InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Prove that the distance of the roots of the equation `|sintheta_1|z^3+|sintheta_2|z^2+|sintheta_3|z+|sintheta_4|=3fromz=0`is greater than `2//3.` |
|
Answer» We know that `| sin theta_(k)| lt 1`. Given `|sin theta_(1)|z^(3) + |sin theta_(2)| z^(2) +|sin theta_(3)| z+ |sin theta_(4)| = 3` `or |3|=||sin theta_(1)|z^(3)+|sin theta_(2)| z^(2) +|sin theta_(3)| z+|sin theta_(4)| = 3` `lt 1|z^(3)+z^(2) + z + 1` `lt|z|^(3) +|z|^(2) +|z| +1` `lt 1+|z| +|z|^(2)+ |z|^(3) +|z|^(4) +....oo` `or 3 lt (1)/(1-|z|)` `or 3-3|z| lt 1` `or 2lt 3|z|` `or |z| gt (2)/(3)` |
|
| 2. |
` theta in [0,2pi]` and `z_(1)`, `z_(2)`, `z_(3)` are three complex numbers such that they are collinear and `(1+|sin theta|)z_(1)+(|cos theta|-1)z_(2)-sqrt(2)z_(3)=0`. If at least one of the complex numbers `z_(1)`, `z_(2)`, `z_(3)` is nonzero, then number of possible values of `theta` isA. InfiniteB. `4`C. `2`D. `8` |
|
Answer» Correct Answer - B `(b)` If `z_(1)`, `z_(2)`, `z_(3)` are collinear and `az_(1)+bz_(2)+cz_(3)=0`. Then `a+b+c=0` Hence `1+|sintheta|+|costheta|-1-sqrt(2)=0` `implies |sintheta|+|costheta|=sqrt(2)` `impliestheta=(pi)/(4)`, `(3pi)/(4)`, `(5pi)/(4)`, `(7pi)/(4)` |
|
| 3. |
Find the locus of point `z`if `z ,i ,a n di z ,`are collinear. |
|
Answer» Given that points z, i and iz are colliner. `therefore arg ((z-i)/(iz -i)) = 0, pi` So,`(z-i)/(iz -i) `is purely real. `rArr (z-i)/(iz -i) = (vbarz +i)/(-ibarz +i)` `rArr (z-1)/(z-1) = (barz +i)/(-ibarz + 1)` `rArr 2zbarz + iz - ibarz- barz - z = 0` `2(x^(2) +y^(2))-2x -2y =0` `rArr x^(2) + y^(2) - x-y =0` |
|
| 4. |
Let `O`, `A`, `B` be three collinear points such that `OA.OB=1`. If `O` and `B` represent the complex numbers `O` and `z`, then `A` representsA. `(1)/(barz)`B. `(1)/(z)`C. `barz`D. `z^(2)` |
|
Answer» Correct Answer - A `(a)` Let `A` represents `z_(1)`. Since `OA.OB=1 :. |z_(1)-0|.|z-0|=1` `implies |z_(2)|=(1)/(|z|)` Also, `arg((z_(1)-0)/(z-0))=0impliesarg((z_(1))/(z))=0` `impliesargz_(1)=argz` If `theta` is the argument of `z`, then `z=|z|e^(itheta)` `:. z_(1)=(1)/(|z|)e^(etheta)=(1)/(|z|^(2))|z|e^(itheta)-(z)/(zbarz)=(1)/(barz)` `:. A` is `(1)/(baraz)` |
|
| 5. |
If `A(z_(1))`, `B(z_(2))`, `C(z_(3))` are vertices of a triangle such that `z_(3)=(z_(2)-iz_(1))/(1-i)` and `|z_(1)|=3`, `|z_(2)|=4` and `|z_(2)+iz_(1)|=|z_(1)|+|z_(2)|`, then area of triangle `ABC` isA. `(5)/(2)`B. `0`C. `(25)/(2)`D. `(25)/(4)` |
|
Answer» Correct Answer - D `(d)` `|z_(2)+iz_(1)|=|z_(1)|+|z_(2)|impliesz_(2)`, `iz_(1)`, `o` are collinear `:.arg(iz_(1))=argz_(2)` `impliesargi+argz_(1)=argz_(2)` `impliesargz_(2)-argz_(1)=(pi)/(2)` `z_(3)=(z_(2)-iz_(1))/(1-i)` `implies(1-i)z_(3)=z_(2)-iz_(1)` `impliesz_(3)-z_(2)=i(z_(3)-z_(1))` `:.(z_(3)-z_(2))/(z_(3)-z_(1))=i` `impliesarg((z_(3)-z_(2))/(z_(3)-z_(1)))=(pi)/(2)` and `|z_(3)-z_(2)|=|z_(3)-z_(1)|` `:.AC=BC` and `AB^(2)=AC^(2)+BC^(2)` `impliesAC=(5)/(sqrt(2))` Required area `=(1)/(2)xx(5)/(sqrt(2))xx(5)/(sqrt(2))=(25)/(4)`sq. units |
|
| 6. |
If the imaginery part of `(z-3)/(e^(itheta))+(e^(itheta))/(z-3)` is zero, then `z` can lie onA. a circle with unit radiusB. a circle with radius `3` unitsC. a straight line through the point `(3,0)`D. a parabola with the vertex `(3,0)` |
|
Answer» Correct Answer - A::C `(a,c)` Let `z-3=re^(iphi)` `:. (z-3)/(e^(itheta))+(e^(itheta))/(z-3)=re^(i(phi-theta))+(1)/(r )e^(i(theta-phi))` Imaginargy part of the above `=r sin (phi-theta)-(1)/(r )sin(phi-theta)` Given that `r sin(phi-theta)-(1)/(r )sin(phi-theta)=0` `impliesr-(1)/(r )=0` or `sin(phi-theta)=0` `impliesr-(1)/(r )=0impliesr=1` `implies|z-3|=1` `impliesz` lies on a circle with unit radius. `sin(phi-theta)=0impliesphi=theta` `:.z-3=re^(itheta)` `z-3=rcostheta`, `y=r sin theta` `impliesx-3=rcostheta`, `y=rsin theta` `(x-3)/(costheta)=(y)/(sintheta)=r` This represents a straight line through `(3,0)`. |
|
| 7. |
Consider the region `R` in the Argand plane described by the complex number. `Z` satisfying the inequalities `|Z-2| le |Z-4|`, `|Z-3| le |Z+3|`, `|Z-i| le |Z-3i|`, `|Z+i| le |Z+3i|` Answer the followin questions : Minimum of `|Z_(1)-Z_(2)|` given that `Z_(1)`, `Z_(2)` are any two complex numbers lying in the region `R` isA. `0`B. `5`C. `sqrt(13)`D. `3` |
