

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
251. |
The principal value of `cos^(-1)(-1/2)` isA. `pi/6`B. `pi/3`C. `(2pi)/3`D. `(5pi)/6` |
Answer» Correct Answer - C | |
252. |
Solve `sin^(-1) [sin((2x^(2) + 4)/(1 + x^(2)))] lt pi -3` |
Answer» `sin^(-1)[sin((2x^(2) + 4)/(1 + x^(2)))] lt pi - 3` Now, `(2x^(2) + 4)/(1 + x^(2)) = (2x^(2) + 2 + 2)/(1 + x^(2)) = 2 + (2)/(1 + x^(2))` So, `2+(2)/(1 + x^(2)) in (2, 4]` Therefore, Eq. (i) reduces to `pi-(2x^(2) + 4)/(1 + x^(2)) lt pi - 3` or `(2x^(2) + 4)/(1 + x^(2)) gt 3` or `2x^(2) + 4 gt 3 + 3x^(2)` or `x^(2) - 1 lt 0` or `-1 lt x lt1` |
|
253. |
Solve `sin^(-1) (sin 6x) = x, x in [0,pi]` |
Answer» `sin^(-1) (sin 6x) = x` `rArr sin 6 x = sin x` `rArr sin 6 x - sin x = 0` `rArr 2 sin.(5x)/(2) cos.(7x)/(2) = 0` `rArr (5x)/(2) n pi " or " (7x)/(2) = (2n + 1) (pi)/(2), n in Z` `rArr x = (2n pi)/(5) " or " x = (2n + 1) (pi)/(7)` `rArr x = (pi)/(7) , (3pi)/(7), (5pi)/(7), pi, 0, (2pi)/(5), (4pi)/(5)` But `x = (5 pi)/(7), pi, (4pi)/(5)` are not possible as any solution `[-(pi)/(2), (pi)/(2)]` |
|
254. |
STATEMENT-1 : The solution of `sin^-1 6x+sin^-1 6sqrt3x=pi/2` is , `x= +- 1/12.` and STATEMENT - 2 As, `sin^-1 x` is defined for `|x| |
Answer» Correct Answer - D | |
255. |
If `sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2` then `x=`A. -5B. 5C. 25D. -25 |
Answer» Correct Answer - B | |
256. |
The value of `cos^(-1)(-1)+sin^(-1)(1)` isA. `-(3pi)/2`B. `pi/2`C. `pi`D. `(3pi)/2` |
Answer» Correct Answer - D | |
257. |
Find the principal value of `cosec^(-1)(-2/sqrt3)`. |
Answer» Correct Answer - `-pi/3` | |
258. |
The principal value of `cosec^(-1)(-1)` isA. `-pi/2`B. 0C. `pi/2`D. `(3pi)/2` |
Answer» Correct Answer - A | |
259. |
If `cot^(-1)x+tan^(-1)(1/2)=pi/4` then x isA. `1/3`B. `2/3`C. 2D. 3 |
Answer» Correct Answer - D | |
260. |
What is the principal value of `sin^(-1)(-(sqrt(3))/2) ?`A. `(2pi)/(3)`B. `-(pi)/(3)`C. `(4pi)/(3)`D. `(5pi)/(3)` |
Answer» `sin^(-1)-sqrt(3)/(2) is an angle theta in [-(pi)/(2),(pi)/(2)]` such that `sin theta =sqrt(3)/(2)` clearly , such an angle is `-(pi)/(3)` | |
261. |
The value of `sin^(-1)[cos{sin^(-1)(-sqrt(3)/(2))}]` isA. `(pi)/(3)`B. `(pi)/(6)`C. `-(pi)/(3)`D. `-(pi)/(6)` |
Answer» `sin^(-1)[cos{sin^(-1)(-sqrt(3)/(2))}]` `=sin^(-1){cos(-(pi)/(3))}` [before `sin^(-1)sqrt(3)/(2)=-(pi)//(3)` `=sin^(-1)(cos(pi)/(3))=sin^(-1)(1/2)=(pi)/(6)` |
