e c^2theta-sec^2theta)/(c o s e c^2theta+sec^2theta)=?`A. `(1)/(2)`B. `(3)/(4)`C. `(5)/(6)`D. `(7)/(8)`

Answer» Correct Answer - B
123.

The value of `cos(pi/7)+cos((2pi)/7)+cos((3pi)/7)+cos((4pi)/7)+cos((5pi)/7)+cos((6pi)/7)+cos((7pi)/7)`is1 (b) `-1`(c) 0(d) none of these

Answer» `=(cos(pi/7)+cos(6/7pi))+(cos(2/7pi)+cos(5/7pi))+(cos(3/7pi)+cos(4/7pi))+cospi`
`=2cos(pi/2)cos(-5/14pi)+2cos(pi/2)*cos(-3/14pi)+2cos(pi/2)cos(-pi/14)+(-1)`
`=0+0+0-1`
`=-1`.
124.

Find the value of `cos^2pi/(16)+cos^2(3pi)/(16)+cos^2(5pi)/(16)+cos^2(7pi)/(16)dot`

Answer» `=cos^2pi/16+cos^2 3/16pi+cos^2 5/16pi+cos^2 7/16pi`
`=(1+cos(pi/8))/2+(1+cos(3/8pi))/2+(1+cos(5/8pi))/2+(1+cos(7/8pi))/2`
`=2+cospi/8+cos3/8pi+cos(pi-3/8pi)+cos(pi-pi/8)`
`=2+cospi/8+cos3/8pi-cospi/8`
`=2`.
125.

Find the value of : (i) `sin75^o` (ii) `tan15^o`

Answer» (i) `sin 75^@ = sin(45^@ + 30^@)`
using identity `sin(a+b) = sinacosb + cosasinb`
`= sin45^@cos30^@ + cos45^@sin30^@`
`= 1/sqrt2 * sqrt3/2 + 1/sqrt2 * 1/2 `
`= sqrt3/(2sqrt2) + 1/(2sqrt2)`
`= (sqrt3 + 1)/(2sqrt2)`
(ii) `tan 15^@ = tan(45^@- 30^@)`
using identity `tan(a-b) = (tana- tanb)/(1+tan a tan b)`
`= (tan 45^@ - tan 30^@)/(1 + tan45^@tan30^@)`
`= (1-1/sqrt3)/(1 + 1*1/sqrt3)`
`= ((sqrt3 - 1)/(sqrt3))/((sqrt3 + 1)/sqrt3)`
`= (sqrt3 -1)/(sqrt3+1) * (sqrt3 - 1)/(sqrt3 -1) `
`= (sqrt3 - 1)^@/((sqrt3)^2 - 1^2)`
`= (3+1 - 2sqrt3)/(3-1)`
`= (4-2sqrt3)/2`
`2- sqrt3`
answer
126.

Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length (i) 10 cm    (ii) 15 cm   (iii) 21 cm

Answer» as we know that arc length/ radius
(i) angle = `10/75 = 2/15` radian
(ii) angle = `15/75 = 1/5`radian
(iii)angle = `21/75 = 7/25` radian
answer
127.

Find the value of `cos^2. pi/16+cos^2. (3pi)/16+cos^2. (7pi)/16`.

Answer» `L.H.S.=cos^2. pi/16+cos^2.(3pi)/16+cos^2(pi/2-(3pi)/16)`
`+cos^2(pi/2-pi/16)`
`=cos^2.pi/16+cos^2.(3pi)/16+sin^2.(3pi)/16+sin^2.pi/16`
`=(cos^2. pi/16+sin^2. pi/16)+(cos^2(3pi)/16+sin^2(3pi)/16)`
`=1+1=2`
128.

The most general value of `theta` satisfying both the equations `sin theta = 1/2: tan theta =1/sqrt3` isA. `npi+(-1)^(n)(pi)/(6), ninZ`B. `2npi+(7pi)/(6), ninZ`C. `npi-(pi)/(6), ninZ`D. `2npipm(pi)/(6), ninZ`

Answer» Correct Answer - B
129.

If `tan^2theta -(1+sqrt3)tan theta + sqrt3=0`, then the general value of theta isA. `npi+(pi)/(4), npi+(pi)/(3), ninZ`B. `npi+(5pi)/(4), npi+(pi)/(3), ninZ`C. `2npi+(pi)/(4), npi+(pi)/(3), ninZ`D. `npi+(pi)/(4), 2npi+(pi)/(3), ninZ`

Answer» Correct Answer - A
130.

