Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

General solution of `secx+sqrt(2)=0` isA. `2npipm(pi)/(4), ninZ`B. `2npipm(3pi)/(4), ninZ`C. `2npipm(5pi)/(4), ninZ`D. `2npipm(7pi)/(4), ninZ`

Answer» Correct Answer - B
152.

If `sinA=sin^2B and 2cos^2A=3cos^2B` then the triangle ABC isA. right angledB. obtuse angledC. ospscelesD. equilateral

Answer» Correct Answer - B
`sinA=sin^2Band2cos^2A=3cos^2B`
`rArr2-2sin^2A=3-3sin^2B`
`rArr2sin^2A-3sinA+1=0`
`rArr(2sinA-1)(sinA-1)=0`
`rArrA=30^@rArrA=90^@`
If `A=30^@rArrB=45^@rArrC=105^@`
If `A=90^@rArrB=90^@`, which is not possible
153.

If `sinA=sin^2Ba n d2cos^2A=3cos^2B`then the triangle `A B C`isright angled (b) obtuse angled(c)isosceles (d) equilateral

Answer» `sinA = sin^2B ->(1)`
`2cos^2A = 3cos^2B`
`=>2cos^2A = 3(1-sin^2B)`
From (1),
`=>2(1-sin^2A) = 3(1-sinA)`
`=>2sin^2A - 3sinA+1 = 0`
`=>2sin^2A - 2sinA-sinA+1 = 0`
`=>2sinA(sinA-1)-1(sinA-1) = 0`
`=>(2sinA-1)(sinA-1) = 0`
`=>sinA = 1 or sinA = 1/2`
`=>A = 90^@ or A = 30^@`
When `A = 90^@`, `sin^2B = 1 => B = 90^@`, which is not possible for a triangle.
When `A = 30^@`, `sin^2B = 1/2 => B = 45^@`
`=>C = (180-30-45)^@ = 75^@`
`:. Delta ABC` is an obtuse angle triangle.
So, option-`(b)` is the correct option.
154.

If `sinx+sin^2x=1`, then find the value of `cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1 `

Answer» Correct Answer - 3
We have `sinx+sin^2x=1`
`or sinx=1-sin^2xorsinx=cos^2x`
Now, `cos^12x+3sin^10x+3sin^4x+sin^3x-2`
`=sin^6x+3sin^5x+3sin^4x-2`
`=(sin^2x)^3+3(sin^2x)^2sinx+3(sin^2x)`
`(sinx)^2+(sinx)^3-2`
`=(sin^2x+sinx)^3-2=(1)^3-2=-1`
155.

If `sin^2(theta-alpha)c a salpha=cos^2(theta-alpha)sinalpha=msinalphacosalpha,`then prove that `|m|geq1/(sqrt(2))`

Answer» `sin^2(theta-alpha)cosalpha=msinalphacosalpha`
`sin^2(theta-alpha)=msinalpha-(1)`
`cos^2(theta-alpha)sinalpha=msinalphacosalpha`
`cos^2(theta-alpha)=mcosalpha-(2)`
adding equation 1 and 2
`sin^2(theta-alpha)+cos^2(theta-alpha)=m(sinalpha+cosalpha)`
`1=m(sinalpha+cosalpha)`
`[sinalpha+cosalpha=1/m]1/sqrt2`
`1/sqrt2sinnalpha+1/sqrt2cosalpha=1/(sqrt2m)`
`sin(alpha+pi/4)=1/(sqrt2m)`
`|sinx|<=1`
`|sin(alpha+pi/4)|<=1`
`|1/(sqrt2m)|<=1`
`|1/m|<=sqrt2`
`|m|>=1/sqrt2`.
156.

General solution of `8tan^(2)((x)/(2))=1+secx` isA. `2npipmcos^(-1)((2)/(3)), ninZ`B. `2npipmcos^(-1)((1)/(3)), ninZ`C. `npipmcos^(-1)((2)/(3)), ninZ`D. `npipmcos^(-1)((1)/(3)), ninZ`

Answer» Correct Answer - B
157.

