Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Find fog and gof, if  (i)  f(x) = ex, g(x) = loge x(ii) f(x) = x2, g(x) = cos x(iii) f(x) = |x|, g(x) = sin x(iv) f(x) = x + 1, g(x) = ex(v) f(x) = sin−1 x, g(x) = x2

Answer»

(i) Given as f(x) = ex, g(x) = loge x

Let f: R → (0, ∞); and g: (0, ∞) → R

Let us calculate fog,

Clearly, the range of g is a subset of the domain of f.

fog: (0, ∞) → R

(fog)(x) = f(g(x))

= f(loge x)

= loge ex

= x 

Let us calculate gof,

Clearly, the range of f is a subset of the domain of g.

⇒ fog: R→ R

(gof)(x) = g(f(x))

= g(ex)

= loge ex

= x

(ii) f(x) = x2, g(x) = cos x

f: R→ [0, ∞); g: R → [−1, 1]

Let us calculate fog,

Clearly, the range of g is not a subset of the domain of f.

⇒ Domain (fog) = {x: x ∈ domain of g and g (x) ∈ domain of f}

⇒ Domain (fog) = x: x ∈ R and cos x ∈ R}

⇒ Domain of (fog) = R

(fog): R→ R

(fog)(x) = f(g(x))

= f(cos x)

= cos2 x

Let us calculate gof,

Clearly, the range of f is a subset of the domain of g.

⇒ fog: R→R

(gof)(x) = g(f(x))

= g(x2)

= cos x2

(iii) Given f(x) = |x|, g(x) = sin x

f: R → (0, ∞) ; g : R → [−1, 1]

Let us calculate fog,

Clearly, the range of g is a subset of the domain of f.

⇒ fog: R → R

(fog)(x) = f(g(x))

= f(sin x)

= |sin x|

Let us calculate gof,

Clearly, the range of f is a subset of the domain of g.

⇒ fog : R→ R

(gof)(x) = g(f(x))

= g(|x|)

= sin |x|

(iv) Given f(x) = x + 1, g(x) = ex

f: R → R ; g: R → [ 1, ∞)

Let us calculate fog:

Clearly, range of g is a subset of domain of f.

⇒ fog: R → R

(fog)(x) = f(g(x))

= f(ex)

= e+ 1

Let us compute gof,

Clearly, range of f is a subset of domain of g.

⇒ fog: R → R

(gof)(x) = g(f(x))

= g(x + 1)

= ex+1

(v) Given f(x) = sin−1 x, g(x) = x2

f: [−1,1] → [(-π)/2,π/2]; g : R → [0, ∞) 

Let us compute the fog:

Clearly, the range of g is not a subset of the domain of f.

Domain (fog) = {x: x ∈ domain of g and g (x) ∈ domain of f}

Domain (fog) = {x: x ∈ R and x2 ∈ [−1, 1]}

Domain (fog) = {x: x ∈ R and x ∈ [−1, 1]}

Domain of (fog) = [−1, 1]

fog: [−1,1] → R 

(fog)(x) = f(g(x))

= f(x2)

= sin−1(x2)

Let us compute the gof:

Clearly, the range of f is a subset of the domain of g.

fog: [−1, 1] → R

(gof)(x) = g(f(x))

= g(sin−1 x)

= (sin−1 x)2

2.

Write the names of any two C++ header files.

Answer»

Two header files are

1. iostream.h 

2. iomanip.h

3.

List the names of any two functions of iostream.h header file.

Answer»

The two functions of iostream.h files are

  • cin 
  • cout
4.

Pick the odd one out from the following and give reason.gets() getline() getch() getchar()

Answer»

getline() – It is a stream function where as the others are console functions.

5.

What is the main function of iostream.h header file?

Answer»

The iostream.h header file contains C++ streams and i/o routine functions. It is a header file which we include in our programs to perform basic input output operations. We use ‘cin’ in programs to get input from the keyboard. To use ‘cin’ and ‘cout’, we must add iostream. h header file

6.

In a C++ program, you forgot to include the header file iostream.h. What are the possible errors occur in that Program? Explain ?

Answer»

Proto type error. To use cin and cout the header file iostream is a must.

7.

Let ` f(x) =sqrt(9-x^(2))." then , dom " (f ) =?`A. `[-3,3]`B. `(-oo,-3]`C. `[3,oo)`D. `(-oo,-3] uu (4,oo)`

Answer» Correct Answer - A
`f(x) ` is defined only water `9-x^(2) ge 0 rArr x^(2) 9 rArr -3 le x le 3. `
` :. ` dom `(f) =[-3,3]`
8.

Let `f(x)=sqrt(cos x).` Then dom (f ) =?A. `[0.(pi)/(2)]`B. `[(3pi)/(2),2pi]`C. `[0,(pi)/(2)]uu[(3pi)/(2),2pi]`D. none of these

Answer» Correct Answer - C
f(x) is defined only when
`rArr ` x lies in 1st or 4th quadrant
`rArr ` dom (f) `=[0,(pi)/(2)] uu [(3pi)/(2), 2pi]`
9.

