Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Construct the composition table for ×5 on set Z5 = {0, 1, 2, 3, 4}

Answer»

Given x5 on set Z5 = {0,1,2,3,4}

Now,

1 ×1 = remainder obtained by dividing 1 × 1 by 5

= 1

3 ×4 = remainder obtained by dividing 3 × 4 by 5

= 2

4 ×4 = remainder obtained by dividing 4 × 4 by 5

= 1

Therefore, the composition table is below

x501234
000000
101234
202413
303142
404321
2.

If C0, C1, C2,… Cn are coefficients of expansion (1 + x)n then find the value of :(i) 8C1 + 8C2 + 8C3 + … + 8C8(ii) 8C1+ 8C3 + 8C5 + 8C7

Answer»

(i) 8C1 + 8C2 + 8C3 + … + 8C8 

We know that

nC0 + nC1nC2 + … + nCn = 2n

Putting n = 8

8C0 + 8C1 + 8C2 + …. + 8C8 = 28

⇒ 1 +8C1 + 8C2 + 8C3 + … + 8C8 = 28

⇒ 8C1 + 8C2 + …. + 8C8 = 28 – 1 = 255.

(ii) 8C1 + 8C3 + 8C5 + 8C7

We know that

8C1 + 8C3 + 8C5 +… = 2n-1

Putting n = 8

8C1 + 8C3 + 8C5 + 8C7 = 28 -1 = 27 = 128.

3.

Class 11 Maths MCQ Questions of Binomial Theorem with Answers?

Answer»

Practice the Important MCQ Questions for Class 11, which are given here. In this part, students can figure out how to determine the answer for the Binomial Theorem. Clear every one of the essentials and prepare altogether for the test-taking assistance from Class 11 Maths Binomial Theorem Objective Questions.

Practicing the MCQ Questions for Class 11 Maths with answers will boost your certainty consequently assisting you with scoring admirably in the exam. Students are encouraged to solve the Class 11 Maths MCQ Questions of Binomial Theorem with Answers to know various ideas and concepts.

Practice MCQ Questions for class 11 Maths Chapter-Wise

1. The coefficient of y in the expansion of (y2 + c/y)5 is

(a) 10c
(b) 10c2
(c) 10c3
(d) None of these

2. (1.1)10000 is _____ 1000

(a) greater than
(b) less than
(c) equal to
(d) None of these

3. The fourth term in the expansion (x – 2y)12 is

(a) -1670 x9 × y3
(b) -7160 x9 × y3
(c) -1760 x9 × y3
(d) -1607 x9 × y3

4. If the third term in the binomial expansion of (1 + x)m is (-1/8)x2 then the rational value of m is

(a) 2
(b) 1/2
(c) 3
(d) 4

5. The greatest coefficient in the expansion of (1 + x)10 is

(a) 10!/(5!)
(b) 10!/(5!)2
(c) 10!/(5! × 4!)2
(d) 10!/(5! × 4!)

6. The coefficient of xn in the expansion of (1 – 2x + 3x2 – 4x3 + ……..)-n is

(a) (2n)!/n!
(b) (2n)!/(n!)2
(c) (2n)!/{2×(n!)2}
(d) None of these

7. The coefficient of xn in the expansion (1 + x + x2 + …..)-n is

(a) 1
(b) (-1)n
(c) n
(d) n+1

8. In the expansion of (a + b)n, if n is odd then the number of middle term is/are

(a) 0
(b) 1
(c) 2
(d) More than 2

9. The number of ordered triplets of positive integers which are solution of the equation x + y + z = 100 is

(a) 4815
(b) 4851
(c) 8451
(d) 8415

10. if n is a positive ineger then 23nn – 7n – 1 is divisible by

(a) 7
(b) 9
(c) 49
(d) 81

11. The coefficient of the middle term in the expansion of (2+3x)4 is:

(a) 5!
(b) 6
(c) 216
(d) 8!

12. The value of (126)1/3 up to three decimal places is

(a) 5.011
(b) 5.012
(c) 5.013
(d) 5.014

13. The coefficient of x3y4 in (2x+3y2)5 is

(a) 360
(b) 720
(c) 240
(d) 1080

14. The integral part of \((8+3\sqrt7)^n\) is

(a) an odd integer
(b) an even integer
(c) zero
(d) nothing can be said.

15. If the third term in the expansion of \([x+x^{log_{10}}\;x]^5\),is 106 then x may be

(a) 1
(b) \(\sqrt{10}\)
(c) 10
(d) 10-2/5

16. The number of terms in the expansion of (y1/5+x1/10)55, in which powers of x and y are free from radical signs are

(a) six
(b) twelve
(c) seven
(d) five

17. If x = 9950 +10050 and y= (101)50 then

(a) x = y
(b) x<y 
(c) x>y
(d) None of these

18. If A and B are coefficients of xn in the expansions of (1+x)2n and (1+x)2n−1 respectively, then A/B is equal to

(a) 4
(b) 2
(c) 9
(d) 6

19. In the expansion of (1 + x)50, the sum of the coefficients of odd powers of x is 

(a) 226
(b) 249
(c) 250
(d) 251

20. Find an approximate value of (0.99)5 using the first three terms of its binomial expansion.

(a) 0.591
(b) 0.951
(c) 0.195
(d) None

Answer:

1. Answer: (c) 10c3

Explanation: Given, binomial expression is (y2 + c/y)5

Now, Tr+1 = 5Cr × (y2)5-r × (c/y)r

= 5Cr × y10-3r × Cr

Now, 10 – 3r = 1

⇒ 3r = 9

⇒ r = 3

So, the coefficient of y = 5C3 × c3 = 10c3

2. Answer: (a) greater than

Explanation: Given, (1.1)10000 = (1 + 0.1)10000

10000C0 + 10000C1 × (0.1) + 10000C2 ×(0.1)2 + other +ve terms

= 1 + 10000×(0.1) + other +ve terms

= 1 + 1000 + other +ve terms > 1000

So, (1.1)10000 is greater than 1000

3. Answer: (c) -1760 x9 × y3

Explanation: 4th term in (x – 2y)12 = T4

= T3+1

12C3 (x)12-3 ×(-2y)3

12C3 x9 ×(-8y3)

= {(12×11×10)/(3×2×1)} × x9 ×(-8y3)

= -(2×11×10×8) × x× y3

= -1760 x9 × y3

4. Answer: (b) 1/2

Explanation: (1 + x)m = 1 + mx + {m(m – 1)/2}x2 + ……..

