Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

If `xsina+ysin2a+zsin3a=sin4a``xsinb+ysin2b+zsin3b=sin4b``xsinc+ysin2c+zsin3c=sin4c`then the roots of the equation `t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi,`are`sina ,sinb ,sinc`(b) `cosa ,cosb ,cosc``sin2a ,sin2b ,sin2c`(d) `cos2a ,cos2bcos2c`A. `cos a, cos b, cos c`B. `sin a, sin b, sin c`C. `sin 2a, sin 2b, sin 2c`D. `cos 2a, cos 2b, cos 2c`

Answer» Correct Answer - A
a, b, c are roots of equation.
`x sin theta+ y sin 2 theta + z sin 3 theta = sin 4 theta`
`rArr x sin theta+y (2 sin theta cos theta) + z (3 sin theta -4 sin^(3) theta)`
`= 4 sin theta cos theta cos 2 theta`
`rArr cos^(3) theta-z/2 cos^(2) theta-(y+2)/4 cos theta + (z-x)/8=0`
2.

Consider the cubic equation `x^3-(1+cos theta+sin theta)x^2+(cos theta sin theta+cos theta+sin theta)x-sin theta. cos theta =0` Whose roots are `x_1, x_2 and x_3`A. 3B. 4C. 5D. 6

Answer» Correct Answer - C
Now if `1=sin theta`, we get `theta=pi//2`
If `1= cos theta`, then `theta=0, 2pi` and if `sin theta=cos theta`, we get `tan theta=1`.
therefore,
`theta=pi/4, (5pi)/4`
Therefore, the number of values of `theta` in `[0, 2pi]` is 5.
3.

Cosider the cubic equation : `x^3-(1+costheta+sintheta)x^2+(costhetasintheta+costheta+sintheta)x-sinthetacostheta=0` whose roots are `x_1,x_2,x_3`. The value of `(x_1)^2+(x_2)^2+(x_3)^2` equalsA. 1B. 2C. `2 cos theta`D. `sin theta (sin theta+ cos theta)`

Answer» Correct Answer - B
`x^(3)-(1+cos theta + sin theta) x^(2) +(cos theta sin theta + cos theta + sin theta)x-sin theta cos theta=0`
Given cubic function is
`f(x)=(x-1)(x-cos theta) (x- sin theta)`
Therefore, roots are `1, sin theta`, and `cos theta`.
Hence, `x_(1)^(2)+x_(2)^(2)+x_(3)^(2)=1+sin^(2) theta+cos^(2) theta=2`
4.

`tan^(3)x-3tanx=0`

Answer» Correct Answer - `x=npiorx=(mpi+(pi)/(3))orx=(pi+(2pi)/(3)),"where m ", n , p inI`
`tan^(3)x-3tanx=0rArrtanx(tan^(2)x-3)=0`
`rArrtanx =0 or tanx=sqrt(3)ortanx=-sqrt(3)`
`rArrx=npior tanx="tan "(pi)/(3)ortanx=-"tan "(pi)/(3)=tan(pi-(pi)/(3))`
`rArrx=npiorx=mpi+(pi)/(3)orx=ppi+(2pi)/(3)`"where " m , n, p inI`
5.

If `tan(A-B)=1a n dsec(A+B)=2/(sqrt(3))`, then the smallest positive values of A and B, respectively, are`(25pi)/(24),(19pi)/(24)`(b) `(19pi)/(24),(25pi)/(24)``(31pi)/(24),(31pi)/(24)`(d) `(13pi)/(24),(31pi)/(24)`A. `(25 pi)/(24), (19 pi)/24`B. `(19 pi)/24, (25 pi)/24`C. `(31 pi)/24, (13 pi)/24`D. `(13pi)/24, (31 pi)/24`

Answer» Correct Answer - A
`tan (A-B)=1`
`rArr A-B=n_(1) pi+pi/4 or A-B=pi/4, (3pi)/4, -(3pi)/4`, ...
`sec(A+B) =2/sqrt(3)`
`rArr A+B=2n_(2)pi pm pi/6 or A+B=pi/6, (11 pi)/6`, ...
For the least positive values of A and B, we have
`A+B=(11pi)/6, A-B=pi/4`
`rArr B=(19 pi)/24, A=(25 pi)/24`
6.