|
262. |
Solve `tan^(-1) x + sin^(-1) x = tan^(-1) 2x` |
Answer» `tan^(-1) x + sin^(-1) x = tan^(-1) 2x` `rArr sin^(-1) x = tan^(-1) 2x - tan^(-1) x` `rArr tan^(-1).(x)/(sqrt(1 - x^(2))) = tan^(-1) [(2 x - x)/(1 + 2x^(2))]` `rArr (x)/(sqrt(1 - x^(2))) = (x)/(1 + 2x^(2))` `rArr 2x^(3) + x = x sqrt(1 - x^(2))` `rArr 2x^(3) - x sqrt(1 - x^(2)) + x = 0` `rArr x(2x^(2) - sqrt(1 - x^(2)) + 1) = 0` `rArr x = 0 " or " 2x^(2) + 1 = sqrt(1 - x^(2))` `rArr x = 0 " or " 4x^(4) + 4x^(2) + 1 = 1 - x^(2)` `rArr x = 0 " or " 4x^(4) + 5x^(2) = 0` `rArr x = 0` is the only solution |
|
263. |
If `a_(1), a_(2), a_(3),...., a_(n)` is an A.P. with common difference d, then prove that `tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))` |
Answer» We have `tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_(n -1) a_(n)))` `= tan^(-1) ((a_(2) -a_(1))/(1 + a_(1) a_(2))) + tan^(-1) ((a_(3) -a_(2))/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((a_(n) - a_(n -1))/(1 + a_(n -1) a_(n)))` `= (tan^(-1) a_(2) - tan^(-1) a_(1)) + (tan^(-1) a_(3) - tan^(-1) a_(2)) + ...+ (tan^(-1) a_(n) - tan^(-1) a_(n))` `= tan^(-1) a_(n) - tan^(-1) a_(1) = tan^(-1) ((a_(n) -a_(1))/(1 + a_(n) a_(1))) = tan^(-1) (((n -1))/(1 + a_(1) a_(n)))` `rArr tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ... + tan^(-1) ((d)/(1 + a_(n -1) a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))` |
|
264. |
Solve `tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x` |
Answer» If `x gt0` `tan^(-1) x + cot^(-1) (-x) = 2 tan^(-1) 6x` `rArrr tan^(-1) x + pi - cot^(-1) x = 2 tan^(-1) 6x` `rArr (pi)/(2) + 2 tan^(-1) x = 2 tan^(-1) 6x` `rArr tan^(-1) 6x - tan^(-1) x = (pi)/(4)` `rArr tan^(-1).(6x - x)/(1 + 6x^(2)) = (pi)/(4)` `rArr (5x)/(1 + 6x^(2)) =1` `rArr 6x^(2) -5x + 1 = 0` `rArr x = (1)/(2), (1)/(3)` If `x lt 0` `tan^(-1) x + cot^(-1) x = 2 tan^(-1) 6x` `rArr tan^(-1) 6x = (pi)/(4)`, This is not possible as `x lt 0` |
|
265. |
The number of real solution of equation `tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x)` isA. 4B. 3C. 2D. 1 |
Answer» Correct Answer - C When x lt 0, wwe have `tan^(-1)(6x)=(pi)/(4)` `rArr x =(1)/(6)`, which is not possible When `x ge 0`, we have `(pi)/(4)=tan^(-1)(6x)-tan^(-1)(x)` `rArr (6x-x)/(1+6x^(2))=1` `rArr x=(1)/(2),(1)/(3)` |
|
266. |
Solves `cos^(-1) x lt 2` |