|
Answer» Correct Answer - A `(a)` `|Z_(1)-Z_(2)|_(min)=0`, occurs when `z_(1)` and `z_(2)` coincide. |
|
| 8. |
Consider the region `R` in the Argand plane described by the complex number. `Z` satisfying the inequalities `|Z-2| le |Z-4|`, `|Z-3| le |Z+3|`, `|Z-i| le |Z-3i|`, `|Z+i| le |Z+3i|` Answer the followin questions : The maximum value of `|Z|` for any `Z` in `R` isA. `5`B. `14`C. `sqrt(13)`D. `12` |
|
Answer» Correct Answer - A `(a)` `|Z_(1)-Z_(2)|_(max)=`Length of diagonal `=sqrt(3^(2)+4^(2))=5` |
|
| 9. |
The roots of the equation `z^(4) + az^(3) + (12 + 9i)z^(2) + bz = 0` (where a and b are complex numbers) are the vertices of a square. Then The value of `|a-b|` isA. `5sqrt(5)`B. `sqrt(130)`C. 12D. `sqrt(175)` |
|
Answer» Correct Answer - B Given equation is `z(z^(3) + az^(3) +(12 + 9i)z + b) =0` So , either z =0 or `z^(3) + az^(2) + (12 + 9i) z + b = 0` So, one of the vertice of the square is origin . Therefore, other three verticles are `z_(1),iz_(1)` and `(z_(1) + iz_(1))` which are the roots equation (1). `therefore z_(1)(iz_(1)) + (iz_(1))(z_(1) + iz_(1)) + z_(1)(z_(1) + iz_(1)) = 12 +9i` `rArr_(1)^(2)(i + i+ i^(2)+1+i)= 12+9i` `rArr 3iz_(1)^(2) = 12+9i` `rArr z_(1)^(2) = 3 - 4i` ` rArr z_(1) = sqrt(3-4 i) = pm (2-i)` `therefore z_(1) = 2 - i or -2 +i or -2 + i ` (both value will give the same result ) Also, `-a= z_(1) + iz_(1) + z_(1)(1+i) = 2z_(1)(1+i)` `= 2(2-i) (1+i) = 6 + 2i` ` therefore a= - 6- 2i` Futher, `(z_(1))(iz_(1))(1+i) z_(1) = b` `therefore - b = z_(1)^(3)(-1+i)` or `b = (2-i)^(3) (1-i) = -9-13i` ` b = -9-13i` `|z - b|=|3+11i|= sqrt(130)` `|z_(1)| = sqrt(5)` Therefore, area of square is 5sq. units. |
|
| 10. |
If `z = (3+ 7i) (a +ib)` where a,`b in in Z- {0}`, is purely imaginary , then the minimum value of `|z|` isA. 74B. 45C. 58D. 65 |
|
Answer» Correct Answer - C `z=(3a-7b)+i(3b+7a)` For z to be purely imaginary, we have `3a=7b` `rArra =7 or b=3` (for least value of `|z|`) `rArr |z| =|3+7i|` |
|
| 11. |
Let `z=x+i y`be a complex number where `xa n dy`are integers. Then, the area of the rectangle whose vertices are theroots of the equation `z z ^3+ z z^3=350`is48 (b)32 (c) 40(d) 80A. 48B. 32C. 40D. 80 |
|
Answer» Correct Answer - A `zbarz(barz^(2) + z^(2))= 350` Putting z +iy, we have `(x^(2) + y^(2)) (x^(2) -y^(2)) = 175` `(x^(2) + y^(2)) (x^(2) -y^(2)) = 5 xx 5xx7` `x^(2)+ y^(2) = 25` `and x^(2) -y^(2) = 7` (as other combinations given non-intergral values of x and y ) `therefore x = pm 4, y = pm 3 (x,y in I)` Hence, area is `8 xx 6 = 48` sq . units |
|
| 12. |
If `a`, `b` are complex numbers and one of the roots of the equation `x^(2)+ax+b=0` is purely real whereas the other is purely imaginery, and `a^(2)-bara^(2)=kb`, then `k` isA. `2`B. `4`C. `6`D. `8` |
|
Answer» Correct Answer - B `(b)` Let us consider `alpha` as the real and `ibeta` as the imaginergy root. Then `alpha+ibeta=-a` `implies alpha-ibeta=-bara` `implies2alpha=-(a+bara)` and `2ibeta=-(a-bara)` `implies 4ialphabeta=a^(2)-bara^(2)` `implies a^(2)-bara^(2)=4b` |
|
| 13. |
The roots of the equation `t^3+3a t^2+3b t+c=0a r ez_1, z_2, z_3`which represent the vertices of an equilateral triangle. Then`a^2=3b`b. `b^2=a`c. `a^2=b`d. `b^2=3a`A. `a^(2) = 3b`B. `b^(2) = a`C. `a^(2) = a`D. `b^(2) = 3a` |
|
Answer» Correct Answer - C `S_(1)=Sigmaz_(1)=-3a,S_(2)=Sigmaz_(1)z_(2)=3b` `Sigmaz_(1)^(2)=Sigmaz_(1)z_(2)` `rArr (Sigmaz_(1))^(2)-2Sigmaz_(1)z_(2)=Sigmaz_(1)z_(2)` `rArr (Sigmaz_(1))^(2)=3Sigmaz_(1)z_(2)` `rArr (-3a)^(2)=3(3b)` `rArr a^(2)=b` |
|
| 14. |
Let `arg(z_(k))=((2k+1)pi)/(n)` where `k=1,2,………n`. If `arg(z_(1),z_(2),z_(3),………….z_(n))=pi`, then `n` must be of form `(m in z)`A. `4m`B. `2m-1`C. `2m`D. None of these |
|
Answer» Correct Answer - B `(b)` `arg(z_(1),z_(2),z_(3)……….z_(n))=pi` `impliesarg(z_(1))+arg(z_(2))+….+arg(z_(n))=pi+-2mpi`, `m in I` `implies (pi)/(n)[3+5+7+….+(2n+1)]=pi+-2mpi` `implies(pi)/(n)[(n)/(2)[6+2(n-1)]]=pi+-2mpi` `implies3+n-1=1+-2m` `impliesn=-1=1+-2m` |
|
| 15. |
If `|z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3)))` then arg `((z_(1))/(z_(2)))` (not neccessarily principal)A. `(3pi)/(4)`B. `(2pi)/(3)`C. `(5pi)/(4)`D. `(5)/(2)` |