Solve the equation:`cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1`

Answer» `cos^(2) [pi/4(sin x+sqrt(2) cos^(2) x)]-tan^(2) [x+pi/4 tan^(2) x]=1`
`rArr sin^(2) [pi/4 (sin x+ sqrt(2) cos^(2) x)]+tan^(2) [x+pi/4 tan^(2) x]=0`
It is possible only when
`sin^(2) [pi/4 (sin x+sqrt(2) cos^(2) x)]=0`...(i)
and `tan^(2) [x+pi/4 tan^(2) x]=0` ...(ii)
`:. pi/4 (sin x+ sqrt(2) cos^(2) x) = n pi, n in I`
or `sin x +sqrt(2) cos^(2) x=4n`
This equation has solution only for `n=0`. Thus,
`sin x+sqrt(2) cos^(2) x=0`
i.e., `sqrt(2) sin^(2) x- sin x-sqrt(2)=0`
or `(sin x-sqrt(2)) (sqrt(2) sin x +1) =0`
`:. sin x= - 1/sqrt(2)`
`rArr x=2 kpi-pi//4, k in Z`
Also these values of x satisfy Eq. (ii), therefore , the general solution of given equation is given by
`x=2kpi - pi/4, k in Z`
7.

Solve : `secx-tan x=sqrt(3)`.

Answer» We have `secx-tanx=sqrt(3)rArr(1)/(cosx)-(sinx)/(cosx)=sqrt(3)rArr(1-sinx)=sqrt(3)cosx`
`rArrsqrt(3)cosx+sinx=1`.
Thus , the given equation becomes
`sqrt(3)cosx+sinx=1`.
Dividing both sides of (i) by `sqrt((sqrt(3))^(2)+1^(2))` , i .e by 2, we get
`(sqrt(3))/(2)cosx+(1)/(2)sinx=(1)/(2)`
`rArrcosx"cos"(pi)/(6)+sinx" sin "(pi)/(6)=(1)/(2)`
`rArrcos(x-(pi)/(6))="cos"(pi)/(3)`
`rArr(x-(pi)/(6))=2npi+-(pi)/(3), "where "n in I[becausecostheta=cosalpharArrtheta=2npi+-alpha]`
`rArr(x-(pi)/(6))=(2npi+(pi)/(3))or(x-(pi)/(6))=(2npi-(pi)/(3))`
`rArrx=2npi+(+(pi)/(3)+(pi)/(6))orx=2npi+(-(pi)/(3)+(pi)/(6))"where "ninI`
`rArrx=(2npi+(pi)/(2))orx=(2npi-(pi)/(6)), "where "ninI`
`rArrx=(2npi-(pi)/(6)), "where"n inI`
`[because"secx is not defined when x"=(2npi+(pi)/(2))]`.
Hence , the general solution is `x=(2npi-(pi)/(6)), "where"ninI`.
8.

`3^((1/2+log_3(cosx+sinx)))-2^(log_2(cosx-sinx))=sqrt(2)`

Answer» Correct Answer - `x=2n pi+(3pi)/(4),2n pi+(pi)/(12),n in Z`
`3^(((1)/(2)+log_(3)(cos x + sin x)))-2^(log_(2)(cos x - sin x)=sqrt(2))`
or `sqrt(3)(cos x + sin x) - (cos x - sin x) = sqrt(2)`
or `sqrt(3) cos x + sqrt(3) sin x - cos x + sin x = sqrt(2)`
or `(sqrt(3)+1)sin x + (sqrt(3)-1)cos x = (2sqrt(2))/(2)/(2)`
or `((sqrt(3)+1)/(2sqrt(2)))sin x + ((sqrt(3)-1)/(2sqrt(2)))cos x = (1)/(2)`
or `sin (x + (5pi)/(12))=(1)/(2)`
or `x + (5pi)/(12)=2n pi pm (pi)/(3), n in Z`
or `x = 2n pi pm(pi)/(3)-(5pi)/(12)`
or `x = 2n pi +(3pi)/(4), 2n pi + (pi)/(12), n in Z`
9.

(i) `sinx=(sqrt(3))/(2)` (ii) `cosx=1` (iii) `secx=sqrt(2)`

Answer» Correct Answer - (i) `x=npi+(-1)^(n)*(pi)/(3),n inI`
(ii) `x=2npi, n in I`
(iii) `x=(2npi+-(pi)/(4)), n in I`
10.

(i) `sin2x=(1)/(2)` (ii) `cos3x=(1)/(sqrt(2))` (iii) `"tan"(2x)/(3)=sqrt(3)`

Answer» Correct Answer - (i) `x=(npi)/(2)+(-1)^(n)*(pi)/(12), n in I`
(ii) `x=((2npi)/(3)+-(pi)/(12)), n inI`
(iii) `x=(3n+1)(pi)/(2),n in I`
11.

(i) `4cos^(2)x=1` (ii) `4sin^(2)x-3=0` (iii) `tan^(2)x=1`

Answer» Correct Answer - (i) `x=(npi+-(pi)/(3)), n in I`
(ii) `x=(npi+-(pi)/(3)), n in I`
(iii) x=(npi+-(pi)/(4)), n in I`
12.