Now, {m(m – 1)/2}x2 = (-1/8)x2

⇒ m(m – 1)/2 = -1/8

⇒ 4m2 – 4m = -1

⇒ 4m2 – 4m + 1 = 0

⇒ (2m – 1)2 = 0

⇒ 2m – 1 = 0

⇒ m = 1/2

5. Answer: (b) 10!/(5!)2

Explanation: The coefficient of xr in the expansion of (1 + x)10 is 10Cr and 10Cr is maximum for

r = 10/ 2

= 5

Hence, the greatest coefficient = 10C5

= 10!/(5!)2

6. Answer: (b) (2n)!/(n!)2

Explanation: (1 – 2x + 3x2 – 4x3 + ……..)-n = {(1 + x)-2}-n

= (1 + x)2n

So, the coefficient of xnC3 = 2nCn = (2n)!/(n!)2

7. Answer: (b) (-1)n

Explanation: (1 + x + x2 + …..)-n = (1 – x)-n

Now, the coefficient of x = (-1)n × nCn

= (-1)n

8. Answer: (c) 2

Explanation: In the expansion of (a + b)n,

if n is odd then there are two middle terms which are {(n + 1)/2}th term and {(n+1)/2 + 1}th term.

9. Answer: (b) 4851

Explanation: Given, x + y + z = 100;

where x ≥ 1, y ≥ 1, z ≥ 1

Let u = x – 1, v = y – 1, w = z – 1

where u ≥ 0, v ≥ 0, w ≥ 0

Now, equation becomes

u + v + w = 97

So, the total number of solution = 97+3-1C3-1

99C2

= (99 × 98)/2

= 4851

10. Answer: (c) 49

Explanation: 23n – 7n – 1 

= 23 × n – 7n – 1

= 8n – 7n – 1

= (1 + 7)n – 7n – 1

= {nC0 + nC1 7 + nC2 72 + …….. + nCn 7n} – 7n – 1

= {1 + 7n + nC2 72 + …….. + nCn 7n} – 7n – 1

nC2 72 + …….. + nCn 7n

= 49(nC2 + …….. + nCn 7n-2

which is divisible by 49

So, 23n – 7n – 1 is divisible by 49

11. Answer: (c) 216

Explanation: If the exponent of the expression is n, then the total number of terms is n+1.

Hence, the total number of terms is 4+1 = 5.

Hence, the middle term is the 3rd term.

Therefore, T3 = 4C2.(2)2.(3x)2

T3 = (6).(4).(9x2)

T3 = 216x2.

Therefore, the coefficient of the middle term is 216.

12. Answer: (c) 5.013

Explanation: (126)1/3 can also be written as the cube root of 126.

Hence, (126)1/3 is approximately equal to 5.013.

Hence, option (c) 5.013 is the correct answer.

13. Answer: (b) 720

Explanation: Given: (2x+3y2)5

Therefore, the general form for the expression (2x+3y2)5 is Tr+1 = 5Cr. (2x)r.(3y2)5-r

Hence, T3+1 5C3 (2x)3.(3y2)5-3

T5C3 (2x)3.(3y2)2

T4 = 5C3.8x3.9y4

On simplification, we get

T= 720x3y4

Therefore, the coefficient of x3y4 in (2x+3y2)2 is 720. 

14. Answer: (b) an even integer

Explanation: Let (8+\(3\sqrt{1}\))n = p+f, where p∈I and f is a proper fraction and let (8+\(3\sqrt 1\))= f′, a proper  fraction [∵0<8−\(3\sqrt 7\)<1]

Since (8+\(3\sqrt 7\))n+(8−\(3\sqrt 7\))= p+f+f′ is an even integer

∴p+1 is even

∴p is an odd integer

15. Answer: (c) 10

Explanation: Put log10x =y, the given expression becomes (x+xy)5.

T3 = 5C2.x3(xy)= 10x3+2y =106

⇒(3+2y)log10x = 5log10 10 = 5

⇒ (3+2y)y = 5

⇒ y=1,−5/2

⇒log10 x = 1log10 x =−5/2

16. Answer: (a) six

Explanation: Given expansion is (y1/5+x1/10)55

The general term is

Tr+155Cr(y1/5)55−r. (x1/10)r

Tr+1 would free from radical sign if powers of j and x are integers.

i.e \(\frac{55-r}{5}\) and r/10 are integer.

⇒ r is multiple of 10.

Hence, r = 0,10,20,30,40,50

It is an A.P.

Thus, 50 = 0+(k−1)10

50 =10k−10

k = 6

Thus, the six terms of the given expansion in which x andy are free from radical signs.

17. Answer: (b) x<y

Explanation: (101)50 − (99)50 =(100+1)50 − (100−1)50

=2[50C1(100)49+50C3(100)47+......+50C49(100)]

>2.50C1.(100)49 =2×50(100)49=(100)50

⇒(101)50 >(99)50 +(100)50

⇒ y>x

⇒ x<y.