|
Answer» Correct Answer - A::C `|z_(1)+z_(2)|^(2) = |z_(1)|^(2) + |z_(2)|^(2)+ z_(1)barz_(2)+ barz_(1)z_(2)` `rArr 5-2sqrt(3) = 2+ 3 + 2|z_(1)||z_(2)|cos(theta_(1)-theta_(2))`, where `arg(z_(1))= theta_(1) and arg(z_(2))= theta_(2)` `rArr -2sqrt(3) = 2 + 3+ 2|z_(1)||z_(2)|cos(theta_(1)-theta_(2))` `rArr cos(theta_(1)-theta_(2))= -(1)/(sqrt(2))` `rArr theta_(1) - theta_(2) = (3pi)/(4),(5pi)/(4)` `rArr arg(z_(1))-arg(z_(2)) = arg((z_(1))/(z_(2))) = (3pi)/(4),(5pi)/(4)` |
|
| 16. |
The roots of the equation `x^(4)-2x^(2)+4=0` are the vertices of `a` :A. square inscribed in a circle of radius `2`B. rectangle inscribed in a circle of radius `2`C. square inscribed in a circle of radius `sqrt(2)`D. rectangle inscribed in a circle of radius `sqrt(2)` |
|
Answer» Correct Answer - D `(d)` `x^(4)-2x^(2)+4=0` `impliesx^(2)=1+-sqrt(3)i` `=2e^(+-(pi)/(3))` `implies x=+-sqrt(2)e^(+-i(pi)/(6))` These points lie on a circle of radius `sqrt(2)`, as the diagonals intersect at an angle `pi//3`, `:.` These are the vertices of an inscribed rectangle. |
|
| 17. |
If `z=(3+7i)(a+ib)`, where `a`, `b in Z-{0}`, is purely imaginery, then minimum value of `|z|^(2)` isA. `74`B. `45`C. `65`D. `58` |
|
Answer» Correct Answer - D `(d)` `z=(3a-7b)+i(3b+7a)` For purely imaginary, `3a=7b` `impliesa=7` or `b=3` (for least value of `|z|`) `implies |z|=|3+7i|=sqrt(58)` |
|
| 18. |
If `z_(1),z_(2),z_(3)………….z_(n)` are in `G.P` with first term as unity such that `z_(1)+z_(2)+z_(3)+…+z_(n)=0`. Now if `z_(1),z_(2),z_(3)……..z_(n)` represents the vertices of `n`-polygon, then the distance between incentre and circumcentre of the polygon isA. `0`B. `|z_(1)|`C. `2|z_(1)|`D. none of these |
|
Answer» Correct Answer - A `(a)` Let vertices be `1, alpha,alpha^(2),……….,alpha^(n-1)` Given `1+alpha+alpha^(2)+…….+alpha^(n-1)=0impliesalpha^(n)-1=0` `impliesz_(1),z_(2),z_(3),……….,z_(n)` are roots of `alpha^(n)=1` which form regular polygon. So distance is zero. |
|
| 19. |
`z_(1)`, `z_(2)` are two distinct points in complex plane such that `2|z_(1)|=3|z_(2)|` and `z in C` be any point `z=(2z_(1))/(3z_(2))+(3z_(2))/(2z_(1))` such thatA. `-1 le Re z le 1`B. `-2 le Re z le 2`C. `-3 le Re z le 3`D. None of these |
|
Answer» Correct Answer - B `(b)` `z=(2z_(1))/(3z_(2))+(3z_(2))/(2z_(1))` `=(2)/(3)(|z_(1)|)/(|z_(2)|)e^(i(theta_(1)-theta_(2)))+(3)/(2)(|z_(2)|)/(|z_(1)|)e^(i(theta_(2)-theta_(1)))` `=e^(i(theta_(1)-theta_(2)))+e^(i(theta_(2)-theta_(1)))=2cos(theta_(1)-theta_(2))=2cosalpha` |
|
| 20. |
If `z_(1)`, `z_(2)` are complex numbers such that `Re(z_(1))=|z_(1)-2|`, `Re(z_(2))=|z_(2)-2|` and `arg(z_(1)-z_(2))=pi//3` , then `Im(z_(1)+z_(2))=`A. `2//sqrt(3)`B. `4//sqrt(3)`C. `2//sqrt(3)`D. `sqrt(3)` |
|
Answer» Correct Answer - B `(b)` Let `z_(1)=x_(1)+iy_(1)` and `z_(2)=x_(2)+iy_(2)` Given `Re(z_(1))=|z_(1)-2|`, `Re(z_(2))=|z_(2)-2|` `:.y_(1)^(2)-4x_(1)+4=0` and `y_(2)^(2)-4x_(2)+4=0` So that `(y_(1)-y_(2))/(x_(1)-x_(2))=(4)/(y_(1)+y_(2))` ……………`(i)` Given `arg(z_(1)-z_(2)=pi//3` `implies (y_(1)-y_(2))/(x_(1)-x_(2))=sqrt(3)` .........`(ii)` From `(i)` and `(ii) implies y_(1)+y_(2)=(4)/(sqrt(3))` |
|
| 21. |
Write the following complex number in polar form :(i) `-3 sqrt(2) + 3 sqrt(2) i`(ii) `1+i`(iii) `(1+7i)/(2-i)^2` |
|
Answer» (i) Let `z = - 3sqrt(2) + 3sqrt(2)i` Then, `|z| = sqrt(-3sqrt(2)^(2) + (3sqrt(2))^(2)) =6` Let `tan alpha |(Im(z))/(Re(z))| = 1 rArr alpha = (pi)/(4)` Since the point reqresenting z lies in the second quadrant, the agrument of z is given by `theta = pi - alpha - ((pi)/(4)) = ((3pi)/(4))` So, the polar form of `z - 3sqrt(2)+3sqrt(2)`i si `z=|z|(cos theta + i sin theta) = 6 (cos.(3pi)/(4) + i sin .(3pi)/(4))` (ii) Let `z = 1+i.` Then `|z| = sqrt(1^(2)+1^(2)) = sqrt(2)`. Let `tan alpha = |(Im(z))/(Re(z))| ` Then, `tan alpha|(1)/(1)| =1 or alpha = (pi)/(4)` Since the point (1,1) representing z lies in the first quadrant, the argument of z is given by `theta = aloha = pi//4`. So, the polar form of `z =1 + i` is `z =|z| (cos theta + isin theta) = (cos.(pi)/(4) +isin.