Find the maximum value of `4sin^2x+3cos^2x+sin(x/2)+cos(x/2)dot`

Answer» `I=4sin^2x+3(1-sin^2x)+sin(x/2)+cos(x/2)`
`I=4sin^2x+3-3sin^2x+sin(x/2)+cos(x/2)`
`I=sin^2x+3+sin(x/2)+cos(x/2)`
`I=sin^2x+3+sqrt2[1/sqrt2sin(x/2)+cos(x/2)*1/sqrt2]`
`=3+sin^2x+sqrt2sin[pi/4+x/2]`
`sin(pi/4+x/2)=1`
When `x=pi/2`
i.e.`sin(pi/4+pi/4)=sin(pi/2)=1`
Max`I=x=pi/2`
`I(atx=pi/2)=3+sin^2(pi/2)+sqrt2`
`=3+1+sqrt2`
`=4+sqrt2`.
158.

If `A`is the area and `2s`is the sum of the sides of a triangle, then`Alt=(s^2)/4`(b) `Alt=(s^2)/(3sqrt(3))``2RsinAsinBsinC`(d) `non eoft h e s e`

Answer» `25=a+b+c`
`A^2=s(s-a)(s-b)(s-c)`
`AM>=GM`
`(s+(s-a)+(s-b)+(s-c))/4=(s(s-a)(s-b)(s-c))^(1/4)`
`(4s-2s)/4=(A^2)^(1/4)`
`s/2>=(A)^(1/2)`
`AM>=GM`
`((s-a)+(s-b)+(s-c))/3>=((s-a)(s-b)(s-c))^(1/3)`
`s/3>=((A^2/S)^(1/3)`
`S^3/27>=A^2/S`
`A^2/S<=S^3/27`
`A^2<=s^4/27`
`A<=S^2/(3sqrt3)`
Option B is correct.
159.

If `A=pi/5,`then find the value of `sum_(r=1)^8tan(r A)*tan((r+1)A)dot`

Answer» `tan((r+1)A-(rA))=(tan(r+1)A-tan(rA))/(1+tan(r+1)A*tan(rA))`
`1+tan(rA)*tan(r+1)A=(tan(r+1)A-tan(rA))/(tanA)`
`tan(rA)*tan(r+1)A=(tan(r+1)A-tan(rA))/(tanA)-1`
`S=sum_(r=1)^8(tan(r+1)A-tan(rA))/(tanA)-sum_(r=1)^8 1`
`=1/(tanA)sum_(r=1)^8(tan(r+1)A-tan(rA)-8`
`=1/(tanA)[(tan2A-tanA)+(tan3A-tan2A)+...(tan9A-tan8A]-8`
`=1/(tanA)[tan9A-tanA]-8`
`tan9A=tan(9/5pi)=tan(2pi-pi/5)`
`Ss=1/(tanA)(-tanA-tanA)-8`
`=(-2tanA)/(tanA)-8`
`=-2-8`
`S=-10`.
160.

`sin(pi/18)*sin(5pi/18)*sin(7pi/18)`

Answer» by calculating`pi /18 = 10^@`
we have to find `sin 10^@, sin 50^@, sin 70^@`
`1/2 sin 10^@ [cos(70^@-50^@) + cos(70^@ +50^@)]`
`1/2 sin 10^@[cos 20^@ - cos 120^@]`
`1/2sin10^@[1-2sin^2 10^@ + 1/2]`
`1/2[(3-4sin^2 10^@)Sin 10^@/2]`
`(3*sin10^@ - 4sin^3 10^@)/4`
`1/4sin 30^@ = 1/8`
161.

The minimum value of`sqrt((3sin x-4cosx-10)(3sinx+4cosx-10))`is ________

Answer» `f(x)=(3sinx-4cosx-10)(3sinx+4cosx-10)`
`f(x)=[(3sinx-10)-4cosx][(3sinx-10)+4cosx]`
`f(x)=(3sinx-10)^2-16cos^2x`
`f(x)=9sin^2x+100-60sinx-16(1-sin^2x)`
`f(x)=25sin^2x+84-60sinx`
`f(x)=(5sinx-6)^2+48`
at sinx=1
`f(x)=(5-6)^2+48=49`
Minimum value of`sqrtf(x)=sqrt49=7`.
162.

Let `f(theta)=1/(1+(ottheta)^x)and S=sum_(theta=1^@)^(89^@) f(theta)`, then the value of `sqrt5` is _________ .

Answer» Correct Answer - 44.5
We have ,`f(theta)=((sintheta)^x)/((costheta)^x+(sintheta)^x)`
`rArr f(theta)+f(pi/2-theta)=1`.
`:. S=underset(theta=1^@)overset(89^@)sumf(theta)=f(1^@)+f(2^@)+...+f(88^@)+f(89^@)`
`=(ubrace(1+1+1+.........+1)_("44 times"))+1/2=44+1/2=89/2`
163.