Answer» Correct Answer - `x in (cos2, 1)` `cos^(-1) x gt 2` or `0 le cos^(-1) x lt 2` or `cos 0 ge x gt cos 2` (`:. Cos^(-1) x`is decreasing function) `rArr x in (cos 2, 1]` |
|
267. |
If `A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5))`, then which is greater ? |
Answer» We have `A = 2 tan^(-1) (2 sqrt2 -1) = 2 tan^(-1) (1.828)` `rArr A gt 2 tan^(-1) sqrt3` `rArr A gt (2pi)/(3)` Now, `sin^(-1) ((1)/(3)) lt sin^(-1) ((1)/(2))` `rArr sin^(-1) ((1)/(3)) lt (pi)/(6)` `rArr 3 sin^(-1).(1)/(3) lt (pi)/(2)` Further, `sin^(-1) ((3)/(5)) = sin^(-1) (0.6) lt sin^(-1) ((sqrt3)/(2))` `rArr sin^(-1) ((3)/(5)) lt (pi)/(3)` `rArr B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) lt (pi)/(2) + (pi)/(3)` `rArr B lt (5pi)/(6)` From this, we really cannot relate A and B. Now, `3 sin^(-1) ((1)/(3)) = sin^(-1) [3.(1)/(3) - 4((1)/(3))^(3)]` `= sin^(-1) ((23)/(27))` `= sin^(-1) (0.852)` `rArr 3 sin^(-1) ((1)/(3)) lt sin^(-1) ((sqrt3)/(2)) = (pi)/(3)` Hence, `B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) lt (pi)/(3) + (pi)/(3) = (2pi)/(3)` `:. A gt B` |
|
268. |
`cos(tan^(-1)3/4)+cos(tan^(-1)x)` is equal toA. `4/5+x/sqrt(1+x^2)`B. `3/5+1/sqrt(1+x^2)`C. `4/5+1/sqrt(1+x^2)`D. `3/5+x/sqrt(1+x^2)` |
Answer» Correct Answer - C | |
269. |
`If"sin"{cot^(-1)(x+1)}="cos"(tan^(-1)x),`then find `xdot`A. 1B. `1/2`C. 0D. `-1/2` |
Answer» Correct Answer - D | |
270. |
Find the value `underset(n rarr oo)("lim") underset(k =2)overset(n)sum cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))` |
Answer» `cos^-1((1+sqrt(k(k-1)(k+1)(k+2)))/(k(k+1)))` `=cos^-1((1+sqrt(k(k^2-1)(k+2)))/(k(k+1)))` `=cos^-1(1/(k(k+1))+sqrt(1-1/k^2)sqrt(1-1/(k+1)^2))` `=cos^-1 (1/(k+1)) - cos^-1(1/k)` `:. sum_(k=2)^n cos^-1 (1/(k+1) - 1/k) = cos^-1(1/3) - cos^-1(1/2) +cos^-1(1/4) - cos^-1(1/3)+cos^-1(1/5) - cos^-1(1/4)+...+cos^-1 (1/(n+1)) - cos^-1(1/n)` `=cos^-1 (1/(n+1)) - cos^-1(1/2)` `:. Lim_(n->oo) sum_(k=2)^n cos^-1 (1/(k+1) - 1/k) = Lim_(n->oo) cos^-1 (1/(n+1)) - cos^-1(1/2) ` `=cos^-1(0) - pi/3` `=pi/2-pi/3 = pi/6` `:. Lim_(n->oo) sum_(k=2)^n cos^-1((1+sqrt(k(k-1)(k+1)(k+2)))/(k(k+1))) =pi/6.` |
|
271. |
`tan^(-1)(1/2)+tan^(-1)(1/3)` is equal toA. `pi/6`B. `pi/4`C. `pi/3`D. `(5pi)/12` |
Answer» Correct Answer - B | |
272. |