(pi)/(4))` (iii) Let `z = -1-i`. Then `|z| = sqrt((-1)^(2)+ (-1)^(2)) = sqrt(2)` Let `tan alpha = |(Im(z))/(Re(z))|` Then , `tan alpha = |(-1)/(-1)| = 1 or alpha = (pi)/(4)` Since the point (-1,-1) representing z lies in the third quadrant, the argument of z is given by `theta = -(pi -alpha) = - (pi-(pi)/(4))= (-3pi)/(4)` So, the polar form of z = - 1- is `z = |z| (cos theta + isin theta) = sqrt(2) {cos ((-3pi)/(4))+isin((-3pi)/(4)) }` (iv) Let `z = 1 - i` . Then `|z|= sqrt(1+(-1)^(2)) = sqrt(2)`. Let `tan alpha =|(Im(z))/(Re(z))|` Then, `tan alpha =|(-1)/(1)| =1 or alpha = (pi)/(4)` since the point (1,-1) lies in the fourth quadrant, the argument of z is given by `theta = alpha = - pi//4`. So the polar form of z = 1 - i si `z =|z|(cos theta + isin theta) = sqrt(2) {cos((-pi)/(4)) +isin((-pi)/(4))} = sqrt(2) (cos.(pi)/(4) -isin.(pi)/(4))` (v) Let `z = (1+7i) //[(2-i)^(2)]`. Then `z = (1+7i)/(4-4i+^(2)) = (1+7i)/(3-4i) = ((1+7i)/(3-4))((3+4i)/(3+4i))=(-25+25i)/(25) = -1+i` `therefore |z| = sqrt((-1)^(2) + (1)^(2) ) = sqrt(2)` Let `alpha` be the acutue angle given by `tan alpha =|(Im(z))/(Re(z))| = |(-1)/(1)| = 1` Then `alpha = pi//4`. Since the point (-1,1) represeting z lies in the second quadrant, we have `theta = arg(z) = pi - alpha = pi - pi//4 = 3pi//4` Hence, z in the polar form is given by `z = sqrt(2) (cos. (3pi)/(4) + isin.(3pi)/(4))` |
|
| 22. |
Evaluate : (i) `i^(135)` (ii) `i^((1)/(47)` (iii) `(-sqrt(-1))^(4n +3) , n in N` (iv) `sqrt(-25) + 3sqrt(-4) + 2 sqrt(-9)` |
|
Answer» (i) 135 leaves reaminder as 3 when it is divided by 4. Therefore, `i^(135) = i^(3) = - i` (ii) `i^((1)/(47)) = (1)/(i^(44)i^(3)) = (1)/(-i^(2))=i` (iii) `(-sqrt(-1))^(4n + 3) = (-i)^(4n + 3)` ` =(-i)^(4n) (-i)^(3)` `= {(-i)^(4n) } (-i)^(3)` `= 1 xx (-i)^(3) = - i^(3) = -i^(3) = - (-i)=i` (iv) `sqrt(-25) + 3sqrt(-4) + 2 sqrt(-9) = 5i + 6 i + 6i = 17i` |
|
| 23. |
If `z_1=a + ib and z_2 = c + id` are complex numbers such that `|z_1|=|z_2|=1 and Re(z_1 bar z_2)=0` , then the pair ofcomplex nunmbers `omega=a+ic and omega_2=b+id` satisfiesA. `|omega_(1)|=1`B. `|omega_(2)|=1`C. `Re(omega_(1)baromega_(2)) = 0`D. `Im(omega_(1)baromega_(2))=0` |
|
Answer» Correct Answer - A::B::C `|Z_(1)|=|Z_(2)| = 1` `rArr a^(2) + b^(2) =c^(2) + a^(2) = 1" "(1)` and `Re(z_(1)barz_(2)) =0` `rArr Re{(a+ib)(c+id)} = 0` `rArrac + bd = 0" "(2)` Now from Eqs. (1) and (2) we get `a^(2) + b^(2) =1` ` rArr a^(2) + (a^(2)c^(2))/(d^(2)) = 1` `rArr a^(2) =d^(2)" "(3)` Also, `c^(2)+d^(2) =1` `rArr c^(2) +(a^(2)+c^(2))/(b^(2))=1` `rArr b^(2) = c^(2)` `|omega_(1)| = sqrt(a^(2) + b^(2)) = sqrt(a^(2) +b^(2)) = 1` [From (1) and (4)] `and |omega_(2)|=sqrt(b^(2) + d^(2))= sqrt(c^(2) + d^(2))=1`[From (1) and (4)] Further `Re(omega_(1)baromega_(2)) = Re{(a+ ic)(b-id)}` `ab+ cd` `=ab -(ac^(2))/(b)" "["From (2)"]` `= (ab^(2) - ac^(2))/(b) =0" "["Form (4)"]` Also, `Im(omega_(1)baromega_(2)) = bc-ad` `= bc-a(-(ac)/(b)) = ((a^(2) +b^(2))c)/(b) = (c)/(b) = pm1ne 0` `therefore |oemga_(1)|= 1, |omega_(2)|=1 and Re(omega_(1)baromega_(2))=0` |
|
| 24. |
Find the minimum value of `|z-1`if `||z-3|-|z+1||=2.` |
|
Answer» `2=||z-3|-|z+1||le|(z-3)+(z-1)|` `implies|2z-2|ge2` `implies|z-1|ge1` Thus, minimum value of `|z-1|` is 1. |
|
| 25. |
If `z_1, z_2, z_3, z_4`are the affixes of four point in the Argand plane, `z`is the affix of a point such that `|z-z_1|=|z-z_2|=|z-z_3|=|z-z_4|`, then prove that `z_1, z_2, z_3, z_4`are concyclic. |
|
Answer» We have, `|z-z_(1)|=|z-z_(2)|=|z-z_(3)|=|z-z_(4)|` Therefore, the point having affix z is equidistant from the four points having affixes `z_(1),z_(2),z_(3),z_(4).` Thus, z is the affix of either the center of a circle or the point of intersection of diagonals of a rectangle. Therefore, `z_(1),z_(2),z_(3),z_(4)` are concyclic. |
|
| 26. |
`|{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|`=x+iy thenA. x=3,y=1B. x=1,y=1C. x=0,y=3D. x=0,y=0 |
|
Answer» Correct Answer - D Given`|{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy ` `rArr -3i|{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy` `rArr " " x+ iy=0 [ because C_2 and C_3` are identical ] `rArr " "x=0, y=0` |
|
| 27. |