If `K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)),`then the numerical value of `K`is_____

Answer» `k=1/2[2sinpi/18*sin5/18pi]*sin7/18pi`
`k=1/2[cos(5/18pi-pi/18)-cos(5/18pi+pi/18)]*sin7/18pi`
`k=1/2[cos4/18pi*sin7/18pi-cospi/3*sin7/18pi]`
`k=1/2[1/2(sin(7/18pi+4/18pi)+sin(7/18pi-4/18pi))-1/2sin7/18pi]`
`k=1/2[1/2(sin11/18pi+sinpi/6)-1/2sin7/18pi]`
`k=1/2[1/2sin7/18pi+1/2*1/2-1/2sin7/18pi]`
`k=1/2[1/4]`
`k=1/8`.
164.

Find the values of `xa n dy`for which cosec `theta=(x^2-y^2)/(x^2+y^2)`is satisfied.

Answer» `x^2-y^2<=x^2+y^2`
`cosectheta>=1`
`cosectheta<=-1`
`(x^2-y^2)/(x^2+y^2)=1`
`x^2-y^2=a^2+y^2`
`y=0`
`(x^2-y^2)/(x^2+y^2)=-1`
`x^2-y^2=-(x^2+y^2)`
`x=0`.
165.

The minimum value of`sqrt((3s in x-4cosx-10(3sinx+4cosx-1))`is ________

Answer» Correct Answer - 7
`f(x) =9sin^2x-16cos^2x-10(3sinx-4cosx)-10(3sinx+4cosx)+100`
`25 sin^2x-16cos^2x+84`
`=(5sinx-6)^2+48`
The minimum value of f(x) occurs when sin x = 1
Therefore , the minimum value of `sqrt(f(x)) is 7`.
166.

The set of all real numbers `a`such that `a^2+2a ,2a+3,a n da^2+3a+8`are the sides of a triangle is_____

Answer» `x=a^2+2a`
`y=2a+3`
`z=a^2+3a+8`
`x+y>Z`
`a^2+4a+3>a^2+3a+8`
`a>5`
`y+z>x`
`a^2+5a+11>a^2+2a`
`a>-11/3`
`z+x>y`
`2a^2+sqrta+8>2a+3`
`2a^2+3a+5>0`
D is negative.
`a>5`.
167.

Suppose that for some angles `xa n dy ,`the equations `sin^2x+cos^2y=(3a)/2a n dcos^2x+sin^2y=(a^2)/2`hold simultaneously. the possible value of `a`is ___________

Answer» Correct Answer - 1
`sin^2x+cos^2y=(3a)/2 ...(i)`
`andcos^2x+sin^2y =a^2/2 ...(ii)`
Adding (i) and (ii), we get
`2=(3a)/2 +a^2/2`
`or a^2+3a-4=0`
`or (a+4)(a-1)=0`
`:. A=-4("rehected"),a=1`
168.

Prove that `1+cot theta

Answer» `1+cot theta - cot(theta/2) = 1+(cot^2(theta/2) - 1)/(2cot(theta/2)) - cot(theta/2)`
`=(2cot(theta/2)+cot^2(theta/2)-1 -2cot^2(theta/2))/(2cot(theta/2))`
`=-(cot^2(theta/2)-2cot(theta/2)+1)^2/(2cot(theta/2))`
`=-(cot theta-1)^2/(2cot(theta/2))`
As `-(cot (theta/2)-1)^2/(2cot(theta/2))` is always less than or equal to `0`,
`:. 1+cot theta - cot(theta/2) le 0`
`=>1+cot theta le cot(theta/2).`
Now, when equality sign holds,
`(cot(theta/2) - 1)^2 = 0`
`=>cot (theta/2) = 1`
`=>theta/2 = pi/4`
`=>theta = pi/2.`
169.

If sin 2x + sin x = 0, then x is(A)`npi + pi/3, 2npi + pi/6`(B) `npi , npi + (-1)^n pi/3`(C) `npi, 2npi + 2pi/3, 2npi - 2pi/3`(D) `2npi, npi + 2pi/3`

Answer» `sin2x+sinx = 0`
`=>2sinxcosx+sinx = 0`
`=>sinx(2cosx+1) = 0`
So, `sinx = 0` and `2cosx+1 = 0`
`=>sinx = 0` and `cosx = -1/2`
`=> x = npi ` and `x = 2npi+-(2pi)/3`
So, option `C` is the correct option.
170.