Let `f(x) = log (1-x) +sqrt(x^(2)-1). `Then dom (f )=?A. `(1,oo)`B. `(-oo,-1]`C. `[-1,1]`D. `(0,1)`

Answer» Correct Answer - B
let `f(x) =g(x) =h (x) " where " g(x) =" log " (1-x) "and " h(x) =sqrt(x^(2)-1)`
g (x) is defined only when `1-x gt 0 rArr x lt 1` So, dom (g) `=(-oo,1)`
h(x) is defined only when `x^(2) -1 ge 1 0 rArr 1 " or " x le -1`
`:. " dom " (h)= (-oo ,-1] uu [1,oo)`
`:. " dom (f ) = " dom " (f ) nn" dom " (h)= (-oo,1]`
10.

Let `A={1,2}andB={2,4,6}."Let "f={x,y):x""inA,yinBandandygt2x+1}`. Write f as a set of ordered paris. Show that f is a relation but not a function from A to B.

Answer» Correct Answer - `f={(1,4),(1,6),(2,6)}`
11.

Let `A={2,3,5,7}andB={3,5,9,13,15}`. Let `f={(x,y):x""inA,y""inBandy=2x-1}`. Write f in roster form. Show that f is a function from A to B. Find the domain and range of f.

Answer» Correct Answer - `f={(0,3),(1,5),(2,7)},"dom "(f)={0,1,2},"range "(f)={2,3,5,7}` range `(f)={(3,5,9,13)}`
12.

Let `A={0,1,2}andB={3,5,7,9}."Let "f={(x,y):x""inA,yinBandy=2x+3}`. Write f as a set of ordered pairs. Show that f is a function from A to B. Find dom (f) and range (f).

Answer» Correct Answer - `f={(0,3),(1,5),(2,7)},"dom "(f)={0,1,2},"range "(f)={3,5,7}`
13.

If f(x) = |x|, prove that fof = f.

Answer»

Given that f(x) = |x|,

Let us prove that fof = f.

Consider that (fof)(x) = f(f(x)) 

= f(|x|) 

= ||x|| 

= |x| 

= f(x)

Therefore, (fof)(x) = f(x), ∀ x ∈ R

Hence, fof = f

14.

If f(x) = \({\frac{4x + 3}{6x - 4}}\), x ≠ \({\frac{2}{3}}\) show that fof(x) = x, for all x ≠ \({\frac{2}{3}}\). What is the inverse of f?

Answer»

Given f(x) = \({\frac{4x + 3}{6x - 4}}\), x ≠ \({\frac{2}{3}}\)

Let us show fof(x) = x

(fof)(x) = f(f(x))

= f((4x + 3)/(6x – 4)) 

=  (4((4x + 3)/(6x -4)) + 3)/(6((4x +3)/(6x – 4)) – 4)

= \(​​{\frac{16x + 12 + 18x - 12}{24x + 18 - 24x + 16}}\)

= (34x)/(34)

= x

So, fof(x) = x for all x ≠ 2/3

=> fof = 1

So, the given function f is invertible and the inverse of f is f itself.

15.

Find the domain of each of the following real valued functions of real variable :f(x) = √(9-x2)

Answer»

f(x) = √(9-x2)

We know, 

The square of a real number is never negative. 

Clearly, 

f(x) takes real values only when 9 – x2 ≥ 0 

⇒ 9 ≥ x2 

⇒ x2 ≤ 9 

⇒ x2 – 9 ≤ 0 

⇒ x2 – 32 ≤ 0 

⇒ (x + 3)(x – 3) ≤ 0 

⇒ x ≥ –3 and x ≤ 3 

∴ x ∈ [–3, 3] 

Thus, 

Domain of f = [–3, 3]

16.

Find the domain and range of each of the following real valued functions : f(x) = √(9-x2)

Answer»

f(x) = √(9-x2)

We know,

The square of a real number is never negative. 

Clearly, 

f(x) takes real values only when 9 – x2 ≥ 0 

⇒ 9 ≥ x2 

⇒ x2 ≤ 9 

⇒ x2 – 9 ≤ 0 

⇒ x2 – 32 ≤ 0 

⇒ (x + 3)(x – 3) ≤ 0 

⇒ x ≥ –3 and x ≤ 3 

∴ x ∈ [–3, 3] 

Thus,

Domain of f = [–3, 3] 

When x ∈ [–3, 3], we have 

0 ≤ 9 – x2 ≤ 9 

Hence,

0 ≤ \(\sqrt{9-x^2}\) ≤ 3

⇒ 0 ≤ f(x) ≤ 3

∴ f(x) ∈ [0, 3] 

Thus, 

Range of f = [0, 3]

17.

Find the domain and range of each of the following real valued functions : f(x) = √(x-3)

Answer»

f(x) = √(x-3)

We know,

The square of a real number is never negative. 