A value of for which `(2+3isintheta)/(1-2isintheta)`purely imaginary, is :(1) `pi/3`(2) `pi/6`(3) `sin^(-1)((sqrt(3))/4)`(4) `sin^(-1)(1/(sqrt(3)))`A. `(pi)/(6)`B. `sin^(-1)((Sqrt(3))/(4))`C. `sin^(-1)((1)/(sqrt(3))`D. `(pi)/(3)` |
|
Answer» Correct Answer - C `(2+ 3isin theta)/(1-2 sin theta) = (2+3i sin theta)/( 1-2i sin theta) xx(1+ 2i sin theta)/(1+ 2isin theta)` `= ((2- 6 sin^(2) theta)+i( 7 sin theta))/(1 + 4 sin^(2) theta)` For purely imaginary number `sin^(2) theta = (1)/(3) or sin theta = (1)/(sqrt(3))` `therefore theta= sin^(-1).(1)/(sqrt(3))` |
|
| 28. |
Find the value of `theta`if `(3+2isintheta)//(1-2isintheta)`is purely real or purely imaginary.A. `(pi)/3`B. `(pi)/6`C. `sin""^(-1)((sqrt(3))/4)`D. `sin""^(-1)(1/sqrt(3))` |
|
Answer» Correct Answer - D Let `z=(2+3 I sin theta )/(1-2 I sin theta ) ` is purely imaginary . Then we have Re (z)=0 Now , consider `z =(2+3 I sin theta)/(1-2i sin theta)` `=((2+3 is sin theta )(1+2i sin theta))/((1-2i sin theta)(1+2i sin theta))` `(2+4i sin theta + 3i sin theta +6i^2 sin ^2 theta)/(1^2-(2i sin theta)^2` `rArr (2+ 7i sin theta - 6 sin ^2 theta)/(1+4 sin ^2 theta)` `=(2-6 sin ^2 theta )/(1+4 sin ^ 2 theta)+i(7 sin theta)/(1+4 sin^2 theta)` `therefore (Re(z)=0)` `therefore (2-6 sin^2 theta)/(1+ 4sin ^2 theta)=0 rArr 2 =6 sin^2 theta` `rArr sin^2 theta =1/3` `rArr sin theta = pm 1/(sqrt(3))` `rArr theta sin^(-1)(pm 1/(sqrt3)= pm sin^(-1)(1/(sqrt 3)))` |
|
| 29. |
The complex number `sin(x)+icos(2x)` and `cos(x)-isin(2x)` are conjugate to each other forA. `x=npi`B. x=0C. `x=(n+1/2)pi`D. no value of x |
|
Answer» Correct Answer - D Since (sin x+ I cos2 x )=cos x - I sin 2x `rArr ` sin x- icos 2x =cos x -I sin 2x `rArr` sin x= cos x and cos 2 x = sin 2x `rArr ` tan x=1 and tan 2x=1 `rArr x=pi//4 and pi//8 ` which is not possible at same time . Hence no solution exists. |
|
| 30. |
If `cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma`, then `(sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma))` is equal toA. `1`B. `-1`C. `3`D. `-3` |
|
Answer» Correct Answer - A `(a)` `a=e^(ialpha)`, `b=e^(ibeta)`, `c=e^(igamma)` Clearly `a+b+c=0` `impliesa+b+c=0=(1)/(a)+(1)/(b)+(1)/(c )` `impliesa^(3)+b^(3)+x^(3)=3abc` `impliessin3alpha+sin3beta+sin3gamma=sin(alpha+beta+gamma)` |
|
| 31. |
Consider the complex number `z = (1 - isin theta)//(1+ icos theta)`. The value of `theta` for which z is purely real areA. `npi-(pi)/(4), n in I`B. `pin +(pi)/(4) , n in I`C. `npi, n in I`D. None of these |
|
Answer» Correct Answer - A `z=(1-i sin theta)/(1+ i cos theta) = ((1- isin theta)( 1- icos theta))/((1+ i cos theat)(1-i cos theta))` `=((1-sin theta cos theta) - icos theta + sintheta)/((1+ cos^(2)theta))` If z is purely real , then `cos theta + sin theta=0` or `tan theta = -1` `rArr = npi - (pi)/(4), n in I` If z is purely imaginary, `1- sin theta cos theta = 0 or sin theta coe theta = 1`, which is not possible `|z|= |(1- isin theta)/(1+ i cos theta)| = (sqrt(1+ sin^(2) theta))/(sqrt(1+ cos^(2) theta))` If `|z|=1`,then `cos^(2) theta = sin theta^(2) theta` `rArr tan^(2) theta = 1` `rArr theta = npipm(pi)/(4), ninI` We have, `agr(z) = tan^(-1) ((-(cos theta + sin theta))/((1-sin theta cos theta)))` Now `arg(z) = pi//4` `rArr (-(costheta + sintheta))/((1-sin theta cos theta)) = 1` `rArr cos^(2) theta+ sin^(2) + 2 sin theta cos theta = 1 + sin^(2) theta cos^(2) theta - 2 sin theta cos theta` `rArr 1+ 4 sin theta cos theta = 1 + sin ^(2) theta cos^(2) theta` `rArr sin^(2) theta cos^(2) theta - 4 sin theta cos theta =0` `rArr sin theta cos theta (sin theta cos theta -4) = 0` `rArr sin theta cos theta = 0 " "(because sin theta cos theta = 4" is not possible ")` `rArr = (2n + 1) pi or theta ( 4n - 1) pi//2, n in I " "(because - cos theta - sin theta gt 0)` |
|
| 32. |
Consider the complex number `z = (1 - isin theta)//(1+ icos theta)`. The value of `theta` for which z is unimodular give byA. `npi pm (pi)/(6), n in I`B. `npi pm (pi)/(3), n in I`C. `npi pm (pi)/(4), n in I`D. no real values of `theta` |
|