In triangle ABC, angle A is greater than angle B. If the measure of angles A and B satisfy the equation `3sinx-4sin^3x-k=0`. (A) `pi/3` (B) `pi/2` (C) `(2pi)/3` (D) `(5pi)/6`

Answer» `A>B`
`3sinx-4sin^3x-k=0`
`sin3x=k`
`sin3A=k`
`sin3B=k`
`sin3A-sin3B=0`
`2cos((3A+3B)/2)sin((3A-3B)/2)=0`
`A+B=60`
Now, we know
`A+B+C=180`
`C=120`.
171.

The equality `sin A+ sin 2A + sin 3A = 3` holds for some real value of A.

Answer» False
Given that, `sinA+sin2A+sin3A=3`
It is possible only if `sinA, sin2A, sin3A` each has a value one because maximum value of `sinA` is a certain angle is 1. Which is not possible because angle are different.
172.

Number of solution of the equation `cos^4 2x+2sin^2 2x=17(cosx+sinx)^8,0

Answer» `cos^4 2x+2sin^2 2x=17(cosx+sinx)^8`
`(cos^2 2x)^2+2(sin^2 2x)=17((cosx+sinx)^2)^4`
`(1-sin^2 2x)^2+2sin^2 2x=17(cos^2x+sin^2x+2sinxcosx)^4`
`1+sin^4 2x-2sin^2 2x+2sin^2 2x=17(1+sin2x)^4`
`1+sin^4 2x=17(1+sin2x)^4`
`1+y^2=1(1+y)^4`
Let` sin2x=y`
`1+y^4=17(1+y)^2(1+y)^2`
`(1+y^4)=17(1+2y+y^2)`
`1+y^4+17(1+4y^2+y^4+2y^2+4y^2+4y)`
`16y^4+102y^2+68y^3+68y+16=0`
`4y^2+17y^3+28y^2+17y+8=0`
`y=-1/2`
`sin2x=-1/2`
`2x=3pi+pi/6`
`x=7/12pi,11/12pi,19/12pi,23/12pi`.
173.

If `"cosec"x=1+cotx`, then `x=2npi,2npi+(pi)/(2)`

Answer» True
Given that, `" ""cosec"x=1+cotx`
`rArr" "(1)/(sinx)=1+(cosx)/(sinx)rArr(1)/(sinx)=(sinx+cosx)/(sinx)`
`rArr" "sinx+cosx=1`
`rArr" "(1)/(sqrt(2))*sinx+(1)/(sqrt(2))*cosx=(1)/(sqrt(2))`
`rArr" "sin""(pi)/(4)sinx+cosxcos""(pi)/(4)=(1)/(sqrt(2))`
`rArr" "cos(x-(pi)/(4))=cos""(pi)/(4)`
`therefore" "x-(pi)/(4)=2npipm(pi)/(4)`
For positive sign, `" "x=2npi+(pi)/(4)+(pi)/(4)=2npi+(pi)/(2)`
For negative sign, `" "x=2npi-(pi)/(4)+(pi)/(4)=2npi`
174.

Prove that`cos(2pi)/(15)cos(4pi)/(15)cos(8pi)/(15)cos(14pi)/(15)=1/(16)`

Answer» `cos2/15picos4/15picos8/15picos14/15pi=1/16`
`=-cospi/15cos2/15picos4/15picos8/15pi`
`=cosAcos2Acos2^2A....cosA^nA=(sin2^nA)/(2^nsinA)`
`A=pi/15`
`=-cosAcos2Aco2^2Acos2^3A`
`=(-sin2^4(16/15pi))/(2^4sin(pi/16))`
`=(-sin(16/15pi))/(16sin(pi/15))`
`=-[-sinpi/15]/(16sinpi/15)`
`cos2/15picos4/15picos8/15picos14/15pi=1/16`.
175.

`sin 10^@` is greater than `cos 10^@`.

Answer» False
`" "sin10^(@)=sin(90^(@)-80^(@))`
`" "sin10^(@)=cos80^(@)`
`therefore" "cos80^(@)ltcos10^(@)`
Hence, `" "sin10^(@)ltcos10^(@)`
176.

One value of `theta` which satisfies the equation `sin^(4)theta-2sin^(2)theta-1` lies between 0 and `2pi`.