(i) `cos3x=cos2x` (ii) `cos5x=sin3x` (iii) `cosmx=sinnx`

Answer» Correct Answer - (i) `x=2npiorx=(2npi)/(5)"where"n in I`
(ii) `x=((npi)/(4)+(pi)/(16))orx=(npi-(pi)/(4)),"where"n in I`
(iii) `x=((4k+1)pi)/(2(m+n))orx=((4k-1)pi)/(2(m-n)),"where"k inI`
13.

(i) `sec3x=-2` (ii) `cot4x=-1` (iii) `"cosec "3x=(-2)/(sqrt(3))`

Answer» Correct Answer - (i) `x=((2npi)/(3)+-(2pi)/(9)), n inI`
(ii) `x=(4n+3)(pi)/(16), n in I`
(iii) `x=(npi)/(3)+(-1)^(n)*(4pi)/(9), n in I`
14.

Find the number of solution of the equation `1+e^cot^(2x)=sqrt(2|sinx|-1)+(1-cos2x)/(1+sin^4x)forx in (0,5pi)dot`

Answer» `L.H.S. =1+e^(cot^(2) x) ge 2`
As `sqrt(2|sin x|-1) le 1`
and `(1- cos 2x)/(1+sin^(4) x)=(2 sin^(2) x)/(1+sin^(4) x)=2/(1/(sin^(2) x)+sin^(2) x) le 1`
`:. R.H.S.=sqrt(2|sin x|-1)+(1- cos 2x)/(1+sin^(4) x) le 2`
Equation will be satisfied if `L.H.S.=R.H.S.=2`.
This is possible when `cot^(2) x=0` and `|sin x|=1`.
`rArr x=(2n+1) pi.2, n in Z`
15.

If `cos 3x+sin (2x-(7pi)/6)=-2`, then x is equal to `(k in Z)`A. `pi/3 (6k+1)`B. `pi/3 (6k-1)`C. `pi/3 (2k+1)`D. none of these

Answer» Correct Answer - D
`cos 3x+sin (2x-(7 pi)/6)=-2`
`:. Cos 3x=-1` and `sin (2x -(7pi)/6)=-1`
or `3x=(2n+1) pi and 2x-(7pi)/6=-pi/2+2 m pi , m, n in Z`
or `x=(2n pi)/3+pi/3 and x=mpi+pi/3`
or `x=2 kpi +pi/3, k in Z`.
16.

The equation `x^3=3/4x=-(sqrt(3))/8`is satisfied by`x=cos((5pi)/(18))`(b) `x=cos((7pi)/(18))``x=cos((23pi)/(18))`(d) `x=cos((17pi)/(18))`A. `x=cos((5pi)/(18))`B. `x =cos((7pi)/(18))`C. `x=cos((23pi)/(18))`D. `x=-sin((7pi)/(9))`

Answer» Correct Answer - A::B
Let `x = cos theta`
`rArr 4 cos^(3) theta -3 cos. theta =-(sqrt(3))/(2)`
`rArr cos 3 theta = cos.(5pi)/(6)`
`rArr 3 theta = 2n pi pm (5pi)/(6), n in Z`
`rArr theta =(2n pi)/(3)pm(5pi)/(18),, n in Z`
Put `n=0, theta =(5pi)/(18)`
`n=1, theta =(2pi)/(3)+(5pi)/(18)=(17pi)/(18)`
`theta =(2pi)/(3)-(5pi)/(18)=(7pi)/(18)`
17.

Number of roots of `cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0`which lie in the interval `[-pi,pi]`is2 (b) 4(c) 6 (d)8A. 2B. 4C. 6D. 8

Answer» Correct Answer - B
`1- sin^(2) x+ (sqrt(3)+1)/2 sin x -sqrt(3)/4-1=0`
or `sin^(2) x-(sqrt(3)+1)/2 sin x + sqrt(3)/4=0`
or `4 sin^(2) x-2 sqrt*3) sin x -2 sin x + sqrt(3)=0`
On solving, we get `sin x=1//2, sqrt(3)//2`
`rArr x=pi//6, 5 pi//6, pi//3, 2 pi//3`
18.

Write the solution set of the equation `(2costheta+1)(4costheta+5)=0`in the interval `[0,2pi]`

Answer» `(2costheta+1)(4costheta+5) = 0`
`=>(2costheta+1) = 0 or (4costheta+5) = 0`
`=>costheta = -1/2 or cos theta = -5/4`
But, minimum value of `cos theta` is `-1`, so `costheta != -5/4.`
`:. costheta = -1/2`
`=>theta = (2pi)/3,(4pi)/3.`
19.

If `(1-tan theta)(1+tan theta)sec^2 theta+2^(tan^2 theta)=0` then in the interval `(-pi/2,pi/2),` the value of `theta` is

Answer» Given that `(1-tan theta) (1+tan theta) sec^(2) theta+2^(tan^(2) theta)=0`
or `(1- tan^(2) theta) (1+tan^(2) theta)+2^(tan^(2) theta)=0`
Let us put `tan^(2) theta=t`. Then
`(1-t) (1+t)+2^(t)=0" "or" "1-t^(2)+2^(t)=0`
It is clearly satisfied by `t=3`. thus, we get
`tan^(2) theta=3`
Therefore, `theta= pm pi//3` in the given interval.
20.