If `alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))`and `tanpi/8=k ,`then`alpha+beta=piforx in [(1,1)/k]``alpha+betaforx in (-k , k)``alpha+beta=piforx in [(1,1)/k]``alpha+beta=0forx in [-k , k]`A. `alpha + beta = pi " for " x in [1, (1)/(k))`B. `alpha = beta " for " x in (-k, k)`C. `alpha + beta = - pi " for " x in [1, (1)/(k))`D. `alpha + beta = 0 " for " x in (-k, k)` |
Answer» Correct Answer - A::B Put `x = tan theta` `rArr alpha = tan^(-1) (tan 4 theta)` `= 4 theta - pi " for " x in [1, (1)/(k))` `= 4 theta " for " x in (-k, k)` Also, `beta - 2(pi - 2 theta) " for " x in [1, (1)/(k))` `= 4 theta " for " x in (-k, k)` |
|
273. |
Find the value of`2cos^(-1)3/(sqrt(13))+cot^(-1)(16)/(63)+1/2cos^(-1)7/(25)` |
Answer» `2cos^-1 (3/sqrt13) + cot^-1 (16/63) +1/2cos^-1 (7/25)` Now, `cos^-1(3/sqrt13) = tan^-1(2/3)` `:. 2cos^-1(3/sqrt13) = 2 tan^-1(2/3) = tan^-1((2*(2/3))/(1-(2/3)^2)) = tan^-1((4/3)/(5/9)) = tan^-1(12/5)` `cot^-1(16/63) = tan^-1(63/16)` Let `1/2cos^-1(7/25) = tan^-1x` `=> cos^-1(7/25) = 2tan^-1x` `=> tan^-1(24/7) = tan^-1((2x)/(1-x^2))` `=>(2x)/(1-x^2) = 24/7` Solving it , we get , ` x =3/4` `:. 1/2cos^-1(7/25) = tan^-1(3/4)` Putting these values in the given equation, `tan^-1(12/5)+tan^-1(63/16)+tan^-1(3/4)` `=(tan^-1(12/5)+tan^-1(3/4))+tan^-1(63/16)` As, `12/5 gt 0, 3/4 gt 0 and 12/5*3/4 gt 1`, So, it becomes, `=pi+ tan^-1((12/5+3/4)/(1-(12/5)(3/4)))+tan^-1(63/16)` `=pi- tan^-1(63/16)+tan^-1(63/16)` `=pi` `:. 2cos^-1 (3/sqrt13) + cot^-1 (16/63) +1/2cos^-1 (7/25) = pi` |
|
274. |
The principal value of `sin^-1 {tan ((-5pi)/4)}` isA. `(pi)/(4)`B. `-(pi)/(4)`C. `(pi)/(2)`D. `(pi)/(2)` |
Answer» `sin^(-1){tan(-(5pi)/(4))}=sin^(-1)=(pi)/(2)` | |
275. |
If `sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2)` then x equalA. `0,1/2`B. `0,1/2`C. 0D. none of these |
Answer» Correct Answer - C | |
276. |
If `(tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8` then `x` equalsA. -1B. 1C. 0D. 2 |
Answer» Correct Answer - A | |
277. |
If `cos^(-1)(6x)/(1+9x^2)=-pi/2+tan^(-1)3x ,`then find the value of`xdot` |
Answer» `cos^(-1)((6x)/(1+9x^2))=-pi/2+2tan^(-1)3x` `pi/2-sin^(-1)((6x)/(1+9x^2))=-pi/2+2tan^(-1)x` `pi-sin^(-1)((6x)/(1+9x^2))=2tan^(-1)3x` `pi-2tan^(-1)3x=sin^(-1)((2(3x))/(1+(3x)^2))` `pi-2tan^(-1)3x=sin^(-1)((2(3x))/(1+(3x)^2))` When `3x>=1,x>1/3` `x in(1/3,oo)`. |
|
278. |