Answer» False
Given equation, `" "sin^(4)theta-2sin^(2)theta-1=0` ltBrgt `rArr" "sin^(2)theta=(2pmsqrt(4+4))/(2)`
`rArr" "sin^(2)theta=(2pm2sqrt(2))/(2)`
`rArr" "sin^(2)theta=(1+sqrt(2))or (1-sqrt(2))rArr-1lesinthetale1`
`rArr" "sin^(2)thetale1`
`because " "sin^(2)theta=sqrt(2+1)or (1-sqrt(2))`
which is not possible.
177.

Prove that :`16 cos 2pi/15 cos 4pi/15 cos 8pi/15 cos16pi/15 = 1`

Answer» Here, we will use,
`2sinxcosx = sin2x`
Now,
`L.H.S. = 16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)cos((16pi)/15)`
`=16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)cos(pi+pi/15)`
`=16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)(-cos(pi/15))`
`=-16cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)`
`=8/sin(pi/15)*2sin(pi/15)cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)`
`=8/sin(pi/15)*sin((2pi)/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)`
`=4/sin(pi/15)*2sin((2pi)/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)`
`=4/sin(pi/15)*sin((4pi)/15)cos((4pi)/15)cos((8pi)/15)`
`=2/sin(pi/15)*2sin((4pi)/15)cos((4pi)/15)cos((8pi)/15)`
`=2/sin(pi/15)*sin((8pi)/15)cos((8pi)/15)`
`=sin((16pi)/15)/(sin((pi)/15))`
`=sin(pi+pi/15)/(sin((pi)/15))`
`=(sin((pi)/15))/(sin((pi)/15))`
`=1 = R.H.S.`
178.

`cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)`

Answer» True
`" "LHS=cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)`
`" "=cos24^(@)cos48^(@)cos96^(@)cos192^(@)`
`" "=(1)/(16sin24^(@))[(2sin24^(@)cos24^(@))(2cos48^(@))(2cos96^(@))(2cos192^(@))]` ltBrgt `" "=(1)/(16sin24^(@))[2sin48^(@)cos48^(@)(2cos96^(@))(2cos192^(@))]`
`" "=(1)/(16sin24^(@))` `[(2sin96^(@)cos96^(@))(2cos192^(@))]`
` " "=(1)/(16sin24^(@))[2sin192^(@)cos192^(@)]`
`" "=(1)/(16sin24^(@))sin384^(@)=(sin(360^(@)+24^(@)))/(16sin24^(@))`
`" "=(1)/(16)=RHS" "` Hence proved
179.

`(cos21^(@) -sin21^(@))/(cos21^(@) + sin21^(@))`A)`tan21^(@)`B)`cot66^(@)`C)`tan42^(@)`D)`cot42^(@)`A. `tan21^(@)`B. `cot66^(@)`C. `tan42^(@)`D. `cot42^(@)`

Answer» Correct Answer - B
180.

If `b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost)`is equal to`1/2(log)_b(a-b^(2x))`(b) `2log(1-b^(x/2))``(log)_bsqrt(1-b^(2x))`(d) `sqrt(1-x^2)`

Answer» `log_b(sint)=x`
`sint=b^x`
`sin^2t+cos^2t=1`
`cos^2t=1-sin^2t`
`cos^2t=1-(b^x)^2`
`cost=sqrt(1-c^(2x))`
`log_acost=log_bsqrt(1-b^(2x))`
Option C is correct.
181.

If `P`is a point on the altitude AD of the triangle ABC such the `/_C B P=B/3,`then AP is equal to`2asinC/3`(b) `2bsinC/3``2csinB/3`(d) `2csinC/3`

Answer» We can create a diagram using the given details.
Please refer to video to see the diagram.
From the diagram,
`/_ABP = (2B)/3 and /_APB = 90+B/3`
In `Delta APB`,
`(AP)/(sin((2B)/3)) = c/(sin(90+B/3))`
`=>(AP)/(2sin(B/3)cos(B/3)) = c/(cos(B/3))`
`=>AP = 2csin(B/3)`
182.

If `bgt1, sintgt0,costgt0andlog_b(sint)=x," then "log_b(cost)` is equal toA. `1/2log_b(1-b^(2x))`B. `2log(1-b^(x//2))`C. `log_bsqrt(1-b^(2x))`D. `sqrt(1-x^2)`

Answer» Correct Answer - A::C
`log_bsin_t=xorsint=b^x`
Let `log_b(cost)=y,then b^y=cost`
`or b^(2y)=cos^2t=1-sin^2t=1-b^(2x)`
`or 2y=log_b(1-b^(2x))`
`or y=1/3log_b(1-b^(2x))=log_bsqrt(1-b^(2x))`
183.