18. Answer: (b) 2

Explanation: Given, A= Coefficient of xn in (1+x)2n

and B= Coefficient of xin (1+x)2n−1

∴ A = 2nCn and  B=2n−1Cn

\(\therefore \frac{A}{B}=\frac{^{2n}C_n}{2n-1}C_n=\frac{2n}{n}\)

= 2. 

19. Answer: (b) 249

Explanation: C0 + C1 + C2 + C3 + C4 + C5 + …..Cn = 2n 

Therefore C1 + C3 + C5 + ….. Cn = 1/2 × 2n 

= 1/2 × 250 

= 249

20. Answer: (b) 0.951

Explanation: (0.99)5 =(1−0.01)5

= 1 - 5C1 x (0.01) + 5C2 x (0.01)2........

= 1 - 0.05 + 10 x 0.0001......

= 1.001 - 0.05

= 0.951

Click here to practice MCQ Questions for Binomial Theorem Equations 11

4.

How to join and Practice Online Class 11 Binomial Theorem Mock Test?

Answer»

We have compiled the Mock Test for Class 11 Binomial Theorem covering the entire syllabus for Class 12. Practice Class 11 Binomial Theorem Mock Test on a daily basis and score well in exams. Refer to Binomial Theorem Class 11 MCQ Questions with Answers also here along with a detailed explanation. These Class 11 Mock test will widen your skills and understand concepts in a clear manner.

These Mock test will help you in cracking exams with good marks. These Binomial Theorem class 12 online mock test will help you in practising more and more questions in less time. These Class 12 Online Mock Test Binomial Theorem will cover entire concepts and its application of chapter-Binomial theorem. This online mock test for Binomial theorem is useful for CBSE Board, JEE Main and other competitive and state board exams.

All the questions form Binomial theorem are asked in Mock test and having one correct answer. It is highly recommended to follow the following tips before appearing for online test.

Click here to Practice: -  Class 11 Binomial Theorem Mock Test

5.

Write the first six terms of the sequences given by (i) a1 = a2 = 1 = an - 1 + an - 2 (n ≥ 3)(ii) a1 = 4, an + 1 = 2nan

Answer»

(i) Here a1 = a2 = 1 = an - 1 + an - 2 (n ≥ 3) 

Putting n = 3, a3 = a2 + a1 = 1 + 1 = 2 

Putting n = 4, a4 = a3 + a2 = 2 + 1 = 3 

Putting n = 5, a5 = a4 + a2 = 3 + 2 = 5 

Putting n = 6, a6 = a5 + a4 = 5 + 3 = 8 

∴ First six terms of the sequence are 1, 1, 2, 3, 5, 8

(ii) Here a1 = 4 and an + 1 = 2nan 

Putting n = 1, a2 = 2 × 1 × a1 = 2 × 1 × 4 = 8 

Putting n = 2, a3 = 2 × 2 × a2 = 4 × 8 = 32 

Putting n = 3, a4 = 8 × 192 = 1536 

Putting n = 4, a5 = 2 × 4 × a4 = 8 × 192 = 1536 

Putting n = 5, a6 = 2 × 5 × a5 = 10 × 1536 = 15360

6.

If a is the arithmetic mean and g is the geometric mean of two numbers, then ...(a) a ≤ g (b) a ≥ g (c) a = g (d) a &gt; g

Answer»

(b) a ≥ g

AM ≥ GM 

∴ a ≥ g

7.

If (1 + x) n = C0 + C1x + C2x2 + .... + Cnxn, then C0 + 3 . C1 + 5 . C2 + .... + (2n + 1) . Cn equals(a) 22n–1 (b) (n + 1) 2n (c) n . 2n+1 (d) (n – 1) 2n–1

Answer»

Answer : (b) (n + 1) 2n 

C0 + 3C1 + 5C2 + ..... (2n + 1) Cn 

= (C0 + C1 + C2 + ..... + Cn) + (2C1 + 4C2 + ..... + 2n Cn

= 2n + 2 (C1 + 2C2 + 3.C3 + ..... + n Cn

= 2n + 2 × n . 2n–1 

 = 2n + n . 2n 

= 2n (n + 1).

8.

If a and b denote the sum of the coefficients in the expansions of (1-3x+10x2)n and (1 + x2)n respectively, then write the relation between a and b.

Answer»

Given :

(1-3x+10x2)n

Sum of coefficients = a

a = (1 - 3 + 10)n

=(23)n =(2n)3 (1+x2)n 

Sum of coefficients = b 

b = (1+1)n 

= 2

Put value of b in a; we get : 

a = b3

9.

Write the number of terms in the expansion of (1-3x+3x2-x3)8.

Answer»

Given :

(1-3x+3x2-x3)8

Highest power is (x3)8 = x24

And lowest power is x0

So the expansion contains all the terms ranging from 0 to 24 

Therefore,

Total number of terms = 25

10.

47C4  + \(\sum_{r=1}^{5}\) \(^{52-r}C_3\)  is equal to (a) 47C6 (b) 52C5 (c) 52C4 (d) None of these

Answer»

Answer :(c) 52C4

\(^{47}C_4 + \sum_{r=1}^5 \)\(^{52-r}C_3\) 

= 51C3 + 50C3 + 49C3 + 48C3 + 47C3 + 47C4 

= 51C3 + 50C3 + 49C3 + 48C3 + 48C4  (\(\because\) nCr + nCr+1 = n+1Cr+1

= 51C3 + 50C3 + 49C3 + 49C4 

= 51C3 + 50C3 + 50C4 

= 51C3 + 51C4 

= 52C4

11.

Use binomial theorem to evaluate up to 4 decimals place (102)6

Answer»

(102)6 = (100 + 2)6 

= (100)6 + 6C1(1 00)5.2 + 6C2(100)4 .22+ 6C3(100)3 .23 + 6C4(100)2 .24 + 6C5.100.25 + 6C626 

= 1000000000000 + 120000000000 + 6000000000 + 160000000 + 2400000 + 19200 + 64 

= 1,126,162,419,264

12.