If `sin^(-1)(x/a)+sin^(-1)(y/b)=alpha` thenA. `(x^(2))/(a^(2))-(2xy)/(ab) cos alpha+(y^(2))/(b^(2))=sin^(2)alpha`B. `(x^(2))/(a^(2))-(2xy)/(ab) sin alpha+(y^(2))/(b^(2))=cos^(2)alpha`C. `(x^(2))/(a^(2))+(2xy)/(ab) cos alpha+(y^(2))/(b^(2))=sin^(2)alpha`D. `(x^(2))/(a^(2))+(2xy)/(ab) sin alpha+(y^(2))/(b^(2))=cos^(2)alpha` |
Answer» We have `sin^(-1)(x)/(a)+sin^(-1)(y)/(b)=alpha` `rarr (pi)/(2)-cos^(-1)(x)(alpha)+(pi)/(2)-cos^(-1)(y)/(b)=alpha` `rarr (xy)/(ab)-sqrt(1-(x^(2))/(z^(2))sqrt(1-y^(2))/(b^(2))=cos(pi-alpha)` `rarr (x^(2))/(a^(2))+(2xy)/(ab)cos alpha+(y^(2))/(b^(2))=sin^(2)alpha` |
|
279. |
If `cos^(-1)(x/m)+cos^(-1)(y/n)=theta`, then `x^2/m^2-(2xy)/(mn)costheta+y^2/n^2` is equal toA. `theta`B. `sin^2theta`C. `cos^2theta`D. 1 |
Answer» Correct Answer - B | |
280. |
Solve `tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1)" "8/(31)`A. `-1/4,8`B. `1/4,-8`C. `-4,1/8`D. `4,-1/8` |
Answer» Correct Answer - B | |
281. |
If `alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x))`, then find `tan alpha. tan beta.` |
Answer» `beta = cos^(-1) (sin ((pi)/(2) - sin^(-1) x))` `= cos^(-1) [cos (sin^(-1) x)]` Also, `alpha = sin^(-1) [cos (sin^(-1) x)]` `:. alpha + beta = (pi)/(2)` `rArr tan alpha = cot beta " or " tan alpha. tan beta = 1` |
|
282. |
The value of `sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]`is equal to`sin^(-1)x+sin^(-1)sqrt(x)``sin^(-1)x-sin^(-1)sqrt(x)``sin^(-1)sqrt(x)-sin^(-1)x`none of theseA. `sin^(-1) x + sin^(-1) sqrtx`B. `sin^(-1) x - sin^(-1) sqrtx`C. `sin^(-1) sqrtx - sin^(-1) x`D. none of these |
Answer» Correct Answer - B Let `x = sin theta and sqrtx = sin phi, " where " x in [0, 1]` `rArr theta, phi in [0, pi//2]` `rArr theta - phi in [(-pi)/(2), (pi)/(2)]` Now, `sin^(-1) (x sqrt(1 -x) - sqrtx sqrt(1 - x^(2)))` `= sin^(-1) (sin theta sqrt(1 - sin^(2) phi) - sin phi sqrt(1 - sin^(2) theta))` `= sin^(-1) (sin theta cos phi - sin phi cos theta)` `= sin^(-1) sin (theta - phi) = theta - phi` `= sin^(-1) (x) - sin^(-1) (sqrtx)` |
|
283. |
If `alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3)` thenA. `alpha gt beta`B. `alpha = beta`C. `alpha lt beta`D. `alpha + beta =2pi` |
Answer» Correct Answer - C | |
284. |
If `cos^(- 1)x-cos^(- 1)(y/2)=alpha` then `4x^2-4xycosalpha+y^2=`A. 4B. `2 sin^(2) alpha`C. `-4 sin^(2) alpha`D. `4 sin^(2) alpha` |