Find the most general value of ` theta` satisfyingn the equation `tantheta=-1 and costheta=(1 )/(sqrt(2))`.A. `npi+(7pi)/(4), ninZ`B. `npi+(-1)^(n)(7pi)/(4), ninZ`C. `2npi+(7pi)/(4), ninZ`D. `2npi+(-1)^(n)(7pi)/(4), ninZ`

Answer» Correct Answer - C
131.

If `tantheta+tan2theta+sqrt(3)tanthetatan2theta=sqrt(3)`, then `theta=(npi)/(3)+(pi)/(9)`.A. `(3n+1)(pi)/(9), ninZ`B. `(3n+1)(pi)/(6), ninZ`C. `(3n+1)(pi)/(3), ninZ`D. `(3n+1)(pi)/(18), ninZ`

Answer» Correct Answer - A
132.

Suppose A and B are two angles such that `A , B in (0,pi)`and satisfy `sinA+sinB=1`and `cosA+cosB=0.`Then the value of `12cos2A+4cos2B`is____A. 4B. 6C. 8D. 12

Answer» Correct Answer - C
Since cos A + cos B = 0
`rArr A+B=pi`
`therefore B = pi -A`
`therefore` from sin A + sin B = 1
`sin A + sin(pi -A)=1`
`rArr sin A =(1)/(2)`
`therefore A=30^(@)` and `B=150^(@)`
or `A=150^(@)` and `B = 30^(@)`
`therefore 12 cos 60^(@)+4cos 300^(@)=8`
133.

The expression `3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+alpha)+sin^6(5pi-alpha)]` is equal to

Answer» Correct Answer - B
`3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]`
`-2[sin^6(1/2pi-alpha)+sin^6(5pi-alpha)]`
`=3(cos^4alpha+sin^4alpha)-2(cos^6alpha+sin^6alpha)`
`3(1-2sin^2alphacos^2alpha)-2[(sin^2alpha+cos^2alpha)^3`
`-3sin^2alphacos^2alpha(sin^2alpha+cos^2alpha)]`
`=3(1-2sin^2alphacos^2alpha)-2[1-3sin^2alphacos^2alpha]`
=1
134.

Find the values of the trigonometric function `cot``(-(15pi)/4)`

Answer» As `cot(-theta) = -cot theta`
`:. cot(-(15pi)/4) = -cot((15pi)/4)`
`=-cot(4pi-pi/4)`
`=-cot(2*2pi-pi/4)`
`=-cot(-pi/4)` (As `cot(2npi+theta) = cot theta`)
`=cot(pi/4) = 1`
`:. cot(-(15pi)/4) = 1`
135.

The value of `cot((7pi)/16)+2cot((3pi)/8)+cot((15pi)/16)`is(a)`4`(b)` 2`(c) `-2`(d) `-4`

Answer» `cot((7pi)/16)+2cot((3pi)/8)+cot((15pi)/16)`
`=tan(pi/2-(7pi)/16)+2tan(pi/2-(3pi)/8)+cot(pi-pi/16)`
`=tan(pi/16) + 2tan(pi/8) - cot(pi/16)`
`=(tan(pi/16)-cot(pi/16))+2tan(pi/8)`
`=(sin(pi/16)/cos(pi/16)-cos(pi/16)/sin(pi/16))+2tan(pi/8)`
`=((sin^2(pi/16)-cos^2(pi/16))/(sin(pi/16)cos(pi/16)))+2tan(pi/8)`
`=(-cos(pi/8))/(1/2sin(pi/8))+2tan(pi/8)`
`=2tan(pi/8)-2cot(pi/8)`
`=2(sin(pi/8)/cos(pi/8) - cos(pi/8)/sin(pi/8))`
`=2((sin^2(pi/8)-cos^2(pi/8))/(sin(pi/8)cos(pi/8)))`
`=(2(-cos(pi/4)))/(1/2sin(pi/4))`
`=-4cot(pi/4)`
`=-4`
So, option `d` is the correct option.
136.

Value of expression `sin(pi/9)+sin((2pi)/9)+sin((3pi)/9)+...+sin((17pi)/9)=`

Answer» Correct Answer - A
`sin.(pi)/(9)+sin.(2pi)/(9)+sin.(3pi)/(9)+……..+sin.(17pi)/(9)`
`{:(+(sin.(2pi)/(9)+sin.(16pi)/(9))),(" ..."),(" ..."),(+(sin.(8pi)/(9)+sin.(10pi)/(9))),(" "+sin.(9pi)/(9)):}`
= 0
137.