Use binomial theorem to evaluate up to 4 decimals place (1.0005)4

Answer»

(1.0005)4 = (1 + 0.0005)4 

= 14 + 4C1(0.0005) + 4C2(0.0005)+ 4C3(0.0005)3 + 4C4(0.0005)4 1 + 0.002 + 0.0000015 + ……………. 

= 1.00200150 ≈ 1.0020

13.

Use binomial theorem to evaluate up to 4 decimals place (0.99)4

Answer»

(0.99)4 = (1- 0.01)4 

= 4C0(0.01) – 4C1 (0.01) + 4C2(0.01)24C3(0.01)3 + 4C4(0.01)4 

= 1 – 0.04 + 0.0006 – 0.000004 + 0.00000001 

= 0.96059601 ≈ 0.9606

14.

Using Binomial theorem find the values of following(i) (99)5(ii) (1.1)6

Answer»

(i) (99)5

99 = (100- 1)

995 = (100- 1)5 = [100+ (- 1)]5

By using Binomial theorem

995 = 5C0 (100)5 (-1)0 + 5C, (100)4 (-1)1
5C2 (100)3 (- 1)2 + 5C3 (100)2 (- 1)3
5C4 (100) (-1)4 + 5C5 (100)0 (-1)5

= 1 x 10000000000 x 1 + 5 x 100000000
× (- 1) + 10 x 1000000 × 1 + 10 × 10000
× (- 1)+ 5 x 100 × 1 + 1 × 1 × (-1)

= 10000000000 – 500000000 +
10000000 – 100000 + 500 – 1

= 10010000500 – 500100001

= 9509900499

Hence, (99)5 = 9509900499

(ii) (1.1)6

(1.1)6 = (1 +0.1)6

6C0(1)6 (0.1)0 + 6C1 (1)5 (0.1)1
6C(1)4 (0.1)6C(1)3 (0.3)3
6C(1)2 (0.1)6C5 (1)1 (0.1)5 + 6C(1)0 (0.1)6

= (1 x 1 x 1) + (6 x 1 x 0-1) + {15 x 1 x (0.1)2}
+ {20 x 1 x (0.1)3} + {15 x 1 x (0.1)4}
+ {6 x 1 x (0.1)5} + {1 x 1 x (0.1)6}

= 1 + 6 x 0.1 + 15 x (0.1)2 + 20 x (0.1)3
+ 15 x (0.1)4+ 6 x (0.1)5 + (0.1)6

= 1 + 0.6 + 15 x 0.01 + 20 x 0.001 + 15 x 0.0001
+ 6 x 0.00001 +0.000001

= 1+0.6 + 0.15 + 0020 + 0-0015 + 0.00006 + 0000001

= 1.771561

15.

If n is an odd positive integer and (1 + x + x2 + x3)n = \(\sum_{r=0}^{3n} a_r \,x^r\), then a0 – a1 + a2 – a3 + ..... – a3n equals(a) –1 (b) 1 (c) 4n (d) 0

Answer»

Answer : (d) 0

Given, (1 + x + x2 + x3)n\(\sum_{r=0}^{3n} a_r\, x^r\)

⇒ (1 + x + x2 + x3)n = a0 + a1x + a2x2 + ..... + a3n x3n

Putting x = –1 in the above-given equation, we have

a0 – a1 + a2 – a3 + ..... – a3n = 0

16.

The sum of an infinite GP is 18. If the first term is 6, the common ratio is …(a) 1/3(b) 2/3(c) 1/6(d) 3/4

Answer»

(b) 2/3 

6/(1 - r) =  18 

6 = 18 - 18r

18r = 18 – 6 = 12 

r = 12/18 = 2/3

17.

Write the last two digits of the number 3400

Answer»

Given, 3400 

= (1 + 2)400 

=400 C0 (1)400 – 0 (2)0 + 400 C1 (1)400 – 1 (2)1 + 400C2 (1)400 – 2 (2)2 +…+ 400 C400 (1)400 – 400(2)400 

We observe that all term expect the first one are divisible by 100, so the remainder when 3 400 + 100 is same as the [ 400 C0 (1)400 (2)400  ] ÷ 100 = 1 ÷ 100

18.

The coefficient of the middle term in the binomial expansion in powers of x of   (1 + αx)4 and of (1 – αx)6 is the same if α equals(a)  –  \(\frac{3}{10}\)(b)  − \(\frac{5}{3}\)(c)   \(\frac{3}{5}\)(d)   \(\frac{10}{3}\)

Answer»

Answer : (a) - \(\frac{3}{10}\)

The Middle term in the expansion of (1 + αx)4 is the \((\frac{4}{2} +1)\)th term, i.e., 3rd term.

∴ t3 = t 2 + 1 = 4C2 (αx)2

The Middle term in the expansion of (1 – αx)6 is the \((\frac{6}{2} +1)\)th term, i.e., 4th term. 

∴ T4 = T3 + 1 = 6C3 (– 1)3 (αx)3

∴ Coefficient of t 3 = Coefficient of T4

4C2 α2 = 6C3 (-1)3 α3

⇒ \(\frac{4\times 3}{2} \alpha^2 = (-1) \times \frac{6\times 5\times 4}{3\times 2} \alpha^3\)

⇒ 6α2 = -20α3

⇒ α = - \(\frac{6}{20}\)  

= - \(\frac{3}{10}\) 

19.

In \((3x^2-\frac{1}{x})^{18}\)which term contains x12?