Clearly,

f(x) takes real values only when x – 3 ≥ 0 

⇒ x ≥ 3 

∴ x ∈ [3, ∞) 

Thus, 

Domain of f = [3, ∞) 

When x ≥ 3, 

We have x – 3 ≥ 0 

Hence,

\(\sqrt{x-3}\)  ≥ 0

⇒ f(x) ≥ 0

∴ f(x) ∈ [0, ∞) 

Thus, 

Range of f = [0, ∞)

18.

Find the domain and range of each of the following real valued functions : f(x) = √(x-1)

Answer»

f(x) = √(x-1)

We know,

The square of a real number is never negative. 

Clearly, 

f(x) takes real values only 

When x – 1 ≥ 0

⇒ x ≥ 1 

∴ x ∈ [1, ∞) 

Thus, 

Domain of f = [1, ∞) 

When x ≥ 1, 

We have,

x – 1 ≥ 0 

Hence,

\(\sqrt{x-1}\) ≥ 0

⇒ f(x) ≥ 0

∴ f(x) ∈ [0, ∞) 

Thus,

Range of f = [0, ∞)

19.

Find the domain and range of each of the following real valued functions : f(x) = √(x2-16)f(x) = \(\sqrt{x^2-16}\)

Answer»

f(x) = √(x2-16)

We know,

The square of a real number is never negative. 

Clearly, 

f(x) takes real values only when x2 – 16 ≥ 0 

⇒ x2 – 42 ≥ 0 

⇒ (x + 4)(x – 4) ≥ 0 

⇒ x ≤ –4 or x ≥ 4 

∴ x ∈ (–∞, –4] ∪ [4, ∞) 

Thus,

Domain of f = (–∞, –4] ∪ [4, ∞) 

When x ∈ (–∞, –4] ∪ [4, ∞), 

We have,

x2 – 16 ≥ 0

Hence,

\(\sqrt{x^2-16}\) ≥ 0

⇒ f(x) ≥ 0

∴ f(x) ∈ [0, ∞) 

Thus, 

Range of f = [0, ∞)

20.

Let R+ be the set of all positive real numbers. Let f : R+→ R : f(x) = logex. Find (i) Range (f) (ii) {x : x ϵ R+ and f(x) = -2}. (iii) Find out whether f(x + y) = f(x). f(y) for all x, y ϵ R.

Answer»

Given that f: R+→ R such that f(x) = loge

To find: (i) Range of f 

Here, f(x) = loge

We know that the range of a function is the set of images of elements in the domain. 

∴ The image set of the domain of f = R 

Hence, the range of f is the set of all real numbers. 

To find: (ii) {x : x ϵ R+ and f(x) = -2} 

We have, f(x) = -2 …(a) 

And f(x) = logex …(b) 

From eq. (a) and (b), we get 

logex = -2 

Taking exponential both the sides, we get

⇒ elogex = e -2

[ ∵ Inverse property I . e blogbx = x]

⇒ x = e-2 ∴{x : x ϵ R+ and f(x) = -2} = {e-2

To find: (iii) f(xy) = f(x) + f(y) for all x, y ϵ R 

We have, 

f(xy) = loge(xy) 

= loge(x) + loge(y) 

[Product Rule for Logarithms] 

= f(x) + f(y) [∵f(x) = logex] 

∴ f(xy) = f(x) + f(y) holds.

21.

Write the following relations as sets of ordered pairs and find which of them are functions:i. {(x, y): y = 3x, x ∈ {1, 2, 3}, y ∈ {3, 6, 9, 12}} ii. {(x, y): y > x + 1, x = 1, 2 and y = 2, 4, 6} iii. {(x, y): x + y = 3, x, y∈ {0, 1, 2, 3}}

Answer»

i. {(x, y): y = 3x, x ∈ {1, 2, 3}, y ∈ {3, 6, 9, 12}} 

When x = 1, we have 

y = 3(1) = 3 

When x = 2, we have 

y = 3(2) = 6 

When x = 3, we have 

y = 3(3) = 9 

Thus, 

R = {(1, 3), (2, 6), (3, 9)} 

Every element of set x has an ordered pair in the relation and no two ordered pairs have the same first component but different second components. 

Hence, 

The given relation R is a function.

ii. {(x, y): y > x + 1, x = 1, 2 and y = 2, 4, 6} 

When x = 1, we have 

y > 1 + 1 or y > 2

⇒ y = {4, 6} 

When x = 2, we have

y > 2 + 1 or y > 3

⇒ y = {4, 6} 

Thus, 

R = {(1, 4), (1, 6), (2, 4), (2, 6)} 

Every element of set x has an ordered pair in the relation. However, two ordered pairs (1, 4) and (1, 6) have the same first component but different second components. 

Hence, 

The given relation R is not a function.

iii. {(x, y): x + y = 3, x, y∈ {0, 1, 2, 3}} 

When x = 0, we have 

0 + y = 3

⇒ y = 3 

When x = 1, we have 

1 + y = 3

⇒ y = 2 

When x = 2, we have 

2 + y = 3

⇒ y = 1 

When x = 3, we have 

3 + y = 3

⇒ y = 0 

Thus, 

R = {(0, 3), (1, 2), (2, 1), (3, 0)} 

Every element of set x has an ordered pair in the relation and no two ordered pairs have the same first component but different second components. 