Answer» Correct Answer - D We have `cos^(-1) x - cos^(-1).(y)/(2) = alpha` or `x = cos (cos^(-1).(y)/(2) + alpha)` `= cos (cos^(-1).(y)/(2)) cos alpha - sin (cos^(-1).(y)/(2)) sin alpha` `= (y)/(2) cos alpha - sqrt(1 - (y^(2))/(4)) sin alpha` or `2x = y cos alpha - sin alpha sqrt(4 -y^(2))` or `2x - y cos alpha = - sin alpha sqrt(4 -y^(2))` Squaring, we get `4x^(2) + y^(2) cos^(2) alpha - 4xy cos alpha = 4 sin^(2) alpha - y^(2) sin^(2) alpha` or `4x^(2) - 4xy cos alpha + y^(2) = 4 sin^(2) alpha` |
|
285. |
Statement-1: `tan{cos^(-1)(1)/sqrt(82)-sin^(-1)(5)/sqrt(26)}=29/3` Statement-2: `[x cos(cot^(-1))^(2)=51/50rarr x -(1)/5sqrt(2)`A. Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True. |
Answer» we have tan `{cos^(-1)(1)sqrt(82)-sin^(-1)(5)/sqrt(26)}` `=tan (tan^(-1)9-tan^(-1)5)=tan{tan^(-1)(9-5)/(1+9xx5)}` `=tan(tan^(-1)2/23)=2/23` so statement 1 is not true `rarr (x^(2))/sqrt(x^(2)+1)+(1)sqrt(x^(2)+1)^(2)=51/50 rarr x^(2)+1=51/50 rarr x=(1)/(5sqrt(2))` so statement 2 is true |
|
286. |
The trigonometric equation `sin^(-1)x=2sin^(-1)a`has a solution forall real values (b) `|a| |
Answer» Correct Answer - C `sin^(-1) x = 2 sin^(-1) a` Now `-(pi)/(2) le sin^(-1) a le(pi)/(2)` `rArr -(pi)/(4) le sin^(-1) a le (pi)/(4)` `rArr -(1)/(sqrt2) le a le (1)/(sqrt2)` `rArr |a| le (1)/(sqrt2)` |
|
287. |
The trigonometric equation `sin^(-1)x=2sin^(-1)a`has a solution forall real values (b) `|a| |
Answer» Let `alpha` a solution of `sin^(-1)x=2 sin^(-1) alpha` Then `sin^(-1) alpha =2 sin^(-1) alpha` `rarr -(pi)/(2) le 2 sin^(-1) alpha le (pi)/(2)` ` rarr -(pi)/(4) le sin^(-1) a le (pi)/(4)` `rarr sin((pi)/(4)) le alpha le sin(pi)/(4) rarr -(1)/sqrt(2) le alpha le (1)/sqrt(2) rarr |alpha| le (1)/sqrt(2)` |
|
288. |
The trigonometric equation `sin^(-1)x=2sin^(-1)a`has a solution forall real values (b) `|a| |
Answer» `-pi/22<=sin^(-1)x<=pi/2` `-pi/2<=2sina<=pi/2` `-pi/4<=sina<=pi/4` `-1/sqrt2<=a<=1/sqrt2` `|a|<=1/sqrt2`. |
|
289. |
`tan^-1[(cos x)/(1+sin x)]` is equal toA. `(pi)/(4) - (x)/(2)`, for `x in (-(pi)/(2), (3pi)/(2))`B. `(pi)/(4) -(x)/(2), " for " x in (-(pi)/(2), (pi)/(2))`C. `(pi)/(4), (x)/(2), " for " x in ((3pi)/(2), (5pi)/(2))`D. `(pi)/(4) -(x)/(2), " for " x in (-(3pi)/(2), (pi)/(2))` |
Answer» Correct Answer - A `tan^(-1) [(cos x)/(1 + sin x)] = tan^(-1) [(sin [(pi//2) -x])/(1 + cos [(pi//2) - x])]` `= tan^(-1) [((2sin[(pi//4) - (x//2)]),(cos [(pi//4) - (x//2)]))/(2 cos^(2) [(pi//4) - (x//2)]` `= tan^(-1) tan ((pi)/(4) - (x)/(2)) = (pi)/(4) - (x)/(2)` `rArr -(pi)/(2) lt (pi)/(4) - (x)/(2) lt (pi)/(2)` `rArr -(3pi)/(4) lt -(x)/(2) lt (pi)/(4)` `rArr-(pi)/(4) lt (x)/(2) lt (3pi)/(4)` `rArr -(pi)/(2) lt x lt (3pi)/(2)` |