The number of solutions of the equation `cos^(2)((pi)/(3)cos x - (8pi)/(3))=1` in the interval `[0,10pi]` isA. 1B. 3C. 5D. 7

Answer» Correct Answer - C
`cos^(2)((pi)/(3)cos. X-(8pi)/(3))=1`
`rArr (pi)/(3)cos. X-(8pi)/(3)=k pi, (k in Z)`
`rArr cos x = 3k + 8, k in Z`
`rArr cos x = -1`, when `k = -3`
`rArr` there are 5 solutions for `x in [0, 10pi]`
21.

The number of solutions of the equation `|2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1` in `[0, pi]` isA. 2B. 3C. 4D. 5

Answer» Correct Answer - B
`|2 sin x -sqrt(3)|^()=1`
Case I : `2 cos^(2) x-3 cos x+1 =0`
`cos x=1/2, 1`
`x=0, pi/3`
But at `x=pi/3, L.H.S. =0^(@)`
`:. x=pi/3` (rejected)
`:. x=0` is a solution
Case II : `2 sin x-sqrt(3) =1, -1`
`:. sin x=(sqrt(3)+1)/2, (sqrt(3)-1)/2`
`sin x=(sqrt(3)-1)/2`
`:.` x has 2 values in `[0, pi]`
`:.` Total number of solutons `=2+1=3`
22.

If roots of the equation `2x^2-4x+2sintheta-1=0` are of opposite sign, then `theta` belongsA. `(pi/6, (5pi)/6)`B. `(0, pi/6) uu ((5pi)/6, 2pi)`C. `((13 pi)/6, (17 pi)/6)`D. `(0, pi)`

Answer» Correct Answer - B
Roots will be of opposite sign if product of roots is negative
`rArr sin theta lt 1/2`
23.

The value of x in `(0,pi/2)` satisfying the equation, `(sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2` is -A. `pi/12`B. `(5pi)/12`C. `(7pi)/24`D. `(11 pi)/36`

Answer» Correct Answer - A::D
`(sqrt(3)-1)/(2sqrt(2) sin x)+(sqrt(3)+1)/(2sqrt(2) cos x)=2`
`"sin" pi/12 cos x + "cos" pi/12 sin x= sin 2x`
`sin 2x= sin (x+pi/12)`
`:. 2x=x+pi/12 or 2x=pi-x- pi/12`
`x=pi/12 ot 3x=pi/12`
`:. X=pi/12 or (11 pi)/36`
24.

One root of the equation `cos x-x+1/2=0` lies in the interval (A) `[0,pi/2]` (B) `[-pi/2,0]` (C) `[pi/2,0]` (D) noneA. `(0, pi/2)`B. `(- pi/2, 0)`C. `(pi/2, pi)`D. `(pi, (3pi)/2)`

Answer» Correct Answer - A
Let `f(x)=cos x-x+1/2`
`f(0)=1+1/2 gt 0`
`f(pi/2)=0- pi/2 + 1/2=(1-pi)/2 lt 0`
Therefore, one root lies in the interval `(0, pi/2)`.
25.

The equation ` cos^8 x + b cos^4 x + 1 = 0` will have a solution if b belongs to :A. `(-oo, 2]`B. `[2, oo)`C. `(-oo, -2]`D. none of these

Answer» Correct Answer - C
`cos^(8)x+b cos^(4) x+1=0`
`rArr b=-(cos^(4) x+1/(cos^(4) x)) le -2 AA x in R`
`rArr b in (-oo, -2]`
26.

The number of solutions of the equation `1+cosx+cos2x+sinx+sin2x+sin3x=0,`which satisfy the condition `pi/2

Answer» Correct Answer - 2
Given `pi/2 lt |3x - pi/2| lt pi`
`rArr pi/2 lt (3x - pi/2) le pi`
or `-pi le (3x - pi/2) lt (-pi)/2`
`rArr x in [(-pi)/6, 0) uu (pi/3, pi/2]`
Now, `1+cos x + cos 2x + sin x + sin 2x + sin 3x =0`
`rArr 2 cos^(2) x+ cos x + sin 2x +2 sin 2x cos x=0`
`rArr cos x(2 cos x +1) + sin 2x (2 cos x + 1) =0`
`rArr (cos x + sin 2x) (2 cos x+1)=0`
`rArr cos x(1+2 sin x) (2 cos x+1) =0`
`rArr cos x=0` or `sin x = (-1)/2` (as for given interval, `cos x gt 0`)
`rArr x=pi/2` or `x= (-pi)/6`
Hence, there are 2 solutions.
27.