Answer» Correct Answer - C `z=(1-i sin theta)/(1+ i cos theta) = ((1- isin theta)( 1- icos theta))/((1+ i cos theat)(1-i cos theta))` `=((1-sin theta cos theta) - icos theta + sintheta)/((1+ cos^(2)theta))` If z is purely real , then `cos theta + sin theta=0` or `tan theta = -1` `rArr = npi - (pi)/(4), n in I` If z is purely imaginary, `1- sin theta cos theta = 0 or sin theta coe theta = 1`, which is not possible `|z|= |(1- isin theta)/(1+ i cos theta)| = (sqrt(1+ sin^(2) theta))/(sqrt(1+ cos^(2) theta))` If `|z|=1`,then `cos^(2) theta = sin theta^(2) theta` `rArr tan^(2) theta = 1` `rArr theta = npipm(pi)/(4), ninI` We have, `agr(z) = tan^(-1) ((-(cos theta + sin theta))/((1-sin theta cos theta)))` Now `arg(z) = pi//4` `rArr (-(costheta + sintheta))/((1-sin theta cos theta)) = 1` `rArr cos^(2) theta+ sin^(2) + 2 sin theta cos theta = 1 + sin^(2) theta cos^(2) theta - 2 sin theta cos theta` `rArr 1+ 4 sin theta cos theta = 1 + sin ^(2) theta cos^(2) theta` `rArr sin^(2) theta cos^(2) theta - 4 sin theta cos theta =0` `rArr sin theta cos theta (sin theta cos theta -4) = 0` `rArr sin theta cos theta = 0 " "(because sin theta cos theta = 4" is not possible ")` `rArr = (2n + 1) pi or theta ( 4n - 1) pi//2, n in I " "(because - cos theta - sin theta gt 0)` |
|
| 33. |
Consider the complex number `z = (1 - isin theta)//(1+ icos theta)`. If agrument of z is `pi//4`, thenA. `theta = npi, n in I` onlyB. `theta= (2n + 1), n in I `onlyC. both `theta= npi and theta = (2n + 1)(pi)/(2), n in I`D. none of these |
|
Answer» Correct Answer - D `z=(1-i sin theta)/(1+ i cos theta) = ((1- isin theta)( 1- icos theta))/((1+ i cos theat)(1-i cos theta))` `=((1-sin theta cos theta) - icos theta + sintheta)/((1+ cos^(2)theta))` If z is purely real , then `cos theta + sin theta=0` or `tan theta = -1` `rArr = npi - (pi)/(4), n in I` If z is purely imaginary, `1- sin theta cos theta = 0 or sin theta coe theta = 1`, which is not possible `|z|= |(1- isin theta)/(1+ i cos theta)| = (sqrt(1+ sin^(2) theta))/(sqrt(1+ cos^(2) theta))` If `|z|=1`,then `cos^(2) theta = sin theta^(2) theta` `rArr tan^(2) theta = 1` `rArr theta = npipm(pi)/(4), ninI` We have, `agr(z) = tan^(-1) ((-(cos theta + sin theta))/((1-sin theta cos theta)))` Now `arg(z) = pi//4` `rArr (-(costheta + sintheta))/((1-sin theta cos theta)) = 1` `rArr cos^(2) theta+ sin^(2) + 2 sin theta cos theta = 1 + sin^(2) theta cos^(2) theta - 2 sin theta cos theta` `rArr 1+ 4 sin theta cos theta = 1 + sin ^(2) theta cos^(2) theta` `rArr sin^(2) theta cos^(2) theta - 4 sin theta cos theta =0` `rArr sin theta cos theta (sin theta cos theta -4) = 0` `rArr sin theta cos theta = 0 " "(because sin theta cos theta = 4" is not possible ")` `rArr = (2n + 1) pi or theta ( 4n - 1) pi//2, n in I " "(because - cos theta - sin theta gt 0)` |
|
| 34. |
Consider the complex number `z = (1 - isin theta)//(1+ icos theta)`. The value of `theta` for which z is purely imaginary areA. `npi-(pi)/(4), n in I`B. `pin +(pi)/(4) , n in I`C. `npi, n in I`D. no real values of `theta` |
|
Answer» Correct Answer - D `z=(1-i sin theta)/(1+ i cos theta) = ((1- isin theta)( 1- icos theta))/((1+ i cos theat)(1-i cos theta))` `=((1-sin theta cos theta) - icos theta + sintheta)/((1+ cos^(2)theta))` If z is purely real , then `cos theta + sin theta=0` or `tan theta = -1` `rArr = npi - (pi)/(4), n in I` If z is purely imaginary, `1- sin theta cos theta = 0 or sin theta coe theta = 1`, which is not possible `|z|= |(1- isin theta)/(1+ i cos theta)| = (sqrt(1+ sin^(2) theta))/(sqrt(1+ cos^(2) theta))` If `|z|=1`,then `cos^(2) theta = sin theta^(2) theta` `rArr tan^(2) theta = 1` `rArr theta = npipm(pi)/(4), ninI` We have, `agr(z) = tan^(-1) ((-(cos theta + sin theta))/((1-sin theta cos theta)))` Now `arg(z) = pi//4` `rArr (-(costheta + sintheta))/((1-sin theta cos theta)) = 1` `rArr cos^(2) theta+ sin^(2) + 2 sin theta cos theta = 1 + sin^(2) theta cos^(2) theta - 2 sin theta cos theta` `rArr 1+ 4 sin theta cos theta = 1 + sin ^(2) theta cos^(2) theta` `rArr sin^(2) theta cos^(2) theta - 4 sin theta cos theta =0` `rArr sin theta cos theta (sin theta cos theta -4) = 0` `rArr sin theta cos theta = 0 " "(because sin theta cos theta = 4" is not possible ")` `rArr = (2n + 1) pi or theta ( 4n - 1) pi//2, n in I " "(because - cos theta - sin theta gt 0)` |
|
| 35. |