Prove that: `2tan^(-1)1/2+tan^(-1)1/7=tan^(-1)(31)/(17)`A. `tan^(-1)((31)/(17))`B. `tan^(-1)((25)/(21))`C. `tan^(-1)((17)/(3))`D. `tan^(-1)((21)/(25))`

Answer» Correct Answer - A
184.

If `(1+sint)(1+cost)=5/4`then find the value of `(1-sint)(1-cost)dot`

Answer» `(1+sint)(1+cost) = 5/4`
`=>1+sint+cost+sintcost = 5/4`
`=>(sint+cost) = 1/4-sintcost->(1)`
`=>(sint+cost)^2 = (1/4-sintcost)^2`
`=>sin^2t+cos^2t+2sintcost = 1/16+(sintcost)^2 -(sintcost)/2`
`=>1+sin2t = 1/16+(sin^2 2t)/4 - (sin2t)/4`
`=>16+16sin2t = 1+4sin^2 2t -4sin2t`
`=>4sin^2 2t -20sin2t -15 = 0`
`:. sin 2t = (20+-sqrt(400-4(-15)(4)))/8 = (5-2sqrt10)/2`
Here, we have rejected the value `(5+2sqrt10)/2` as it becomes more than `1`.
Now, `(1-sint)(1-cost) = 1-(sint+cost)+sintcost`
`=1-(1/4-sintcost)+sintcost`
`=3/4+sin2t`
`=3/4+5/2-sqrt10`
`=13/4-sqrt10`
`:. (1-sint)(1-cost) = 13/4 - sqrt10.`
185.

Let `P={theta:sintheta-costheta=sqrt2costheta}and Q={theta: sintheta+costheta=sqrt2sintheta}` be two sets. ThenA. `psubQ and Q-P=phi`B. `QcancelsubP`C. `PcancelsubQ`D. P=Q

Answer» Correct Answer - D
In set P, `sintheta=(sqrt2+1)costheta`
`or tantheta=sqrt2+1`
In set Q, `(sqrt2-1)sintheta=costheta`
`or tan thetaa=1/(sqrt2-1)=sqrt2+1`
`rArr P=Q`
186.

If `cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13)` , where `alpha` lie between 0 and ` (pi)/(4)`, then find that value of `tan2alpha`.

Answer» Given that, ` cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13)`
`rArr" "sin(alpha+beta)=sqrt(1-(16)/(25))=sqrt((9)/(25))= pm (3)/(5)`
`therefore" "sin(alpha+beta)=(3)/(5) `
and `" "cos(alpha-beta)=sqrt(1-(25)/(169))=sqrt((144)/(169))=pm(12)/(13) `
`" " cos(alpha-beta)=(12)/(13)`
Now, `tan(alpha+beta)=(sin(alpha+beta))/(cos(alpha+beta))" "`[since, `alpha` lies between 0 and ` (pi)/(4)`
`((3)/(5))/((4)/(5))=(3)/(4)`
and `" "tan(alpha-beta)=(sin(alpha-beta))/(cos(alpha-beta))=((5)/(13))/((12)/(13))=(5)/(12)`
`therefore" "tan2alpha= tan(alpha+beta+alpha-beta)`
` " "=(tan(alpha+beta)+ tan (alpha-beta))/(1- tan(alpha+ beta)*tan(alpha-beta))" "[becausetan(xpmy)=(tanxpmtany)/(1pmtanx*tany)] `
`" "=((3)/(4)+(5)/(12))/(1-(3)/(4)*(5)/(12))=((9+5)/(12))/((16-5)/(16))=(14xx16)/(12xx11)=(56)/(33)`
187.

The set of values of `lambda in R`such that `sin^2theta+costheta=lambdacos^2theta`holds for some `theta,`is`(-oo,1]`(b) (`-oo,-1]``varphi`(d) `[-1,oo`)

Answer» `sin^2theta+costheta=lambdacos^2theta`
`sin^2theta/cos^2theta+cos^2theta/cos^2theta=lambdacos^2theta/cos^2theta`
`tan^2theta+sectheta=lambda`
`sec^2theta-1+sectheta-lambda=0`
`sec^2theta+sectheta-(lambda+1)=0`
`sectheta=(-1pmsqrt(1+4(lambda+1)))/2`
`=(-1pmsqrt(4lambda+5))/2`
`4lambda+5>=0`
`lambda>=-5/4`
`(-1pmsqrt(4lambda+5))/2>=1`
`sqrt(4lambda+5)>=3`
`4lambda+5>=9`
`4lambda>=4`
`lambda>=1-(1)`
`lambda<=-1-(2)`
`lambda in[-1,oo)`
Option D is correct.
188.