For `0 lt theta lt pi/2`, the solutions of `sigma_(m-1)^(6)"cosec"(theta+((m-1)pi)/4)" cosec "(theta+(mpi)/4)=4sqrt(2)` is (are):A. `pi//4`B. `pi//6`C. `pi//12`D. `5pi//12`

Answer» Correct Answer - C::D
`sum_(m=1)^(6) cosec (theta +((m-1))/4 pi) cosex (theta +(mpi)/4)=4sqrt(2)`
`rArr 1/(sin (pi//4))[(sin (theta+pi//4-theta))/(sin theta. sin (theta+pi//4))+(sin ((theta+pi//2)-(theta+pi//4)))/(sin (theta+pi//4).sin (theta+pi//2))+..+(sin ((theta+3pi//2)-(theta+5pi//4)))/(sin (theta+3pi//2). sin (theta+5pi//4))]=4sqrt(2)`
`rArr 1/(sin (pi//4))[(sin (theta+pi//4) cos theta-cos (theta+pi//4) sin theta)/(sin theta. sin (theta+pi//4))+(sin (theta+pi//2) cos (theta+pi//4)-cos (theta+pi//2) sin (theta+pi//4))/(sin (theta+pi//4). sin (theta+pi//2))+... (sin (theta+3pi//2)cos (theta+5pi//4)-cos (theta+3pi//2) sin (theta+5pi//4))/(sin (theta+3pi//2). sin (theta+5pi//4))]=4sqrt(2)`
`rArr sqrt(2) [cot theta-cot (theta+pi//4)+cot(theta+pi//4)-cot (theta+pi//2)+...+cot (theta+5pi//4)-cot(theta+3pi//2)]=4sqrt(2)`
`rArr tan theta+cot theta=4`
`rArr tan theta=2 pm sqrt(3)`
`rArr theta=pi/12 or (5pi)/12`
28.

The smallest positive `x`satisfying the equation `(log)_(cosx)sinx+(log)_(sinx)cosx=2`is`pi/2`(b) `pi/3`(c) `pi/4`(d) `pi/6`A. `pi//2`B. `pi//3`C. `pi//4`D. `pi//6`

Answer» Correct Answer - C
Let `log_(cos x) sin x=t`, then the given equation is `t+1/t=2`
or `(t-1)^(2)=0`
or `t=1`
or `log_(cos x) sin x=1 or sin x = cos x`
`rArr tan x=1`
or `x=pi//4`
29.

If `2 sin^(2)(x-(pi)/(3))-5sin(x-(pi)/(3))+2lt0`, then belongs tpA. `(((12n-5)pi)/(6),((4n+1)pi)/(2)),n in Z`B. `(((6n-7)pi)/(6),((2n+1)pi)/(2)),n in Z`C. `(((4n+1)pi)/(6),n pi),n in Z`D. `((4n+1)(pi)/(2),(12n+7)(pi)/(6)),n in Z`

Answer» Correct Answer - D
`2sin^(2)(x-(pi)/(3))-5 sin(x-(pi)/(3))+2 lt 0`
`rArr (2 sin(x-(pi)/(3))-1)(sin(x-(pi)/(3))-2)lt0`
`rArr (1)/(2)lt sin (x-(pi)/(3))lt2`
`rArr (1)/(2)lt sin (x-(pi)/(3))le 1`
`therefore x-(pi)/(3)in (2n pi + (pi)/(6), 2n pi+(5pi)/(6))`
`x in (2n pi+(pi)/(2), 2n pi+(7pi)/(6)), n in I`
30.

If the equation `x^(2)+12+3sin(a+bx)+6x=0` has atleast one real solution, where `a, b in [0,2pi]`, then the value of a - 3b is `(n in Z)`A. `2n pi`B. `(2n+1)pi`C. `(4n-1)(pi)/(2)`D. `(4n+1)(pi)/(2)`

Answer» Correct Answer - C
`x^(2)+12+3 sin (a+bx)+6x =0`
`rArr (x+3)^(2)+3+3sin (a+bx)=0`
`rArr (x+3)^(2)+3=-3 sin (a+ bx)`
`L.H.S. ge 3` but `R.H.S. le 3`
`L.H.S. = R.H.S. = 3`
`therefore x=-3` and `sin (a + bx) =-1`
`rArr sin (a-3b)=-1`
or `a-3b=(4n-1)(pi)/(2), n in Z`
31.