Hence, 

The given relation R is a function.

22.

Let f: R+→ R, where R+ is the set of all positive real numbers, be such that f(x) = logex. Determine :i. the image set of the domain of f ii. {x: f(x) = –2} iii. whether f(xy) = f(x) + f(y) holds.

Answer»

Given,

f : R+→ R and f(x) = logex. 

i. the image set of the domain of f : 

Domain of f = R+ 

(set of positive real numbers) 

We know the value of logarithm to the base e (natural logarithm) can take all possible real values. 

Hence, 

The image set of f is the set of real numbers. 

Thus,

The image set of f = R 

ii. {x: f(x) = –2} 

Given,

f(x) = –2 

⇒ logex = –2 

∴ x = e-2 

[∵ logba = c ⇒ a = bc

Thus, 

{x: f(x) = –2} = {e –2} 

iii. whether f(xy) = f(x) + f(y) holds. 

We have, 

f(x) = loge

⇒ f(y) = loge

Now, 

let us consider f(xy). 

f(xy) = loge(xy) 

⇒ f(xy) = loge(x × y) 

[∵ logb(a×c) = logba + logbc] 

⇒ f(xy) = logex + loge

∴ f(xy) = f(x) + f(y) 

Hence, 

The equation f(xy) = f(x) + f(y) holds.

23.

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}. Determine which of the following sets are functions from X to Y. i. f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} ii. f2 = {(1, 1), (2, 7), (3, 5)} iii. f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

Answer»

Given,

X = {1, 2, 3, 4} and 

Y = {1, 5, 9, 11, 15, 16} 

i. f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 

Every element of set X has an ordered pair in the relation f1 and no two ordered pairs have the same first component but different second components. 

Hence, 

The given relation f1 is a function. 

ii. f2 = {(1, 1), (2, 7), (3, 5)} 

In the relation f2

The element 2 of set X does not have any image in set Y. 

However,

For a relation to be a function, 

Every element of the domain should have an image. 

Hence, 

The given relation f2 is not a function. 

iii. f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)} 

Every element of set X has an ordered pair in the relation f3

However, 

Two ordered pairs (2, 9) and (2, 11) have the same first component but different second components. 

Hence, 

The given relation f3 is not a function.

24.

The domain of definition of the function f(x) = √(4x-x2) is A. R – [0, 4] B. R – (0, 4) C. (0, 4) D. [0, 4]

Answer»

Option : (D)

Given,

f(x) = √(4x-x2)

Here, 

4x-x2≥0 

x2-4x≤0 

x(x-4)≤ 0

So,

x ∈ [0,4]

25.

The domain of definition of the function f(x) = log |x| is A. R B. (-∞, 0) C. (0, ∞) D. R – {0}

Answer»

Option : (D)

For f(x) = log |x|; 

It is defined at all positive values of x except 0.. 

But since we have |x|; 

So, 

|x|>0; 

x ∈ R-{0}

26.

The domain of definition of f(x) = \(\sqrt{\frac{(x+1)(x-3)}{x-2}}\)is A. [-1, 2) ∪ [3, ∞) B. (-1, 2) ∪ [3, ∞) C. [-1, 2] ∪ [3, ∞) D. None of these

Answer»

Option : (A)

Given,

f(x) = √((x+1)(x-3)/(x-2)) 

Here,

\({\frac{(x+1)(x-3)}{x-2}}\) ≥  0

But,

x ≠ 2

So,

x ∈  [-1,2) ∪ [3,∞)

27.

The domain of definition of the function f(x) = \(\sqrt{\frac{x-2}{x+2}}\) + \(\sqrt{\frac{1-x}{1+x}}\) is A. (-∞, -2] ∪ [2, ∞) B. [-1, 1] C. ϕ D. None of these

Answer»

Option : (C)

Given,

f(x) = √((x-2)/(x+2))+√((1-x)/(1+x))

For function to be defined,

\({\frac{x-2}{x+2}}\) ≥ 0, x ≠ - 2 

x∈(-∞,-2)∪[2, ∞) …(1)

And,

\({\frac{1-x}{1+x}}\) ≤ 0

So,

Taking common of both the solutions, we get

x ∈ ϕ.

28.

If f : [-2, 2] → R is defined by f(x) =\(\begin{cases} -1,\,for \,-2≤x≤0\\ x-1,\,for\,0≤x≤2 \end{cases}\) then {x [-2, 2] : x ≤ 0 and f(|x|) = x} =A. {-1} B. {0} C. {-1/2} D. ϕ

Answer»

Option : (C)

f(|x|) = |x|-1 

f(|x|) = x 

We have, 

|x| = x ;x≥0 

And |x| = -x ; x≤0 

So, 

-x-1 = x 

2x = -1

x = \(-\frac{1}{2}\)

29.