|
290. |
If `f(x)=x^(11)+x^9-x^7+x^3+1`and `f(sin^(-1)(sin8)=alpha,alpha`is constant, then `f(tan^(-1)(t a n8)`is equal to`alpha`(b) `alpha-2`(c) `alpha+2`(d) `2-alpha`A. `alpha`B. `alpha -2`C. `alpha + 2`D. `2 - alpha` |
Answer» Correct Answer - D `f(x) + f(-x) = 2` Now `(sin^(-1) (sin 8)) = 3pi - 8 = y` And `(tan^(-1) (tan 8)) = (8 - 3pi) = -y` Hence, `f(y) + f(-y) = 2` Given `f(y) = alpha`, we have `f(-y) = 2 - alpha` |
|
291. |
If `cos(2sin^(-1)x)=1/9,`then find the values of `xdot` |
Answer» `cos(2sin^(-1)x)=1/9` Let ` sin^(-1)x=alpha` `x=sinalpha``cos(2alpha)=1/9` `1-2sin^2alpha=1/9` `1-1/9=2sin^2alpha` `2sin^2alpha=8/9` `sin^2alpha=4/9` `x=sinalpha=pm2/3`. |
|
292. |
The algebraic expression for `f(x)=tan(sin^(-1)(cos("tan"^(-1)(x)/(2))))` isA. `(2)/(x)`B. `(x)/(2)`C. `(1)/(x)`D. `(2)/(|x|)` |
Answer» Correct Answer - D Let `"tan"^(-1) (x)/(2)=theta` `rArr tan. theta=(x)/(2)` `rArr cos("tan"^(-1)(x)/(2))=cos. theta=(2)/(sqrt(4+x^(2)))` `rArr f(x)=tan["sin"^(-1)(2)/(sqrt(4+x^(2)))]=(2)/(x)` If `x gt 0`, then `f(x)=tan("tan"^(-1)(2)/(x))=(2)/(x)` If `x lt 0`, then `f(x)=tan(tan^(-1)((-2)/(x)))=(-2)/(x)` `rArr f(x)=(2)/(|x|)` |
|
293. |
Which of the following is not true ?A. `sin cos^(-1)tan cot^(-1)x=sqrt(1-(1)/(x^(2)))`B. `cos tan^(-1)cot sin^(-1)x = x`C. `tan cot^(-1)sin cos^(-1)x = (1)/(sqrt(1-x^(2)))`D. `cot sin^(-1)cos tan^(-1)x=sqrt(1-x^(2))` |
Answer» Correct Answer - D (a) `sin cos^(-1)tan cot^(-1)x=sin "cos"^(-1)(1)/(x)=sqrt(1-(1)/(x^(2)))` (b) `cos tan^(-1)cot sin^(-1)x = "cos tan"^(-1)(sqrt(1-x^(2)))/(x)=x` (c ) `tan cot^(-1)sin cos^(-1)x=tan cot^(-1) sqrt(1-x^(2))=(1)/(sqrt(1-x^(2)))` (d) `cot sin^(-1)cos tan^(-1)x="cot sin"^(-1)(1)/(sqrt(1+x^(2)))=x` |
|
294. |
`sin(1/4sin^(- 1)(sqrt 63/8)i s`A. `(1)/(2)`B. `(1)/(3)`C. `(1)/(2sqrt(2))`D. `(1)/(5)` |
Answer» Correct Answer - C We have sin `((1)/(4)"sin"^(-1)(sqrt(63))/(8))` Let `"sin"^(-1)(sqrt(63))/(8)=theta` `therefore (sqrt(63))/(8)=sin theta` `rArr cos. theta = (1)/(8)` `therefore cos.(theta)/(2)=sqrt((1+cos theta)/(2))=sqrt((1+(1)/(8))/(2))=(3)/(4)` `rArr = sin.(theta)/(4)=sqrt((1-cos.(theta)/(2))/(2))=sqrt((1-(3)/(4))/(2))=(1)/(2sqrt(2))` |
|