When `theta=(17pi)/3`, then the value of`(tan theta-cot theta)` is: (a) `2/sqrt3` (2) `-2/sqrt3` (3) `1/(2sqrt3)` (d) None

Answer» `theta=17/3pi=(5+2/3)pi`
`=6pi-pi/3`
`tantheta-cottheta=tantheta-1/tantheta`
`tan(6pi-pi/3)-1/tan(6pi-pi/3)`
`tan(-pi/3)-1/tan9-pi/3)`
`-sqrt3-1/-sqrt3`
`2/sqrt3`
Option B is correct.
138.

`(tan) (11pi)/3 (-2 sin) (4pi)/6 - 3/4 (cosec^2) pi/4 +(4cos^2) (17pi)/6 = (3-4sqrt3)/2`

Answer» `tan((11pi)/3) = tan((9pi+2pi)/3) = tan(3pi+(2pi)/3) = tan(pi+(2pi)/3) = tan((2pi)/3) = -sqrt3`
`sin((4pi)/6) = sin((2pi)/3) = sqrt3/2`
`cosec^2(pi/4) = (sqrt 2)^2 = 2`
`cos^2((17pi)/6) = cos^2((18pi-pi)/6) = cos^2(3pi-pi/6) = cos^2(pi-pi/6) = (-sqrt3/2)^2 = 3/4`
So, putting these values in the given expression,
`-sqrt3-2*sqrt3/2-3/4*2+4*3/4 = -2sqrt3+3/2 = 1/2(3-4sqrt3) `
which is the desired value.
139.

State if the given pairs of angles are coterminal. (a) `-185^@,535^@" (b) "1000^@,270^@" (c ) "(15pi)/4,-(17pi)/4`

Answer» Correct Answer - (a) coterminal (b) not coterminal (c ) coterminal
(a) `alpha=-185^@,beta=535^@`
`beta-alpha=535^@-(-185^@)=270^@`
Hence, given angles are coterminal.
(b) `alpha=1000^@,beta=270^@`
`alpha-beta=1000^@-270^@=730^@`
Hence, given angles are not coterminal.
(c ) `alpha=(15pi)/4,beta=-(17pi)/4`
Here `alpha-beta=(15pi)/4-(-(17pi)/4)=(32pi)/4=8pi=4(2pi)`
Hence, given angles are coterminal.
140.

State if the given angles are coterminal.`alpha=185^0,beta=-545^0``alpha=(17pi)/(36),beta(161pi)/(36)`

Answer» (i) `alpha=185^@,beta-545^@`
Hence, `alpha-bet=185^@-(-545^@)=730^@`
Hence, the given angles are not coterminal.
`(ii)a=(17pi)/36,beta=(161pi)/36`
Hence, `beta-alpha=(161pi)/36-(17pi)/36=(144pi)=36=4pi`
Hence, the given angles are coterminal.
141.

If `tanbeta=(tanalpha+tangamma)/(1+tanalphatangamma)dot`prove that `sin2beta=(sin2alpha+sin2gamma)/(1+sin2alphasin2gamma)`.

Answer» `tanbeta = (tanalpha+tan gamma)/(1+tanalphatangamma)`
`=>tan beta = (sinalpha/cosalpha+singamma/cosgamma)/(1+sinalpha/cosalpha*singamma/cosgamma)`
`=(sinalphacosgamma + singammacosalpha)/(cosalphacosgamma+sinalphasingamma)`
`=>tan beta=(sin(alpha+gamma))/(cos(alpha-gamma))`
Now, `sin2beta = (2tanbeta)/(1+tan^2beta)`
`=(2(sin(alpha+gamma))/cos(alpha-gamma))/(1+sin^2(alpha+gamma)/cos^2(alpha-gamma) `
`=(2sin(alpha+gamma)cos(alpha-gamma))/(cos^2(alpha-gamma) + sin^2(alpha+gamma))`
`=(sin(alpha+gamma+alpha-gamma) + sin(alpha+gamma-alpha+gamma))/(((1+cos2(alpha-gamma))/2)+((1-cos2(alpha+gamma))/2))`
`=(sin2alpha+sin2gamma)/(1+1/2(cos(alpha-gamma) - cos(alpha+gamma)))`
`=(sin2alpha+sin2gamma)/(1+1/2(2sin2alphasin2gamma)`
`=(sin2alpha+sin2gamma)/(1+sin2alphasin2gamma) = R.H.S.`
142.