Let f : R → R be defined by\(\ f (x) =\begin{cases}x+2\,,&\quad x\leq 1\\x^2\,, &\quad -1<x<1\\2-x\,, &\quad x\geq 1\end{cases}\)  then the value of f (– 1.75) + f (0.5) + f (1.5) is(a) 0 (b) 1 (c) 2 (d) – 1

Answer»

Answer : (b) 1 

 f (– 1.75) + f (0.5) + f (1.5) 

= (– 1.75 + 2) + (0.5)2 + (2 – 1.5) 

= 0.25 + 0.25 + 0.5

= 1.

30.

If `f_1(x) and f_2(x)` are defined on domains `D_1 and D_2`,respectively, then `f_1 (x) + f_2(x)` is defined on `D_1 nn D_2`.

Answer» Correct Answer - 1
Since, domain of `f_(1)(x) and f_(2)(x) " are " D_(1) and D_(2)`.
Thus, domain of `[f_(1)(x)+f_(2)(x)]" is " D_(1) cap D_(2).`
Hence, given statement is true.
31.

Let F(x) be an indefinite integral of `sin^(2)x` Statement I The function F(x) satisfies `F(x+pi)=F(x)` for all real x. Because Statement II `sin^(2)(x+pi)=sin^(2)x,` for all real x.(A) Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.(B)Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.(C) Statement I is true, Statement II is false.(D) Statement I is false, Statement II is ture.A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I.C. Statement I is true, Statement II is false.D. Statement I is false, Statement II is ture.

Answer» Correct Answer - D
Given, `F(x)=int sin^(2)x dx= int(1-cos2x)/(2)dx`
`F(x)=(1)/(4)(2x-sin 2x)+C`
Since, `F(x+pi) ne F(x)`
Hence, Statement I is false.
But, Statement II is true as `sin^(2)x` is periodic with period `pi`.
32.

Give an example of a function Which is one – one but not onto.

Answer»

One – One Function: – A function f:A → B a  is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f:A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f:A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f:A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Now, Let, f:N → N given by f(x) = x2

Check for Injectivity:

Let x,y be elements belongs to N i.e x, y ∈ N such that

So, from definition

⇒ f(x) = f(y)

⇒ x2 = y2

⇒ x2 – y2 = 0

⇒ (x – y)(x + y) = 0

As x, y ∈ N therefore x + y>0

⇒ x – y = 0

⇒ x = y

Hence f is One – One function

Check for Surjectivity:

Let y be element belongs to N i.e y ∈ N be arbitrary, then

⇒ f(x) = y

⇒ x2 = y

⇒ x = √y

⇒ √y not belongs to N for non–perfect square value of y.

Therefore no non – perfect square value of y has a pre image in domain N.

Hence, f:N → N given by f(x) = x2 is One – One but not onto.

33.

If `X and Y` are two non-empty sets where `f: X->Y`,is function is defined such that`f(c) = {f (x): x in C}` for `C sube X and f^-1 (D) = {x: f(x) in D}` for `D sube Y`,for any `A sube Y and B sube Y`, thenA. `f^(1){f(A)}=A`B. `f^(1){f(A)}=A," only if "f(X)=Y`C. `f{f^(-1)(B)}, " only if " B sube f(x)`D. `f{f^(-1)(B)}=B`

Answer» Correct Answer - C
Since, only (c) satisfy given definition
i.e. `f{f^(-1)(B)}=B`
Only,if `B sube f(x)`
34.

If `X and Y` are two non-empty sets where `f: X->Y`,is function is defined such that`f(c) = {f (x): x in C}` for `C sube X and f^-1 (D) = {x: f(x) in D}` for `D sube Y`,for any `A sube Y and B sube Y`, thenA. `f^(-1)(f(A))=A`B. `f^(-1)(f(A))=A" only if f "(X)=Y`C. `f(f^(-1)(B))=B" only if B "subseteqf(X)`D. `f(f^(-1)(B))=B`

Answer» Correct Answer - C
We have
`A subseteq f^(-1)(f(A)) and A=f^(-1)(f(A))` iff f is a bijection.
So, options (a) and (b) are not correct
`f(f^(-1)(B)) subseteq B and f(f^(-1)(B))=B" iff "B subseteqf(X)`
So, options ( c) is correct but options (d) is not correct.
35.

If A = {1, 2, 3, 4), B = {1, 2, 3, 4, 5, 6} are two sets and the function f : A → B is defined by f (x) = x + 2  ∀  x ∈ A, then the function f is(a) bijective (b) one-one (c) onto (d) many-one

Answer»

Answer: (b) = one - one

f (x) = x + 2 and f : A → B 

∴  f (1) = 1 + 2 = 3, f (2) = 2 + 2 = 4 

f (3) = 3 + 2 = 5, f (4) = 4 + 2 = 6 

Thus each element in A has a unique image in B and no two elements in B have the same pre-image in A. 

So f is one-one

But not all the elements of B, i.e., 1 and 2 have a pre-image in A. 

So, the function f is not onto

36.

Give an example of a function Which is not one – one but onto.