Th range of k for which the inequaliity `kcos^2x-kcosx+1>=0 AA x in(-oo,oo) is`A. `klt- 1/2`B. `kgt4`C. `-1/2lekle4`D. `1/2lekle5`

Answer» Correct Answer - C
`kcos^2x-kcos+1le0AAx in(-oo,oo)`
`rArrk(cos^2x-cosx)+1ge0`
But `cos^2x-cosx=(cosx-1/2)^2-1/4`
`rArr -1/4lecos^2x-cosxle2`
Now, from (i), we get `2k+1ge0rArr kge-1/2`
Also, `-k/4+1ge0`
`rArr kle4`
`rArr -1/2lekle4`
189.

If `cos^2x-(c-1)cosx+2cgeq6`for every `x in R ,`then the true set of values of `c`is`(2,oo)`(b) `(4,oo)`(c) `(-oo,-2)`(d) `(-oo,-4)`

Answer» `cos^2x-(c-1)x + 2c ge 6`
`=>cos^2x-(c-1)cosx+2c-6 ge 0`
`=>cos^2x-(c-3)cosx - 2cosx+(2c-6) ge 0`
`=>cosx(cosx-(c-3))-2(cosx-(c-3)) ge 0`
`=>(cosx-(c-3))(cosx-2) ge 0`
As, `cosx - 2` can not be greater than or equal to `2`.
`:. cosx le c-3`
`=>1 le c-3`
`=>4 le c`
`:. c in [4,oo).`
190.

The set of values of `lambda in R`such that `sin^2theta+costheta=lambdacos^2theta`holds for some `theta,`is`(-oo,1]`(b) (`-oo,-1]``varphi`(d) `[-1,oo`)A. `(-oo,1]`B. `(-oo,-1]`C. `phi`D. `[-1,oo)`

Answer» Correct Answer - D
We have
`tan^2theta+sectheta=lambda`
`rArr sec^2theta+sectheta-(lambda+1)=0`
`rArr sectheta=-(-1pmsqrt(4lambda+5))/2le-1`
For real `sectheta`,
`4lambda+5ge0rArrlambdage(-5)/4 ...(i)`
Also,` secthetage or secthetale-1`
`rArr(-1pmsqrt(4lambda+5))/2ge1or (-1pmsqrt(4lambda+5))/2ge-1`
`rArr4alambda+5ge9or4lambda+5ge1`
`rArrlambdage1orlambdage-1 ...(2)`
`:. " From(1) and (2), we get "lambdain[-1,oo)`.
191.

If the median AD of triangle ABC makes an angle `pi/4`with the side BC, then find the value of `|cotB-cotC|dot`

Answer» By m-n theoram
`(m+n)cottheta=mcotalpha-cotbeta`
`(m+n)cottheta=ncotbeta-mcotC`
`(BD+DC)cot(x/4)=DC cot B-BD cotC`
`BD+DC=DC cot B-BD cotC`
`2BD=BD cot B- BD cot C`
`|cotB-cotC|=2`.
192.

If `cos^2x-(c-1)cosx+2cgeq6`for every `x in R ,`then the true set of values of `c`is`(2,oo)`(b) `(4,oo)`(c) `(-oo,-2)`(d) `(-oo,-4)`A. `[2,oo)`B. `[4,oo)`C. (-oo,-2]`D. (-oo,-4]`

Answer» Correct Answer - B
`cos^2x-(c-1)cosx+2cge6AAx in R`
`rArr (cosx-2)(cosx-AAx in R)`
`rArrcosxlec-3`
`rArrc-3ge1`
`rArrc in[4,oo)`
193.

If `a,b,c inR` then prove that `sec^2theta=(bc+ca+ab)/(a^2+b^2+c^2)`only if a = b = c.

Answer» We know that `sec^2thetage1`
`:. (bc+ca+ab)/(a^2+b^2+c^2)ge 1`
`rArr bc+ca+abgea^2+b^2+c^2`
`rArra^2+b^2+c^2-ab-bc-cale0`
`rArr(a-b)^2+(b-c)^2+(c-a)^2le0`
`rArra-b=0,b-c=0" and "c-a=0`
`rArra=b=c`
194.