Answer»

The general term of the expression is 

Tr + 1 = 18Cr (3x2 )18 – r \((\frac{-1}{x})^{r}\) 

= 18Cr (-1)r 318-r x 36-3r

For coefficient of x12   36 – 3r = 12

 ∴ r = 8

∴ T8 = 18C8 (-1)8 318-8 x36-24

= 18C8310

9 term contains x12 and coefficient is 18C8310

20.

Prove that there is no term involving x6 in the expansion of \((2x^2-\frac{3}{x})^{11}\) ,r10

Answer»

General term of \((2x^2-\frac{3}{x})^{11}\)

Tr + 1 = 11Cr (2x2 )11 – r  \((\frac{-3}{x})^{r}\)

= 11Cr (-1)r 211-r 3r x22-3r

For term contain x6 

22 – 3r = 6

R = \(\frac{16}{3}\)

∴ r is not natural number

∴ Expansion of \((2x^2-\frac{3}{x})^{11}\) is not contain x6 term

21.

Find the 7th term in the expansion of (3x2 – 1/x3)10.

Answer»

Given as

(3x2 – 1/x3)10

Lets consider the 7th term as T7

Therefore,

T7 = T6+1

10C6 (3x2)10-6 (-1/x3)6

10C6 (3)4 (x)8 (1/x18)

= [10 × 9 × 8 × 7 × 81] / [4 × 3 × 2 × x10]

= 17010 / x10

∴ The 7th term of the expression (3x2 – 1/x3)10 is 17010 / x10.

22.

If (1 + x – 3x2)10 = 1 + a1x + a2x2 + ..... + a20x20, then find a2 + a4 + a6 + ..... + a20.

Answer»

(1 + x – 3x2)10 = 1 + a1x + a2x2 + ..... + a20x20

Putting x = 1 in (i), we get:

1 + a1 + a2 + ..... + a20 = (– 1)10 = 1

Putting x = – 1 in (i), we get

1 – a1 + a2 – ..... + a20 = (– 3)10 = 310

Adding (ii) and (iii), we get

2(1 + a2 + a4 + ..... + a20) = 310 + 1

⇒ 2(a2 + a4 + ..... + a20) = 310 – 1

⇒ a2 + a4 + ..... + a20 \(\frac{3^{10} -1}{2}\)

23.

The number of distinct terms in the expansion of (x + y – z)16 is (a) 136(b)  153(c)  16(d)  17

Answer»

Correct option  (b)  153

Explanation:

Apply n+r–1Cr–1 to get number of terms 16 + 3 – 1C3 – 1 = 18C2

= 153

24.

The coefficient of x5 in the expansion of (1 + x)21 + (1 + x)22 +.........+(1 + x)30 is(a)   31 C5 – 21C5(b)   31C6  –  21C6 (c)   30C6 – 20C6 (d)   None of these 

Answer»

Correct option   (b) 31C621C6

Explanation:

Co-efficient of x5 in (1 + x)21 + (1 + x)22 +............+ (1 + x)30 

= Co-efficient of x5 in  (1 + x)21{(1 + x)10 -1}/(1 + x) - 1

coefficient of x6 in (1 + x)31 – (1 + x)21  is 31C6 - 21C6

25.

The value of 15C8 + 15C9 – 15C6 – 15C7 is(a) –1 (b) 0 (c) 1 (d) None of these

Answer»

Answer : (b) 0

15C8 + 15C915C615C7 

= 15C8 + 15C915C915C8          (∵ nCr = nCn–r

= 0

26.

The coefficient of x4 in the expansion of (1 + x–2), where |x|&lt;1(a) –5 (b) –3 (c) 4 (d) 5

Answer»

Answer : (d) 5 

(1 + x) –2 = 1 – 2x + 3x2 – 4x3 + 5x4 

⇒ Coefficient of x4 in the expansion of (1 + x)–2 = 5.

27.

If | x | &lt; 1, then the coefficient of xn in the expansion of (1 + x + x2 + x3 + .....)2 is (a) n – 1 (b) n (c) n + 1 (d) n + 2

Answer»

Answer : (c) n+1

(1 + x + x2 + x3 + .....)2 

= {(1 – x) –1)}2 = (1 – x) –2 

= 1 + 2x + 3x2 + 4x3 + ..... + (n + 1)xn + .....

∴ Coefficient of xn in this expansion 

=  (n + 1).

28.

Find the coefficient of \(x^n\) in the expansion of \((1+x)(1-x)^n\)

Answer»

We have, 

Coefficient of \(x^n\) in \((1+x)(1-x)^n\)

= coefficient of \(x^n\) in \((1-x)^n\) + coefficient of \(x^{n-1}\) in \((1-x)^n\)

\((-1)^n\) nCn+(-1)n-1nCn-1

=\((-1)^n(1-n)\)

29.

What is the coefficient of x5 in the expansion of (1 – 2x + 3x2 – 4x3 + ..... ∞) –5. (a) \(\frac{10!}{(5!)^2}\)(b) 5–5 (c) 55 (d) \(\frac{10!}{6!\,4! }\)

Answer»

Answer: (a) \(\frac{10!}{(5!)^2}\)  

(1 – 2x + 3x2 – 4x3 + ..... ∞) –5 

= {(1 + x)–2}–5 = (1 + x)10 

∴ Coefficient of x5 = 10C5\(\frac{10!}{5!\,5!}\) = \(\frac{10!}{(5!)^2}\) 

(∵ (1 + x)n = 1 + nC1 x + nC2 x2 + nC3 x2 + ....) 

30.

If | x | &lt; 1, then the coefficient of xn in (1 + 2x + 3x2 + 4x3 + ....)1/2 is(a) 1 (b) – n (c) n (d) n + 1

Answer»

Answer : (a) 1

(1 + 2x + 3x2 + 4x3 + ....)1/2  =  [(1 – x) –2]1/2 

= (1 – x) –1  = 1 + x + x2 + x3 + ..... 