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Now, Let, f: R → R given by f(x) = x3 – x

Check for Injectivity:

Let x,y be elements belongs to R i.e x, y ∈ R such that

So, from definition

⇒ f(x) = f(y)

⇒ x3 – x = y3 – y

⇒ x3 – y3 – (x – y) = 0

⇒ (x – y)(x2 + xy + y2 – 1) = 0

As x2 + xy + y2 ≥ 0

⇒ therefore x2 + xy + y2 – 1≥ – 1

⇒ x – y≠0

⇒ x ≠ y for some x, y ∈ R

Hence f is not One – One function

Check for Surjectivity:

Let y be element belongs to R i.e y ∈ R be arbitrary, then

⇒ f(x) = y

⇒ x3 – x = y

⇒ x3 – x – y = 0

Now, we know that for 3 degree equation has a real root

So, let x = α be that root

⇒ α3 - α = y

f(α) = y

Thus for clearly y ∈ R, there exist α ∈ R such that f(x) = y

Therefore f is onto

⇒ Hence, f: R → R given by f(x) = x3 – x is not One – One but onto

37.

Which of the following functions from A to B are one – one and onto?f3 = {(a, x), (b, x), (c, z), (d, z)}; A = {a, b, c, d}, B = {x, y, z}

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Now, As given,

f3 = {(a, x), (b, x), (c, z), (d, z)}

A = {a, b, c, d}, B = {x, y, z}

Thus we can clearly see that

Check for Injectivity:

Every element of A does not have different image from B

Since,

f3(a) = x = f3(b) and f3(c) = z = f3(d)

Therefore f is not One – One function

Check for Surjectivity:

Also each element of B is not image of any element of A

Hence f is not Onto.

38.

Which of the following functions from A to B are one – one and onto?f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Now, As given,

f2 = {(2, a), (3, b), (4, c)}

A = {2, 3, 4}, B = {a, b, c}

Thus we can see that

Check for Injectivity:

Every element of A has a different image from B

Hence f is a One – One function

Check for Surjectivity:

Also, each element of B is an image of some element of A

Hence f is Onto.

39.

Let A = R – {2} and B = R – {1}. If \(f:A→B:f(x)=\frac{x-1}{x-2},\)show that f is one-one and onto. Hence, find f-1.

Answer»

To Show: that f is one-one and onto

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]

one-one function: A function f : A → B is said to be a one-one function or injective mapping if different elements of A have different images in B. Thus for x1, x2 ∈ A & f(x1), f(x2) ∈ B, f(x1) = f(x2) ↔ x1= x2 or x1 x2 ↔ f(x1) ≠ f(x2)

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

Let x1, x2 Q and f(x) = \(\frac{x-1}{x-2}\).So f(x1) = f(x2) → \(\frac{x_1-1}{x_1-2}\) = \(\frac{(x_2-1)}{x_2-2}\), on solving we get x1=x2

So f(x1) = f(x2) x1= x2, f(x) is one-one

Given co-domain of f(x) is R – {1}

Let y = f(x) = \(\frac{x-1}{x-2}\), So x = \(\frac{2y-1}{y-1}\) [Range of f(x) = Domain of y]

So Domain of y = Range of f(x) = R – {1}

Hence, Range of f(x) = co-domain of f(x) = R – {1}.

So, f(x) is onto function

As it is a bijective function. So it is invertible

Invers of f(x) is f-1(y) = \(\frac{2y-1}{y-1}\)

40.

Show that the function f on A = R – {2/3}, defined as f(x) = (4x + 3)/ (6x – 4) in one-one and onto. Hence, find f -1.

Answer»

One-one f:

Consider x1 and x2 ∈ dom (f)

We know that

f(x1) = f(x2)

It can be written as

(4x1 + 3)/ (6x1 – 4) = (4x2 + 3)/ (6x2 – 4)

So we get

(4x1 + 3) (6x2 – 4) = (4x2 + 3) (6x1 – 4)

On further calculation

24 x1 x2 – 16x1 + 18 x2 – 12 = 24 x1 x2 – 16x2 + 18x1 – 12

We get

34 x1 = 34 xwhere x1 = x2

f is one-one

Onto f:

Consider y ∈ co domain (f)

We know that y = f(x)

y = (4x + 3)/ (6x – 4)

On further calculation

6xy – 4y = 4x + 3

So we get

6xy – 4x = 3 + 4y

It can be written as

x (6y – 4) = 3 + 4y

So x = (3 + 4y)/ (6y – 4) ∈ domain Ɐ y ∈ co-domain

f is an onto function

Here, x = (3 + 4y)/ (6y – 4) where y ≠ 2/3

We get

-1 (y) = (3 + 4y)/ (6y – 4) where y ≠ 2/3

41.

Which of the following functions from A to B are one – one and onto?f1 = {(1, 3), (2, 5), (3, 7)}; A = {1, 2, 3}, B = {3, 5, 7}

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Now, As given,

f1 = {(1, 3), (2, 5), (3, 7)}

A = {1, 2, 3}, B = {3, 5, 7}

Thus we can see that,

Check for Injectivity:

Every element of A has a different image from B

Hence f is a One – One function

Check for Surjectivity:

Also, each element of B is an image of some element of A

Hence f is Onto.