Find the values of a for which `a^2-6sinx-5ale0,Aax inR`.

Answer» `a^2-6sinx-5a<=0`
`(a^2-5a)/6<=sinx`
`(a^2-5a)/6<=-1`
`a^2-5a<=-6`
`a^2-5a+6<=0`
`(a-3)(a-2)<=0`
`a in[2,3]`.
195.

General solution of `sin^(3)x+cos^(2)x+sinxcosx=1` isA. `npi, npipm(pi)/(2), ninZ`B. `2npi, 2npipm(pi)/(2), ninZ`C. `npi, npipm(pi)/(4), ninZ`D. `2npi, 2npipm(pi)/(4), ninZ`

Answer» Correct Answer - B
196.

The sides of a triangle are in the ratio `1: sqrt3:2.` Then the angles are in the ratioA. `1:sqrt(2):3`B. `1:sqrt(3):2`C. `sqrt(2):sqrt(3):3`D. `1:sqrt(3):3`

Answer» Correct Answer - B
197.

The angles of a triangle are in the ratio `1:2:3` , then the sides of a triangle are in the ratioA. `1:sqrt(3):2`B. `2:sqrt(3):1`C. `sqrt(3):2:1`D. `3:2:1`

Answer» Correct Answer - A
Given, `(angleA)/(1)=(angleB)/(2)=(angleC)/(3)=(A+B+C)/(1+2+3)=(180^(@))/(6)=30^(@)`
`thereforeangleA=30^(@),angleB=60^(@),angleC=90^(@)`
By sine rule ,
`a:b:c=sinA:sinB:sinC`
`=sin30^(@):sin60^(@):sin90^(@)`
`=(1)/(2):(sqrt(3))/(2):1=1:sqrt(3):2`
198.

If the equation `cof^4x-2cos e c^2x+a^2=0`has at least one solution, then the sum of all possible integral valuesof a is equal toa. 4b. 3 c.2 d. 0A. 4B. 3C. 2D. 0

Answer» Correct Answer - D
`cot^4x-2(1+cot^2x)+a^2=0`
`or cot^4x-2cot^2+a^2-2=0`
`or (cot^2x-1)^2=3-a^2`
To have at least one solution, `3-a^2ge0`
`or a^2-3le0`
`a in[-sqrt3,sqrt3]`
Integral values are -1,0,1, therefore, the sum is 0.
199.

`(sin(pi+x)cos(pi/2+x)tan((3pi)/2-x)cot(2pi-x))/(sin(2pi-x)cos(2pi+x)c o s e c(-x)sin((3pi)/2-x))=1`

Answer» `=(sin(pi+x)cos(pi/2+x)tan(3/2pi-x)cot(2pi-x))/(sin(2pi-x)cos(2pi+x)cosec(-x)sin(3/2pi-x))`
`=(-sinx(-sinx)cotx(-cotx))/(-sinxcosx-cosecx-cosx)`
`=(sin^2x*cos^2x)/(cos^2xsin^2x)`
`=1`.
200.

Let `alphaa n dbeta`be any two positive values of `x`for which `2cosx ,|cosx|,`and `1-3cos^2x`are in G.P. The minimum value of `|alpha-beta|`is`pi/3`(b) `pi/4`(c) `pi/2`(d) none of these

Answer» As `2cosx, |cosx| and 1-3cos^2x` are in G.P.
`:. |cosx|^2 = 2cosx(1-3cos^2x)`
`=>cos^2x = 2cosx-6cos^3x`
`=>6cos^3x+cos^2x-2cosx = 0`
`=>cosx(6cos^2x+cosx-2) = 0`
`=>cosx(6cos^2x+4cosx-3cosx-2) = 0`
`=>cosx(2cosx-1)(3cosx+2) = 0`
`=>cosx = 0 or 2cosx-1 = 0 or 3cosx+2 = 0`
`=> cosx = 0 or cos x = 1/2 or cosx = -2/3`
`=> x = pi/2 or x = pi/3 or x = cos^-1(2/3)`
But, as `alpha and beta` are positive, so we will take inly positive values.
`:. alpha = pi/2 and beta = pi/3`
`|alpha-beta| = pi/2-pi/3 = pi/6.`
So, option `d` is the correct option.