⇒ coefficient of each term = 1 

⇒ coefficient of xn = 1.

31.

State which of the statement is True or False. (i) The sum of the series Σ(for r=0 to 10)20Cr is 219+20C10/2(ii) The expression 79 + 97 is divisible by 64.(iii) The number of terms in the expansion of [(2x + y3)4]7 is(iv) The sum of coefficients of the two middle terms in the expansion of (1 + x)2n – 1 is equal to 2n – 1Cn.(v) The last two digits of the numbers 3400 are 01.(vi) If the expansion of (x -1/x2)2n contains a term independent of x, then n is a multiple of 2.(vii) Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.

Answer»

(i) False

(ii) True

(iii) False

(iv) False

(v) True

(vi) False

(vii) False

32.

Find the 5th term in the expansion of (3x – 1/x2)10.

Answer»

Given as

(3x – 1/x2)10

Now, the 5th term from the end is the (11 – 5 + 1)th, is., 7th term from the beginning.

Therefore,

T7 = T6+1

10C6 (3x)10-6 (-1/x2)6

10C6 (3)4 (x)4 (1/x12)

= [10 × 9 × 8 × 7 × 81] / [4 × 3 × 2 × x8]

= 17010 / x8

Thus, the 5th term of the expression (3x – 1/x2)10 is 17010 / x8.

33.

Find the 8th term in the expansion of (x3/2 y1/2 – x1/2 y3/2)10.

Answer»

Given as

(x3/2 y1/2 – x1/2 y3/2)10

Lets consider the 8th term as T8

Therefore,

T8 = T7+1

10C7 (x3/2 y1/2)10-7 (-x1/2 y3/2)7

= -[10×9×8]/[3×2] x9/2 y3/2 (x7/2 y21/2)

= -120 x8y12

∴ The 8th term of the expression (x3/2 y1/2 – x1/2 y3/2)10 is -120 x8y12.

34.

Find the coefficient of y3 in (7y2 - \(\frac{2}{y})^{12}\)

Answer»

Here x =7y2 , a = - \(\frac{2}{y}\) and n = 12

Tr+1 = 12Cr (7Y2)12-r .(\(\frac{-2}{y}\))r

= 12Cr.712-r .y24-2r. y-r (-2)r 

Tr+1 = 12Cr.712-r .(-2)r .y24-3r 

To find the coefficient of y3 equate the power of y or 3 

i.e., 24 – 3r = 3 ⇒ 21 = 3r ⇒ r= 7 

∴T7+1 = 12C7 .712-7 . (-2)7 y3 

= -12C7 .75 27 . y3 

∴Coefficient of y3 is -12C7.75 .27

35.

Find the coefficient of x18 in (x2  - \(\frac{6}{x}\))15

Answer»

Here, x → x2 , a → \(\frac{-6}{x}\) and r = 15 

Tr+1 = 15Cr.(x2)15-r(\(\frac{-6}{x}\))r

Tr+1 = 15Cr.x30-2r.(-6)r .x-r 

= 15Cr.(-6)r .x30-2r-r 

= 15Cr(-6)r .x30-3r

To find the coefficient of x18,equate the power of x to 18 

∴ 30 – 3r = 18 

⇒ 30 – 18 = 3r 

⇒ 3r = 12 

⇒ r = 4 

T4+1 = 15C4(-6) 4x18 

∴ Coefficient of x18 is 15C4. (6)4

36.

Find the term independent of x in  \((3x - \frac{2}{x^2})^{15}\)

Answer»

\((3x - \frac{2}{x^2})^{15}\)

Here x → 3x a → \(\frac{-2}{x^2}\) and n =15 

Tr+1 = 15Cr.(3x)15-r . (\(\frac{-2}{x^2}\))r

= 15Cr.315-r .(-2)r . x15-r 

We have x15-3r. = x0 ⇒ 15 = 3r ⇒ r = 5 

T = 15C5.315-5 .(-2)5 = -15C5 .310 25 

∴ The term independent of x is -15C5.310.25

37.

Find the term independent of x in \((x^2 - \frac{2}{x^3})^5\)

Answer»

 \((x^2 - \frac{2}{x^3})^5\)

Here x → x2 a → \(\frac{-2}{x^3}\) = 5r(x2)5 – r .\((\frac{-2}{x^3})^r\) = 5r.x10-2r.(-2)r 

= 5Cr(-2)r .x10-5r 

We have 10 – 5r = 0 ⇒ r = 2 

T2+1 = T3 = 5C2(-2)2 .x0 = 4. \(\frac{5.4}{2.1}\) = 40 

∴ The term independent of x is 40

38.

Find the number of integral term in the expansion of \((5^{\frac{1}{2}} + 7^{\frac{1}{4}})^{1024}\)

Answer»

The general term is given by

Tr + 1 = 1024Cr \((5^{\frac{1}{2}})^{1024-r} ​​(7^{\frac{1}{8}})^{r}\)

1024Cr 5 512  Cr5 512\(\frac{r}{2}-7^\frac{r}{8}\)

={ 1024Cr 5 512-r} \(5^\frac{r}{2}\times7^\frac{r}{8}\)

= { 1024Cr 5 512-r \((5^4\times7)^\frac{r}{8}\)

Clearly, Tr + 1 will be an integer if \(​​\frac{r}{8}\)is an integer such that 0 ≤ r ≤ 1024 R is multiple of 8 satisfying 0 ≤ r ≤ 1024 r = 0, 8, 16, 24,…, 1024 r can assumes 129 values.

Hence, there are 129 integral terms in the expansion of \((5^{\frac{1}{2}} + 7^{\frac{1}{4}})^{1024}\)

39.