In each of the following , find the general value of x satisfying the equation : (i) `sinx =(-sqrt(3))/(2)` (ii) `cosx=(-1)/(2)` (iii) `cotx=-sqrt(3)`

Answer» (i) `sinx=(-sqrt(3))/(2)=-"sin"(pi)/(3)= sin(pi+(pi)/(3))="sin"(4pi)/(3)`.
`thereforesinx " sin"(4pi)/(3)rArrx={npi+(-1)^(n)*(4pi)/(3))`, where `n in I`.
Hence , the general solution is x = `{npi+(-1)^(n)*(4pi)/(3))`, where `ninI`.
(ii) `cosx=(-1)/(2)=-"cos "(pi)/(3)=cos(pi-(pi)/(3))="cos "(2pi)/(3)`.
`therefore cos x="cos"(2pi)/(3)rArrx=(2npi+-(2pi)/(3))` , where `ninI`.
Hence , the general solution is x `=(2npi+-(2pi)/(3))` , where `nin I`.
(iii) `cotx=-sqrt(3)`
`rArrtanx =(-1)/(sqrt(3))=-"tan"(pi)/(6)="tan"(pi-(pi)/(6))="tan"(5pi)/(6)`
`rArr"tan " x = "tan " (5pi)/(6)`
`rArrx=(npi+(5pi)/(6))`, where `ninI`.
32.

If the equation `k sin x + sqrt(k-2)cos x+(tan alpha+cot alpha)=0, 0 lt alpha lt(pi)/(2)`, possesses real solution, then k belongs toA. `(-oo,-3]uu[2,oo)`B. `[-3,2]`C. `[0,2)`D. R

Answer» Correct Answer - A
For real solution `sqrt(k^(2)+k-2)ge|tan alpha + cot alpha| ge 2`
`rArr k^(2)+k-6 ge 0`
`rArr k in (-oo, -3] uu[2,oo)`
33.

In each of the following , find the general value of x satisfying the equation : (i) `sinx=(1)/(sqrt(2))` (ii) `cosx =(1)/(2)` (iii) `tanx=(1)/(sqrt(3))`

Answer» (i) Given : sin `x=(1)/(sqrt(2))`. The least value of x in `[0, 2pi[" for which sin"x=(1)/(sqrt(2))is x = (pi)/(4)`.
`therefore"sin x = sin"(pi)/(4)rArrx=npi+(-1)^(n)*(pi)/(4)`, where ` n in I`.
Hence , the general solution is x = `npi+(-1)^(n)*(pi)/(4)`, where ` n in I`.
(ii) Given `cos x =(1)/(2)`.
The least value of x in `[0, 2pi["for which cos "x=(1)/(2) is x=(pi)/(3)`.
`therefore" cos x cos "(pi)/(3)rArrx=(2nx+-(pi)/(3))`, where ` n in I`.
Hence , the general solution is `x=(2nx+-(pi)/(3))`, where ` n in I`
(iii) Given : `tanx=(1)/(sqrt(3))`.
The least value of x in `[0 , 2pi[" for which tan "x=(1)/(sqrt(3))is (pi)/(6)`.
`therefore tanx ="tan "(pi)/(6)rArrx=(npi+(pi)/(6))`, where `n in I` .
Hence , the general solution is `x=(npi+(pi)/(6))`, where `ninI`.
34.

The number of solutions of equation `sin.(5x)/(2)-sin.(x)/(2)=2` in `[0,2pi]` is

Answer» Correct Answer - A
Given equation can hold only if `sin.(5x)/(2)-1` and `sin.(x)/(2)=-1`
i.e. `(5x)/(2)=2n pi +(pi)/(2)` and `(x)/(2)=2p pi -(pi)/(2)` (n `p in I`)
For some possible p and n if there exists a solution, we must have
`10 p pi-(5pi)/(2)=2n pi + (pi)/(2)`
oe `10 p - 2n = 3`
L.H.S. is even, R.H.S. is odd
Hence, not possible for any p and n.
35.

Find the general solution of the trignometric equation `3^(1/2+log_(3)(cosx+sinx))-2^(log_(2)(cosx-sinx))=sqrt(2)`A. `2n pi+(5pi)/(4)`B. `n pi-(pi)/(4)`C. `n pi+(-1)^(n)(pi)/(4)`D. `2n pi+(pi)/(4)`

Answer» Correct Answer - A
`because A.M. ge G.M. therefore (2^(sin x)+2^(cos x))/(2)ge sqrt(2^(sin x).2^(cos x))`
`therefore 2^(sin x)+2^(cos x)ge 2. sqrt(2^(sin x + cos x))`
But minimum value of cos x + sin x is `- sqrt(2)`
`thereofre 2^(sin x)+2^(cos x)ge 2. sqrt(2^(-sqrt(2)))=2^(1-(1)/(sqrt(2)))`
But the given equation is `2^(sin x)+2^(cos x)=2^(1-(1)/(sqrt(2)))`, which can hold only if `2^(sin x)=2^(cos x)=2^(-(1)/(sqrt(2)))`
`rArr x = 2n pi + (5pi)/(4), n in Z`
36.