If `cosalpha+cosbeta=0=sinalpha+sinbeta`, then prove that `cos2alpha +cos2beta=-2cos(alpha +beta)`.

Answer» Given that, `" "cosalpha+cosbeta=0=sinalpha+sinbeta`
`rArr" "(cosalpha+cosbeta)^(2)-(sinalpha+sinbeta)^(2)=0`
`rArr" "cos^(2)alpha-sin^(2)beta+2cosalphacosbeta-sin^(2)alpha-sin^(2)beta-2sinalphasinbeta= 0`
`rArr" "cos^(2)alpha-sin^(2)alpha+cos^(2)beta-sin^(2)beta=2(sinalphasinbeta-cosalphacosbeta)` ` rArr" "cos2alpha+cos2beta=-2cos(alpha+beta)" "` Hence proved.
143.

If `cosx-sinalphacotbetasinx=cosa ,`then the value of `tan(x/2)`is(a)`-tan(alpha/2)cot(beta/2)`(b) `tan(alpha/2)tan(beta/2)`(c)`-cot((alphabeta)/2)tan(beta/2)`(d) `cot(alpha/2)cot(beta/2)`

Answer» `cosx-sinalphacotbetasinx = cosalpha`
`=>(1-tan^2(x/2))/(1+tan^2(x/2)) - sinalphacotbeta((2tan(x/2))/(1-tan^2(x/2))) = cosalpha`
`=>1-tan^2(x/2) - sinalphacotbeta(2tan(x/2)) = cosalpha - cosalphatan^2(x/2)`
`=>tan^2(x/2)(1+cosalpha) +2sinalphacotbetatan(x/2) - (1-cosalpha) = 0`
`=>tan^2(x/2)(1+cosalpha) +2sinalpha(cosbeta/sinbeta)tan(x/2) - (1-cosalpha) = 0`
`=>tan^2(x/2)(1+cosalpha) +2sinalpha((cos^2(beta/2)-sin^2(beta/2))/(2sin(beta/2)cos(beta/2)))tan(x/2) - (1-cosalpha) = 0`
`=>tan^2(x/2)(1+cosalpha) +sinalpha(cot(beta/2)-tan(beta/2))tan(x/2) - (1-cosalpha) = 0`
`=>(tan(x/2)+cot(beta/2)tan(alpha/2))(tan(x/2)-tan(beta/2)tan(alpha/2)) = 0`
`=>(tan(x/2)+cot(beta/2)tan(alpha/2)) = 0 or (tan(x/2)-tan(beta/2)tan(alpha/2)) = 0`
`=>tan(x/2) = - cot(beta/2)tan(alpha/2) or tan(x/2) = tan(beta/2)tan(alpha/2)`
So, options `(a)` and `(b)` are the correct options.
144.

If `"cot"(alpha+beta)=0,`then `"sin"(alpha+2beta)`can be(a)`-sinalpha`(b) `sinbeta`(c) `cosalpha`(d) `cosbeta`

Answer» `cot(alpha+beta) = 0`
`=>alpha+beta = pi/2`
Now, `sin(alpha+2beta) = sin(alpha+beta+beta)`
`=sin(pi/2+beta)`
`=cosbeta`
`:. sin(alpha+2beta) = cos beta`
So, option `(d)` is the correct option.
145.

If `cosalpha+cosbeta=(3)/(2)and"sin"alpha+sinbeta=(1)/(2)andtheta` is the arithmetic mean of `alphaandbeta` , then `sin2theta+cos2theta` is equal toA. `(3)/(5)`B. `(7)/(5)`C. `(4)/(5)`D. `(8)/(5)`

Answer» Correct Answer - B
`cosalpha+cosbeta=(3)/(2)andsinalpha+sinbeta=(1)/(2)`
`rArr2cos((alpha+beta)/(2))cos((alpha-beta)/(2))=(3)/(2)`
and `2sin((alpha+beta)/(2))cos((alpha-beta)/(2))=(1)/(2)`
`rArrtan((alpha+beta)/(2))=(1)/(3)`
`becausetheta=(alpha+beta)/(2)` [Given]
`rArr2theta=alpha+beta`
`thereforesin2theta+cos2theta=sin(alpha=beta)+cos(alpha+beta)`
`=(2tan((alpha+beta)/(2)))/(1+tan^(2)((alpha+beta)/(2)))+(1-tan^(2)((alpha+beta)/(2)))/(1+tan^(2)((alpha+beta)/(2)))`
`[becausesin2theta=(2tantheta)/(1-tan^(2)theta),cos2theta=(1-tan^(2)theta)/(1+tan^(2)theta)]`
`=(2((1)/(3)))/(1+((1)/(3))^(2))+(1-((1)/(3))^(2))/(1+((1)/(3))^(2))=(2)/(3)xx(9)/(10)+(8)/(9)xx(9)/(10)=(6)/(10)+(8)/(10)=(7)/(5)`
146.