42.

Show that the function f on \(A=R-{\frac{2}{3}}\) defined as \(f(x)=\frac{4x+3}{6x-4}\)is one-one and onto. Hence, find f-1.

Answer»

To Show: that f is one-one and onto

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]

one-one function: A function f : A → B is said to be a one-one function or injective mapping if different elements of A have different images in B. Thus for x1, x2 ∈ A & f(x1), f(x2) ∈ B, f(x1) = f(x2) ↔ x1= x2 or x1 x2 ↔ f(x1) ≠ f(x2)

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

Let x1, x2 ∈ Q and f(x) = \(\frac{(4x+3)}{(6x-4)}\).So f(x1) = f(x2) → \(\frac{(4x_1+3)}{(6x_1-4)}=\frac{(4x_2+3)}{(6x_2-4)}\) → = on solving we get x1=x2

So f(x1) = f(x2) ↔ x1= x2, f(x) is one-one

Given co-domain of f(x) is R except 3x-2=0.

Let y = f(x) = \(\frac{(4x+3)}{(6x-4)}\) So x = \(\frac{4x+3}{6x-4}\) [Range of f(x) = Domain of y]

So Domain of y is R (except 3x-2=0) = Range of f(x)

Hence, Range of f(x) = co-domain of f(x) = R except 3x-2=0

So, f(x) is onto function

As it is bijective function. So it is invertible

Invers of f(x) is f-1(y) = \(\frac{4x+3}{6x-4}\)

43.

Show that if f : A → B and g : B → C are onto, then gof is also onto.

Answer»

Since g is surjective (onto),

there exists y ∈ B for every z ∈ C such that

g(y) = z …….(i)

Since f is surjective,

there exists x ∈ A for every y ∈ B such that

f(x) = y …….(ii)

(gof) x = g(f(x))

= g(y) ……[From (ii)]

= z …..[From(i)]

i.e., for every z ∈ C, there is x in A such that

(gof) x = z

∴ gof is surjective (onto).

44.

Which of the following functions from A to B are one-one and onto?(i) f1 = {(1, 3), (2, 5), (3, 7)}; A = {1, 2, 3}, B = {3, 5, 7}(ii) f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}(iii) f3 = {(a, x), (b, x), (c, z), (d, z)}; A = {a, b, c, d,}, B = {x, y, z}. 

Answer»

(i) Given f1 = {(1, 3), (2, 5), (3, 7)}; A = {1, 2, 3}, B = {3, 5, 7}

Injectivity:

f1(1) = 3

f1(2) = 5

f1(3) = 7

⇒ Every element of A has different images in B.

So, f1 is one-one.

Surjectivity:

Co-domain of f1 = {3, 5, 7}

Range of f1 = set of images  =  {3, 5, 7}

⇒ Co-domain = range

So, f1 is onto.

(ii) Given f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}

f2 = {(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B = {a, b, c}

Injectivity:

f2(2) = a

f2(3) = b

f2(4) = c

⇒ Every element of A has different images in B.

So, f2 is one-one.

Surjectivity:

Co-domain of f2 = {a, b, c}

Range of f2 = set of images = {a, b, c}

⇒ Co-domain = range

So, f2 is onto.

(iii) Given f3 = {(a, x), (b, x), (c, z), (d, z)} ; A = {a, b, c, d,}, B = {x, y, z}

Injectivity:

f3(a) = x

f3(b) = x

f3(c) = z

f3(d) = z

⇒ a and b have the same image x.

Also c and d have the same image z

Therefore, f3 is not one-one.

Surjectivity:

Co-domain of f1 = {x, y, z} 

Range of f1 = set of images = {x, z}

So, the co-domain  is not same as the range.

Hence, f3 is not onto.

45.

Mark (√) against the correct answer in the following: Let A and B be two non - empty sets and let f : (A × B) → (B × A) : f(a, b) = (b, a). Then, f is A. one - one and into B. one - one and onto C. many - one and into D. many - one and onto

Answer»

SINCE, f(a, b) = (b, a).There is no same value of y at different values of x

∴function is one one

∴Range(A×B)≠Codomain(B × A)

⇒function is into

46.

Give an example of a function (i) Which is one-one but not onto.(ii) Which is not one-one but onto.(iii) Which is neither one-one nor onto.

Answer»

(i) Let f: Z → Z given by f(x) = 3x + 2

We have to check one-one condition on f(x) = 3x + 2

Injectivity:

Let x and y be any two elements in domain (Z), such that f(x) = f(y).

 f(x) = f(y)

⇒ 3x + 2 = 3y + 2

⇒ 3x = 3y

⇒ x = y

⇒ f(x) = f(y) 

⇒ x = y

Therefore, f is one-one.

Surjectivity:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z(domain).

Let f(x) = y

⇒ 3x + 2 = y

⇒ 3x = y – 2

⇒ x = (y – 2)/3. It may not be in the domain (Z)

Because if we take y = 3,

x = (y – 2)/3 = (3 - 2)/3 = 1/3 ∉ domain Z.