`cosx+sinx=1`

Answer» Correct Answer - `x=(2npi+(pi)/(2))orx=2npi , "where "ninI`
`cosx+sinx=1rArr(1)/(sqrt(2))cosx+(1)/(sqrt(2))sinx=(1)/(sqrt(2))`
`rArrcosx " cos"(pi)/(4)+sinx " sin"(pi)/(4)=(1)/(sqrt(2))`
`rArrcos(x-(pi)/(4))="cos "(pi)/(4)`
`rArrx-(pi)/(4)=2npi+(pi)/(4)orx-(pi)/(4)=2npi-(pi)/(4)`
`rArrx=2npi+(pi)/(2)orx=2npi " where " n inI`.
37.

`cosx-sinx=-1`

Answer» Correct Answer - `x=(2npi+(pi)/(2))orx=(2n-1)pi, "where "n in I`
`cosx-sinx=-1`
`rArr(1)/(sqrt(2))cosx-(1)/(sqrt(2))sinx=(-1)/(sqrt(2))`
`"cos"(pi)/(4)cosx-"sin"(pi)/(4)sinx=-"cos"(pi)/(4)=cos(pi-(pi)/(4))`
`rArrcos(x+(pi)/(4))="cos"(3pi)/(4)`
`rArrx+(pi)/(4)=2npi+-(3pi)/(4)`
`rArrx+(pi)/(4)=2npi+(3pi)/(4)orx+(pi)/(4)=2npi-(3pi)/(4)`
`rArrx=2npi+(pi)/(2)orx=(2n-1)pi" where"n in I`.
38.

`cotx+tanx=2"cosec "x`

Answer» Correct Answer - `x=2npi+-(pi)/(3), "where " n in I`
The given equation is `(cosx)/(sinx)+(sinx)/(cosx)=(2)/(sinx)rArrcos^(2)x+sin^(2)x=2cosx`
`rArrcosx=(1)/(2)="cos "(pi)/(3)`
`rArrx=2npi+-(pi)/(3), "where "n inI`.
39.

`2tanx-cotx+1=0`

Answer» Correct Answer - `x=npi+(3pi)/(4)orx=mpi+(-1)^(n)(pi)/(2),"where m "ninI`
The given equations is
`2tan^(2)x+tanx-1=0`
`rArr(tanx+1)(2tanx-1)=0`
`rArrtanx=-1ortanx=(1)/(2)`
`rArrtanx="tan"(3pi)/(4)ortanx=tan("tan"^(-1)(1)/(2))`
`rArrx=npi+(3pi)/(4)orx=mpi+"tan"^(-1)(1)/(2), "where m "n in I`.
40.

Find the number of solution of `[cosx]+|sinx=1inpilt=xlt=3pi`(where `[]`denotes the greatest integer function).

Answer» We have `[cos x]+|sin x|=1`
Now, `-1 le cos x le 1`
`:.` Possible values of `[cos x]` are `0, 1, -1`
Case I :
`[cos x]=-1` or `cos x in [-1, 0)`
`:. -1 +|sin x|=1`
`rArr |sin x|=2` (not possible)
Case II :
`[cos x]=0` or `cos x in [0, 1)`
`:. |sin x|=1`
`rArr x=(3pi)/2, (5pi)/2`
Case III :
`[cos x]=1` or `cos x=1`
`:. |sin x|=0`
`:. x=2pi`
Hence, there are three solutions.
41.

If `tan a theta-tan b theta=0`, then prove that the values of `theta` forms an A.P.

Answer» We have `tan a theta = tan b theta`
`rArr a theta = n pi + b theta, n in Z`
`rArr (a -b) theta = n pi`
`rArr n pi//(a -b) = theta`
Thus, the values of `theta` form an A.P. with common difference `pi//(a -b)`
42.

If `cos p theta+cos q theta=0`, then prove that the different values of `theta` are in A.P. with common difference `2pi// (p pm q)`.

Answer» `cos p theta = - cos q theta = cos (pi - q theta)`
`rArr p theta = 2 n pi -+ (pi - q theta)`
`rArr (p -+ q) theta = (2n -+ 1) pi`
`rArr theta = ((2n -+1)pi)/((p pm q)), n in Z`
`rArr theta = (r pi)/(p -+ q), " where " r = -3, -1, 1, 3`....
`rArr theta = ...., (-3pi)/(p-+q) , (-pi)/(p-+q), (pi)/(p-+q), (3pi)/(p-+q)`,....
The above series is an A.P., of common difference `= (2pi)/(p -+q)`
43.

Let `k` be sum of all x in the interval `[0, 2pi]` such that `3 cot^(2) x+8 cot x+3=0`, then the value of `k//pi` is ___________.

Answer» Correct Answer - 5
`3cot^(2) x +8 cot x+3=0`
`:. cot x = (-4 pm sqrt(7))/3`
Both roots are negative.
`:. Pi/2 lt x_(1), x_(2) lt pi`
`:. Pi lt x_(1) + x_(2) lt 2pi`
Product of roots of roots `=cot x_(1) cot x_(2)=1`
`rArr cot x_(1) cot ((3pi)/2- x_(1))=1`
`rArr x_(1)+x_(2)=(3pi)/2`
Similarly, `x_(1)+x_(2)=(7pi)/2`
44.