The complex number `sin(x)+icos(2x)` and `cos(x)-isin(2x)` are conjugate to each other forA. `x = npi, n in Z`B. `x= 0`C. `x = (n+1//2)pi, n in Z`D. no value of x |
|
Answer» Correct Answer - D Let `z_(1) = sin x + i cos 2x = cos x - i sin 2x` Then `barz_(1) = z_(2)` `rArr sin x - i cos 2x = cos x - i isn 2x ` `rArr sin x = cos x and cos 2x = sin 2x` `rArr tan x = 1 and tan 2x = 1` `rArr x = (pi)/(4) and x = (pi)/(8)` This is not possible. Hence, there is no value of x. |
|
| 36. |
Express the following in `a + ib` form: (i) `((cos theta+ isin theta)/(sin theta + icos theta))^(4)` (ii)` ((cos 2theta -isin2theta)^(4)(cos4theta +isin4theta)^(-5))/((cos 3theta +isin3theta)^(-2) (cos 3theta -isin 3theta)^(-9))` (iii) ` ((sinpi//8 +icos pi//8)^(8))/((sinpi//8-icospi//8)^(8))` |
|
Answer» (i) `((costheta+isintheta)/(sintheta+icostheta))^(4)=((costheta+isintheta)^(4))/(i^(4)(costheta-isintheta)^(4))` `=((costheta+isintheta)^(4))/((costheta+isintheta)^(-4))` `=(cos8theta+isintheta)^(8)` `=cos8theta+isin8theta` (ii) `((cos2theta-isin2theta)^(4)(cos4theta+isin4theta)^(-5))/((cos3theta+isin3theta)^(-2)(cos3theta-isin3theta)^(-9))` `=([(costheta+isintheta)^(-2)]^(4)[(costheta+isintheta)^(4)]^(-5))/([(costheta+isintheta)^(3)]^(-2)[(costheta+isintheta)^(-3)]^(-9))` `=((costheta+isintheta)^(-8)(costheta+isintheta)^(-20))/((costheta+isintheta)^(-6)(costheta+isintheta)^(27))` `=(costheta+isintheta)^(-8-20+6-27)` `=(costheta+isintheta)^(-49)` `=cos49theta-isin49theta` (iii) `((sinpi//8+icospi//8)^(8))/((sinpi//8-icospi//8)^(8))` `(i^(8)(cospi//8-isinpi//8)^(8))/((-i)^(8)(cospi//8+isinpi//8)^(8))=(cospi-isinpi)/(cospi+isinpi)=1` |
|
| 37. |
If `z_1,z_2,z_3` are three points lying on the circle `|z|=2` then the minimum value of the expression `|z_1|z_2|^2+|z_2+z_3|^2+|z_3+z_1+^2=` |
|
Answer» Correct Answer - 12 `|z|=|z_(2)| =|z_(3)| = 2` Now, `|z_(1) + z_(2) + z_(3)|^(2) ge 0` `rArr (z_(1) + z_(2) +z_(3))( barz_(1)+barz_(2) + barz_(3)) ge 0` `rArr sum|z_(1)|^(2) +sum(z_(1)barz_(2) + barz_(1)z_(2)) ge 0` `2sum|z_(1)|^(2)+sum(z_(1)barz_(2)+barz_(1)z_(2)) ge sum|z_(1)|^(2)` `rArr |z_(1) +z_(2)|^(2)+|z_(2)+z_(3)|^(2)+|z_(3) + z_(1)|^(2) ge 12` |
|
| 38. |
If `|z_1|=|z_2|=|z_3|=1` then value of `|z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2` cannot exceedA. `6`B. `9`C. `12`D. none of these |
|
Answer» Correct Answer - B `(b)` Let `y=|z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2)` `=(z_(1)-z_(2))(barz_(1)-barz_(2))+(z_(2)-z_(3))(barz_(2)-barz_(3))+(z_(3)-z_(1))(barz_(3)-barz_(1))` `=6-(z_(1)barz_(2)+z_(2)barz_(1)+z_(2)barz_(3)+barz_(2)z_(3)+z_(3)barz_(1)+z_(1)barz_(3))`...........`(i)` Now we know `|z_(1)+z_(2)+z_(3)|^(2) ge 0` `implies 3+(z_(1)barz_(2)+z_(2)barz_(1)+z_(1)barz_(3)+z_(3)barz_(1)+z_(2)barz_(3)+barz_(2)z_(3)) ge 0`.........`(ii)` From `(i)` and `(ii)`, `y le 9` |
|
| 39. |
If `|z_1-1|lt=,|z_2-2|lt=2,|z_(33)|lt=3,`then find the greatest value of `|z_1+z_2+z_3|dot` |
|
Answer» `|z_(1)+z_(2)+z_(3)|=|(z_(1)-1)+(z_(2)-2)+(z_(3)-3)+6|` `le|z_(1)-1|+|z_(2)-2|+|z_(3)-3|+6` `ge1+2+3+6=12` Hence, the greatest value is 12. |
|
| 40. |
If `|z_(1)|=|z_(2)|=|z_(3)|=1 and z_1+z_2+z_3=0`then the area of the triangle whose vertices are `z_1, z_2, z_3`isA. `3sqrt(3//4)`B. `sqrt(3//4)`C. 1D. 2 |
|
Answer» Correct Answer - A `|z_(1)|=|z_(2)|=|z_(3)|=1` Hence, the cirumcenter of triangle is origin. Also, centroid `(z_(1)+z_(2)+z_(3))//3=0`, which coincides with the circumcentrer. So the triangle is equilateral . Since radius is 1, length of side is `a=sqrt(3)`. Therefore, the area of the triangle is `(sqrt3//4)a^(2)=(3sqrt3//4)`. |
|
| 41. |
If the complex numbers `z_1,z_2 " and " z_3` represent the vertices of an equilateral triangle such that `|z_1|=|z_2|=|z_3|," then " z_1+z_2+z_3=0` |
|
Answer» Correct Answer - True Since `z_1,z_2,z_3` are vertices of equilateral triangle and `|z_1|=|z_2|=|z_3|` `rArr z_1,z_2,z_3` lie on a circle with centre at origin `rArr` Circumentre = centroid `rArr " "0=(z_1+z_2+z_3)/(3)` `therefore z_1+z_2+z_3=0` |
|
| 42. |
`A(z_1)`,`B(z_2)` and `C(z_3)` are the vertices of triangle ABC inscribed in the circle |z|=2,internal angle bisector of angle A meets the circumcircle again at `D(z_4)`.Point D is:A. H.M of `z_(2)` and `z_(3)`B. A.M of `z_(2)` and `z_(3)`C. G.M of `z_(2)` and `z_(3)`D. none of these |