So, for every element in the co domain there need not be any element in the domain such that f(x) = y.

Thus, f is not onto.

(ii) Example for function which is not one-one but onto

Let f: Z → N ∪ {0} given by f(x) = |x|

Injectivity:

Let x and y be any two elements in domain (Z),

Such that f(x) = f(y).

⇒ |x| = |y|

⇒ x = ± y

So, different elements of domain f may give the same image.

Therefore, f is not one-one.

Surjectivity:

Let y be any element in co domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

⇒ |x| = y

⇒ x = ± y

Which is an element in Z (domain). So, for every element in the co-domain, there exists a pre-image in the domain.

Thus, f is onto.

(iii) Example for function which is neither one-one nor onto.

Let f: Z → Z given by f(x) = 2x2 + 1

Injectivity:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

f(x) = f(y)

⇒ 2x+1 = 2y+1

⇒ 2x2 = 2y2

⇒ x= y2

⇒ x = ± y

So, different elements of domain f may give the same image.

Thus, f is not one-one.

Surjectivity:

Let y be any element in co-domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

⇒ 2x+ 1 = y

⇒ 2x= y − 1

⇒ x2 = (y - 1)/2

⇒ x = √((y - 1)/2) ∉ Z always.

For example, if we take, y = 4,

x = ± √((y - 1)/2)

= ± √((4 - 1)/2)

= ± √(3/2) ∉ Z

Therefore, x may not be in Z (domain).

Hence, f is not onto.

47.

Classify the following function as injection, surjection or bijection:(i) f: N → N given by f(x) = x2(ii) f: Z → Z given by f(x) = x2(iii) f: N → N given by f(x) = x3(iv) f: Z → Z given by f(x) = x3(v) f: R → R, defined by f(x) = |x|

Answer»

(i) Given as f: N → N, given by f(x) = x2

Let us check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in domain (N), such that f(x) = f(y).

f(x) = f(y)

x= y2

x = y (We do not get ± because x and y are in N that is natural numbers)

So, f is an injection.

Surjection condition:

Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).

f(x) = y

x2= y

x = √y, which may not be in N.

For example, if y = 3,

x = √3 is not in N.

So, f is not a surjection.

Also f is not a bijection.

(ii) Given f: Z → Z, given by f(x) = x2

Let us check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in domain (Z), such that f(x) = f(y).

f(x) = f(y)

x= y2

x = ±y

Therefore, f is not an injection.

Surjection test:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

x= y

x = ± √y which may not be in Z.

For example, if y = 3,

x = ± √3 is not in Z.

So, f is not a surjection.

Also f is not bijection.

(iii) Given f: N → N given by f(x) = x3

Let us check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in domain (N), such that f(x) = f(y).

f(x) = f(y)

x3 = y3

x = y

So, f is an injection 

Surjection condition:

Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).

f(x) = y

x3= y

x = 3√y which may not be in N.

For example, if y = 3,

X = 3√3 is not in N.

So, f is not a surjection and f is not a bijection.

(iv) Given f: Z → Z given by f(x) = x3

Let us check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y)

f(x) = f(y)

x3 = y3

x = y

So, f is an injection.

Surjection condition:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

x3 = y

x = 3√y which may not be in Z.

For example, if y = 3,

x = 3√3 is not in Z.

So, f is not a surjection and f is not a bijection.

(v) Given f: R → R, defined by f(x) = |x|

Let us check for the given function is injection, surjection and bijection condition.

Injection test:

Let x and y be any two elements in domain (R), such that f(x) = f(y)

f(x) = f(y)

|x| = |y|

x = ± y

Therefore, f is not an injection.

Surjection test:

Let y be any element in co-domain (R), such that f(x) = y for some element x in R (domain).

f(x) = y

|x| = y

x = ± y ∈ Z

Therefore, f is a surjection and f is not a bijection.

48.

If f: A → B is an injection, such that range of f = {a}, determine the number of elements in A.

Answer»

Given that f: A → B is an injection

And also given the range of f = {a}

Therefore, the number of images of  f = 1

Since, f  is an injection, there will be exactly one image for each element of f .

Therefore, number of elements in A = 1.

49.

Let A = {1, 2, 3}. Write all one – one from A to itself.

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

We have A = {1, 2, 3}

So all one – one functions from A = {1, 2, 3} to itself are obtained by re – arranging elements of A.

Thus all possible one – one functions are:

f(1) = 1, f(2) = 2, f(3) = 3

f(1) = 2, f(2) = 3, f(3) = 1

f(1) = 3, f(2) = 1, f(3) = 2

f(1) = 1, f(2) = 3, f(3) = 2

f(1) = 3, f(2) = 2, f(3) = 1

f(1) = 2, f(2) = 1, f(3) = 3

50.

If f: A → B is an injection such that range of f = {a}. Determine the number of elements in A.

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇒ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Here, Range {f} = {a}

Since it is injective map, different elements have different images.

Thus A has only one element