If `cosalpha=1/2(x+1/x)` `cosbeta=1/2(y+1/y)` then `cos(alpha-beta)` is equal toA. `sin(alpha+beta+gamma)=singammaAAgammainR`B. `cosalphacosbeta=1AAalpha,beta inR`C. `(cosalpha+cosbeta)^2=4AAalpha,beta in R`D. `sin (alpha+beta+gamma)=sinalpha+sinbeta+singammaAAa,b,gammainR`

Answer» Correct Answer - A::B::C::D
`cosalpha=1/2(x+1/x)andcosbeta=1/2(y+1/y)`
since `xygt0`,we have
`x+1/2ge2orle-2andy+1/yge2orle-2`
`rArrcosalpha=1,cosbeta=1`
`or cosalpha=-1,cosbeta=-1`
`:. cosalphacosbeta=1`
`rArralpha+beta" is an even multiple of " pi`
`(cosalpha+cosbeta)^2=4`
`rArr sin(alpha+beta+gamma)=sin(2npi+gamma)=singamma`
Also, `sinalpha=sinbeta=0`
147.

For `0ltphiltpi//2," if" x=sum_(n=0)^(oo) cos^(2n)phi,y=sum_(n=0)^(oo) sin^(2m)phi,z=sum_(n=0)^(oo)cos^(2n)phisin^(2n)phi`,thenA. `xyz=xz+y`B. `xyz=xy+z`C. `xyz=x+y+z`D. `xyz=yz+x`

Answer» Correct Answer - B::C
All are infinte geometric progression with common ratio lt 1
`x=1/(1-cos^2phi)=1/sin^2phi,y=1/(1-sin^2phi)=1/cos^2phi`,
`z=1/(1-cos^2phisin^2phi)`
Now, `xy+z=1/(sin^2phicos^2phi)+1/(1-sin^2phicos^2phi)`
`=1/(sin^2phicos^2phi(1-sin^2phicos^2phi))`
`or xy+z=xyz ...(i)`
Clearly, `x+y=(sin^2phi+cos^2phi)/(sin^2phicos^2phi)=xy`
`:. x+y+z=xyz` [using Eq. (i)]
148.

Four numbers `n_1,n_2,n_3andn_4` are given as `n_1=sin15^@-cos15^@,n_2=cos93^@+sin93^@,n_3=tan27^@-cot27^@,n_4=cot127^@+tan127^@`,ThenA. `n_1lt0`B. `n_2lt0`C. `n_3lt0`D. `n_4lt0`

Answer» Correct Answer - A::C::D
`n_1=sin15^@-cos15^@lt-ve" "(cos15^@gtsin15^@)`
`n_2=cos93^@+sin93^@`
`=-sin3^@[email protected]" "(cos3^@gtsin3^@)`
`n_3=tan27^@-cot27^@lt0" "(tan27^@[email protected])`
`n_4=cot127^@+tan127^@lt0" "(tan127^@,cot127^@lt0)`.
149.

For each natural number `nge2`, prove that `sinx_1cosx_2+sinx_2cosx_3+…+sinx_ncosx_1len//2`(where `x_1,x_2,…,x_n` are arbitrary real numbers).

Answer» Let the required sum be `S_(n)`. We know that
`(sinx_1-cosx_2)^2=(sinx_2-cosx_3)^2+...+(sinx_(n-1)-cosx_n)^2+(sinx_n-cosx_1)^2ge0`
or `(sin^2x_1-cos^2x_2)+(sin^2x_2-cos^2x_3)(sin^2x_3+cos^2x_3)+...+(sin^2x_(n)-cos^2x_n)ge2S_n`
`rArr nge2S_n`
or `S_nlen//2`
150.

If `piA. `2 csc alpha`B. `-2 csc alpha`C. `csc alpha`D. `-csc alpha`

Answer» Correct Answer - B