| Answer» Correct Answer - C | |
| 43. |
Let `z_1, z_2, z_3`be three complex numbers and `a ,b ,c`be real numbers not all zero, such that `a+b+c=0a n da z_1+b z_2+c z_3=0.`Show that `z_1, z_2,z_3`are collinear. |
|
Answer» Given `a+ b+ c = 0" "(1)` and ` az_(1) + bz_(2) + cz_(3) = 0" "(2)` Since a, b c are not all zero, from (2), we have `az_(1) bz_(2) -(a+b) z_(3) = 0 " "["From"(1), c = - (a+b)]` or ` az_(1) + bz_(2) = (a+b)z_(3)` or `z_(3) =(az_(1) + bz_(2))/(a+b) " "(3)` From (3), it follows tha `z_(3)` divides the line segment joining `z_(1)` and `z_(2)` internally in the ratio b:a Hence `z_(1), Z_(2) and z_(3)` are coliner. If a and b are of same sign , then division is in fact internal, and if a and b are of opposte sign, then division is external in the ratio `|b|:|a|` |
|
| 44. |
If `|2z-1|=|z-2|a n dz_1, z_2, z_3`are complex numbers such that `|z_1- (alpha)|< alpha,|z_2-beta||z|`d. `>2|z|`A. `lt|z|`B. `lt2|z|`C. `gt|z|`D. ` gt2|z|` |
|
Answer» Correct Answer - B `|2z-1|=|z-2|` or `|2z-1|^(2)=|z-2|^(2)` `or (2z-1)(2barz-1)=(z-2)(barz-2)` `or 4zbarz-2barz-2z+1=zbarz-2barz-2z+4` `or 3|z|^(2)=3` `or |z|=1` Again `|z_(1)+z_(2)|=|z_(1)-alpha+z_(2)-beta+alpha+beta|` `le|z_(1)-alpha|+|z_(2)-beta|+|alpha+beta|` `ltalpha+beta+|alpha+beta|` `=2|alpha+beta|" " [therefore alpha,betagt0]` `therefore |(z_(1)+z_(2))/(alpha+beta)|lt2` `or |(z_(1)+z_(2))/(alpha+beta)|lt2|z|` |
|
| 45. |
Least positive argument ofthe 4th root ofthe complex number `2-isqrt(12)` isA. `pi//6`B. `5pi//12`C. `7pi//12`D. `11pi//12` |
|
Answer» Correct Answer - B `(b)` `z^(4)=2(1-sqrt(3)i)=4((1)/(2)-(sqrt(3))/(2)i)` `=4[cos(-(pi)/(3))+isin(-(pi)/(3))]` `z=sqrt(2)[cos"(2mpi-(pi//3))/(4)+isin"(2mpi-(pi//3))/(4)]` For `m=1`, `z=sqrt(2)[cos((5pi)/(12))+isin((5pi)/(12))]` |
|
| 46. |
Given that ` 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2)`, then the value of `|z(z + 1 )|` is ______. |
|
Answer» Correct Answer - 1 `1+2|z|^(2) = |z^(2) +1|^(2)+ 2|z+1|^(2)` `rArr 1+2barzz = (barz^(2)+1)+2(barz +1)` `rArr (zbarz)^(2)+ 2(z +barz) +z^(2) + barz^(2) + 2=0` `rArr (zbarz -1)^(2) + (z+barz +1)^(2) = 0` `rArr zbarz =1 rArr barz = (1)/(2)` and `z+barz+1=0` or `z+(1)/(2)+1=0` `rArr z^(2) + z =1` `rArr |z^(2)+z| =1` |
|
| 47. |
If `|z-4/z|=2`, then the maximum value of`|Z|`is equal to(1) `sqrt(3)+""1`(2) `sqrt(5)+""1`(3) 2(4) `2""+sqrt(2)`A. `sqrt3 + 1 `B. ` sqrt5 + 1 `C. `2`D. `2 + sqrt2` |
|
Answer» Correct Answer - B `|Z|= |(Z-(4)/(Z))+(4)/(Z)|le|Z-(4)/(Z)|+(4)/(|Z|) le 2 + (4)/(|Z|)` `rArr |Z|^(2) - 2 |Z| - 4 le 0` `rArr [|z| - sqrt(5) + 1)][(Z| - 1(-sqrt(5))]le 0` `rArr 0 le |Z| le sqrt(5) + 1` |
|
| 48. |
The number of complex numbers z such that `|z""""1|""=""|z""+""1|""=""|z""""i|`equals(1) 1 (2) 2 (3) `oo`(4) 0A. `oo`B. `0`C. `1`D. `2` |
|
Answer» Correct Answer - C Let`z= x +iy`. So `|z-1| = |z+1| rArr Re(z) =0 rArrx le 0` `|z -1| = |z + i| rArr x = y` ` |z+1| = |z-i| rArr y = - x` Only (0,0) will satisfy all conditions. Therefore, the number of complex numbers(z) is 1. |
|
| 49. |
Let `alpha,beta`be real and z be a complex number. If `z^2+alphaz""+beta=""0`has two distinct roots on theline Re `z""=""1`, then it is necessary that :(1) `b"" in (0,""1)`(2) `b"" in (-1,""0)`(3) `|b|""=""1`(4) `b"" in (1,oo)`A. ` beta in ( 1 , oo ) `B. ` beta in ( 0 , 1 )`C. ` beta in (-1, 0 ) `D. `|beta | = 1 ` |
|
Answer» Correct Answer - A Let the roots of the given equation be 1+ ip and 1-ip, where `p in R` `rArr beta `= product of roots `= (1+ip)( 1-ip) = 1 p^(2) gt 1 AA p in R` ` rArr beta in (1, oo)` |
|
| 50. |
If `(3pi)/(2) lt alpha lt 2 pi`, find the modulus and argument of `(1 - cos 2 alpha) + i sin 2 alpha `. |
|
Answer» `z = (1-cos2 alpha)+ i sin 2alpha` `= 2sin^(2) alpha + i (2sin alpha cos alpha)` `=2 sin alpha(sin alpha + i cos alpha)` `=-2 sin alpha (-sin alpha - i cos alpha)` `=-2 sin alpha (cos((3pi)/(2)-alpha)+ sin ((3pi)/(2)-alpha))` Thus, `|z| = - s sin alpha` Alos, `(3pi)/(2) - alpha in ((-pi)/(2),0)` Therefore, z lies in the fourth quadrant. `therefore arg(z) = (3pi)/(2) =- alpha` |
|