Solve that following equations :`"tantheta"+"tan"2"theta"+sqrt(3)"tanthetatan"2"theta"=""sqrt(3)`

Answer» `sintheta/costheta+(cos2theta)/cos2theta+sqrt3sintheta/costheta*(sin2theta)/cos2theta=sqrt3`
`(sinthetacos2theta+sin2thetacostheta+sqrt3sinthetasin2theta)/(costhetacos2theta)=sqrt3`
`sin(theta+2theta)+sqrt3(sinthetasin2theta-costhetacos2theta)=0`
`sin3theta-sqrt3(costhetacostheta-sinthetasin2theta)=0`
`sin3theta-sqrt3cos3theta=0`
`tan3theta=sqrt3`
`theta=pi/9`
General solution
`theta=pi/9pmnpi`.
45.

Solve that following equations :`sec x cos 5x+1=0,` `0 lt x le pi/2` find the value of x

Answer» `secx*cos5x+1=0`
`(cos5x)/cosx=-1`
`cos5x=-cosx`
`cos5x+cosx=0`
`2cos((5x+x)/2)*cos((5x-x)/2)=0`
`2ocs3x*cos2x=0`
`cos3x=0`
`3x=pi/2,3/2pi`
`x=pi/6,pi/2`
`cos2x=0`
`2x=pi/2`
`x=pi/4`.
46.

Find the number of solutions for the equation `sin 5x+sin 3x+sin x=0` for `0 le x le pi`.

Answer» Correct Answer - Three solutions
`sin 3x + (sin 5x + sin x) = 0`
`rArr sin 3x + (2 sin 3x cos 2x) = 0`
`rArr sin 3x = 0`
or `cos 2x = -(1)/(2) = "cos"(2pi)/(3), n in Z`
`rArr x = npi//3`
or `x = 2n pi -+ (2pi)/(3)`
Then `x = 0, pi//3, 2pi//3`,
Hence, there are three solutions
47.

Solve `sin 6 theta=sin 4 theta-sin 2 theta`.

Answer» Correct Answer - `theta = (n pi)/4 or theta = m pi pm pi/6; m, n in Z`
`sin 6 theta = sin 4 theta - sin 2 theta`
or `sin 6 theta + sin 2 theta = sin 4 theta`
or `2 sin 4 theta cos 2 theta = sin 4 theta`
or `sin 4 theta = 0 or cos 2 theta = 1//2`
`rArr 4 theta = n pi or 2 theta = 2m pi -+ pi//3, m, x in Z`
or `theta = n pi//4 or theta = m pi -+ pi//6, m, n in Z`
48.

The number of solution of `sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0` in `0 le x le 3 pi` isA. 3B. 4C. 5D. 6

Answer» Correct Answer - B
`sin^(4) x-cos^(2) x sin x+ 2 sin^(2) x+ sin x=0`
or `sin x [sin^(3) x-cos^(2) x+2 sin x+1]=0`
or `sin x [sin^(3) x-1+sin^(2) x+2 sin x+1]=0`
or `sin x [sin^(3)x+sin^(2) x+2 sin x]=0`
or `sin^(2) x=0 or sin^(2) x+sin x+2=0` (not possible for real x)
or `sin x=0`
Hence, the solutions are `x=0, pi, 2pi, 3pi`.
49.

The number of solution of `sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0` in `0 le x le 3 pi` is

Answer» Correct Answer - 4
`sin^(4)x- cos^(2) x sin x+2 sin^(2) x+ sin x=0`
or `sin x[sin^(3) x- cos^(2)x+2 sin x+1]=0`
or `sin x[ sin^(3)x+sin^(2) x+2 sin x]=0`
or `sin^(2) x [sin^(2) x+sin x+2]=0`
or `sin x=0`, where `x=0, pi, 2 pi, 3pi`
Hence, there are four solutions.
50.

Solve `cos theta+cos 2theta+cos 3theta=0`.

Answer» Correct Answer - `theta=(2n+1) pi/4 or theta = 2npi pm (2pi)/3, n in Z`
`cos theta + cos 2 theta + cos 3 theta = 0`
or `(cos theta + cos 3 theta) + cos 2 theta = 0`
or `2 cos theta cos 2 theta + cos 2 theta = 0`
or `cos 2 theta (2 cos theta + 1) = 0`
or `cos 2 theta = 0 or 2 cos theta + 1 = 0`
`rArr 2 theta = (2n + 1) pi//2 or cos theta = - 1/2, n in Z`
or `theta = (2n + 1) pi//4 or theta = 2n pi -+ 2pi//3, AA n in Z`