In the expansion of (1+ x2 )8 , find the different between the coefficients of x6 and x4

Answer»

Given expansion is (1 + x2 )8

(1 + x2 )8 = 1 + 8C1 (1)8 – 1 (x2 )1 + 8C2 (1)8 – 2 (x2 ) 2 + 8C3 (1)8 – 3 (x2) 3 +8C4 (1)8 – 4 (x2 ) 4 + 8C5 (1)8 – 5 (x2 )5 + 8C6 (1)8 – 6x2 )6 +8C7 (1)8 – 7 (x2 )7 +8C8 (1)8 – 8 (x2)8 

= 1 + 8x2 + 28x4 + 56x6 + 70x8 + 56x0 + 28x2 + 8x4 + x16

Coefficient of x6= 56 

Coefficient of x4 = 28 

∴ Different between the coefficients of x6 and x4

 = 56 – 28 = 28

40.

Find the coefficient of x4 in (1 – x)2 (2 + x)5 using binomial theorem.

Answer»

Given, (1 – x)2 (2 + x)5

= (1 + x2 - 2) (1 + 5C1 25– 1 x1 + 5C2 2 5–2 x2 + 5C3 2 5–3 x3 + 5C4 25 – 4  x4 +5C5 25 – 5 x5

= (1 + x2 - 2x) (1 + 5. 24 .x + 10. 23 x2 + 10 . 22 x3 + 5 . 2 . x4 + x5 )

= (1 + x2 – 2x) (1 + 80x + 80x2 + 40x3 + 10x4 + x 5 ) 

∴ Coefficient of x4 = 80 – 80 + 10 = 10

41.

Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative?

Answer»

Let a, b ∈ Z

a * b = 3a + 7b

b * a = 3b + 7a

Now, a * b ≠ b * a

Let a = 1 and b = 2

1 * 2 = 3 × 1 + 7 × 2

= 3 + 14

= 17

2 * 1 = 3 × 2 + 7 × 1

= 6 + 7

= 13

So, there exist a = 1, b = 2 ∈ Z such that a * b ≠ b * a

Hence, * is not commutative on Z.

42.

Let * be a binary operation on Q – {-1} defined by a * b = a + b + ab for all a, b ∈ Q – {-1}. Then,(i) Show that * is both commutative and associative on Q – {-1}(ii) Find the identity element in Q – {-1}(iii) Show that every element of Q – {-1} is invertible. Also, find inverse of an arbitrary element.

Answer»

(i) Let us check the commutativity of *

Let a, b ∈ Q – {-1}

Then a * b = a + b + ab

= b + a + ba

= b * a

So,

a * b = b * a, ∀ a, b ∈ Q – {-1}

Let us prove that associativity of *

Let a, b, c ∈ Q – {-1}, then,

a * (b * c) = a * (b + c + b c)

= a + (b + c + b c) + a (b + c + b c)

= a + b + c + b c + a b + a c + a b c

(a * b) * c = (a + b + a b) * c

= a + b + a b + c + (a + b + a b) c

= a + b + a b + c + a c + b c + a b c

So,

a * (b * c) = (a * b) * c, ∀ a, b, c ∈ Q – {-1}

So, * is associative on Q – {-1}.

(ii) Let e be the identity element in I+ with respect to *

Such that, a * e = a = e * a, ∀ a ∈ Q – {-1}

a * e = a and e * a = a, ∀ a ∈ Q – {-1}

a + e + ae = a and e + a + ea = a, ∀ a ∈ Q – {-1}

e + ae = 0 and e + ea = 0, ∀ a ∈ Q – {-1}

e (1 + a) = 0 and e (1 + a) = 0, ∀ a ∈ Q – {-1}

e = 0, ∀ a ∈ Q – {-1} [because a ! = -1]

Thus, 0 is the identity element in Q – {-1} with respect to *.

(iii) Let a and b ∈ Q – {-1} be the inverse of a. Then,

a * b = e = b * a

a * b = e and b * a = e

a + b + ab = 0 and b + a + ba = 0

b (1 + a) = – a Q – {-1}

b = -a/1 + a Q – {-1} [because a ! = -1]

So, -a/1 + a is the inverse of a ∈ Q – {-1}

43.

Determine which of the following binary operation is associative and which is commutative:(i) * on N defined by a * b = 1 for all a, b ∈ N(ii) * on Q defined by a * b = (a + b)/2 for all a, b ∈ Q

Answer»

(i) Let us prove commutativity of *

Let a, b ∈ N

a * b = 1

b * a = 1

So,

a * b = b * a, for all a, b ∈ N

Thus * is commutative on N.

Let us prove associativity of *

Let a, b, c ∈ N

Then a * (b * c) = a * (1)

= 1

(a * b) * c = (1) * c

= 1

So, a * (b * c) = (a * b) * c for all a, b, c ∈ N

Hence, * is associative on N.

(ii) Let us commutativity of *

Let a, b ∈ N

a * b = (a + b)/2

= (b + a)/2

= b * a

So, a * b = b * a, ∀ a, b ∈ N

Thus * is commutative on N.

Let us prove associativity of *

Let a, b, c ∈ N

a * (b * c) = a * (b + c)/2

= [a + (b + c)]/2

= (2a + b + c)/4

Now, (a * b) * c = (a + b)/2 * c

= [(a + b)/2 + c]/2

= (a + b + 2c)/4

Thus, a * (b * c) ≠ (a * b) * c

If a = 1, b = 2, c = 3

1 * (2 * 3) = 1 * (2 + 3)/2

= 1 * (5/2)

= [1 + (5/2)]/2

= 7/4

(1 * 2) * 3 = (1 + 2)/2 * 3

= 3/2 * 3

= [(3/2) + 3]/2

= 4/9

So, there exist a = 1, b = 2, c = 3 ∈ N such that a * (b * c) ≠ (a * b) * c

Hence, * is not associative on N.

44.

On the set Z of integers a binary operation * is defined by a 8b = ab + 1 for all a, b ∈ Z. Prove that * is not associative on Z.

Answer»

Let a, b, c ∈ Z

a * (b * c) = a * (bc + 1)

= a(bc + 1) + 1

= abc + a + 1

(a * b) * c = (ab + 1) * c

= (ab + 1)c + 1

= abc + c + 1

So, a * (b * c) ≠ (a * b) * c

Hence, * is not associative on Z.

45.

Let ‘*’ be a binary operation on N defined by a * b = l.c.m (a, b) for all a, b ∈ N(i) Find 2 * 4, 3 * 5, 1 * 6.(ii) Check the commutativity and associativity of ‘*’ on N.

Answer»

(i) Given as a * b = 1.c.m. (a, b)

2 * 4 = l.c.m. (2, 4)

= 4

3 * 5 = l.c.m. (3, 5) 

= 15

1 * 6 = l.c.m. (1, 6)

= 6

(ii) Let us prove commutativity of *

Let a, b ∈ N

a * b = l.c.m (a, b)

= l.c.m (b, a)

= b * a

So

a * b = b * a ∀ a, b ∈ N

Thus * is commutative on N.

Now let us prove associativity of *

Let a, b, c ∈ N

a * (b * c ) = a * l.c.m. (b, c)

= l.c.m. (a, (b, c))

= l.c.m (a, b, c)

(a * b) * c = l.c.m. (a, b) * c

= l.c.m. ((a, b), c)

= l.c.m. (a, b, c)

So

(a * (b * c) = (a * b) * c, ∀ a, b , c ∈ N

Hence, * is associative on N.

46.

Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.

Answer»

Let e be the identity element in I+ with respect to *

Such that, a * e = a = e * a, ∀ a ∈ I+

a * e = a and e * a = a, ∀ a ∈ I+

a + e = a and e + a = a, ∀ a ∈ I+

e = 0, ∀ a ∈ I+

Hence, 0 is the identity element in I+ with respect to *.

47.

Find the identity element in the set of all rational numbers except – 1 with respect to * defined by a * b = a + b + ab.

Answer»

Let e be the identity element in I+ with respect to *

Such that, a * e = a = e * a, ∀ a ∈ Q – {-1}

a * e = a and e * a = a, ∀ a ∈ Q – {-1}

a + e + ae = a and e + a + ea = a, ∀ a ∈ Q – {-1}

e + ae = 0 and e + ea = 0, ∀ a ∈ Q – {-1}

e(1 + a) = 0 and e(1 + a) = 0, ∀ a ∈ Q – {-1}

e = 0, ∀ a ∈ Q – {-1} [because a ! = -1]

Hence, 0 is the identity element in Q – {-1} with respect to *.

48.

Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.

Answer»

As we know, the coefficients of (r + 1)th term in (1 + x)n+1 is n+1Cr

Therefore, sum of the coefficients of the rth and (r + 1)th terms in (1 + x)n is

(1 + x)n = nCr-1 + nCr

n+1Cr [since, nCr+1 + nCr = n+1Cr+1]

Thus proved.

49.

If (1 – x + x2)n = a0 + a1x + a2x2 + … + a2nx2n, find the value of a0 + a2 + a4 + … + a2n.

Answer»

(1 – x + x2)n = a0 + a1x + a2x2 + … + a2nx2n

At x = 1,

(1 – 1 + 12)n = a0 + a1(1) + a2(1)2 + … + a2n(1)2n 

a0 + a1 + a2 + … + a2n = 1 …(1)

At x = -1, 

(1 – (-1) + (-1)2)n = a0 + a1(-1) + a2(-1)2 + … + a2n(-1)2n 

a0 - a1 + a2 - … + a2n = 3n …(2) 

On adding eq.1 and eq.2 

(a0 + a1 + a2 + … + a2n) + (a0 - a1 + a2 - … + a2n) = 1 + 3n 

2(a0 + a2 + a4 + … + a2n) = 1 + 3n 

a0 + a2 + a4 + … + a2n\(\frac{1+3^n}{2}\)

50.

Using binomial theorem evaluate each of the following:(i) (96)3(ii) (102)5(iii) (101)4(iv) (98)5

Answer»

(i) We have,

(96)3

Lets express the given expression as two different entities and apply the binomial theorem.

(96)3 = (100 – 4)3

3C0 (100)3 (4)0 – 3C1 (100)2 (4)1 + 3C2 (100)1 (4)2 – 3C3 (100)0 (4)3

= 1000000 – 120000 + 4800 – 64

= 884736

(ii) We have,

(102)5

Lets express the given expression as two different entities and apply the binomial theorem.

(102)5 = (100 + 2)5

5C0 (100)5 (2)0 + 5C1 (100)4 (2)1 + 5C2 (100)3 (2)2 + 5C3 (100)2 (2)3 + 5C4 (100)1 (2)4 + 5C5 (100)0 (2)5

= 10000000000 + 1000000000 + 40000000 + 800000 + 8000 + 32

= 11040808032

(iii) We have,

(101)4

Lets express the given expression as two different entities and apply the binomial theorem.

(101)4 = (100 + 1)4

4C0 (100)4 + 4C1 (100)3 + 4C2 (100)2 + 4C3 (100)1 + 4C4 (100)0

= 100000000 + 4000000 + 60000 + 400 + 1

= 104060401

(iv) We have,

(98)5

Lets express the given expression as two different entities and apply the binomial theorem.

(98)5 = (100 – 2)5

5C0 (100)5 (2)0 – 5C1 (100)4 (2)1 + 5C2 (100)3 (2)2 – 5C3 (100)2 (2)3 + 5C4 (100)1 (2)4 – 5C5 (100)0 (2)5

= 10000000000 – 1000000000 + 40000000 – 800000 + 8000 – 32

= 9039207968