295. |
The value of `sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))),`where `x in (pi/2,pi)`, is equal to`pi/2`(b) `-pi`(c) `pi`(d) `-pi/2`A. `(pi)/(2)`B. `-pi`C. `pi`D. `-(pi)/(2)` |
Answer» Correct Answer - D `sin^(-1) (cos (cos^(-1) (cos x) + sin^(-1) (sin x)))` `= sin^(-1) (cos (x + pi - x)) " " ["as " x in (pi//2)]` `= sin^(-1) (cos pi) = sin^(-1) (-1) = -(pi)/(2)` |
|
296. |
The solution of `sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|)` isA. `n pi pm 1, n pi, n in Z`B. `n pi+1, n pi, n in Z`C. `n pi-1, n pi, n in Z`D. `2n pi+1, n pi, n in Z` |
Answer» Correct Answer - A Solution of `y=sqrt(y)` is y = 1 and y = 0 `rArr sin^(-1)|sin x|=0` or 1 `sin^(-1)|sin x|` is periodic with period `pi` In `(0, pi)`, if `sin^(-1)|sin x|=1, x = 1` or `x = pi -1` `therefore` General solution is `x = n pi 1, n in Z` If `sin^(-1)|sin x| =0 rArr x = n pi, n in Z` |
|
297. |
Maximum value of function `f(x)=(sin^(-1)(sinx)^(2)-sin^(-1)(sinx)` is:A. `(pi)/(4)[pi+2]`B. `(pi)/(4)[pi-2]`C. `(pi)/(2)[pi+2]`D. `(pi)/(2)[pi-2]` |
Answer» Correct Answer - A `y=(sin^(-2)(sin x))^(2)-sin^(-1)(sin x)` `=(sin^(-1)(sin x)-(1)/(2))^(2)-(1)/(4)` For maximum value of `y, sin^(-1)(sin x)=-(pi)/(2)` `rArr y =((pi)/(2)+(1)/(2))^(2)-(1)/(4)=(pi)/(4)(pi+2)` |
|
298. |
The vale of `sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))`A. `sec.(10pi)/(9)`B. `sec.(pi)/(9)`C. 1D. `-1` |
Answer» Correct Answer - D `sin^(-1)(-sin.(50pi)/(9))=sin^(-1)(sin(-6pi+(4pi)/(9)))` `=sin^(-1)(sin.(4pi)/(9))` `=(4pi)/(9)` `cos^(-1)cos(-(31pi)/(9))=cos^(-1)cos((31pi)/(9))` `=cos^(-1)cos(4pi-(5pi)/(9))=cos^(-1)cos.(5pi)/(9)=(5pi)/(9)` Hence, given equals to sec `((4pi)/(9)+(5pi)/(9))=sec pi =-1`. |
|
299. |
The value of `lim_(|x| rarr oo) cos (tan^(-1) (sin (tan^(-1) x)))` is equal toA. `-1`B. `sqrt2`C. `-(1)/(sqrt2)`D. `(1)/(sqrt2)` |
Answer» Correct Answer - D `underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x)))` `= cos (tan^(-1) (sin (tan^(-1) oo)))` `= cos (tan^(-1) (sin ((pi)/(2))))` `= cos (tan^(-1) (1)) = cos ((pi)/(4))` `= (1)/(sqrt2)` |
|
300. |
`2 tan^(-1) (-2)` is equal toA. `-cos^(-1) ((-3)/(5))`B. `-pi + cos^(-1).(3)/(5)`C. `-(pi)/(2) + tan^(-1) (-(3)/(4))`D. `-pi + cot^(-1) (-(3)/(4))` |
Answer» Correct Answer - A::B::C Let `tan^(-1) (-2) = theta " or " tan theta = -2` `rArr theta in (-pi//2, 0) " or " 2 theta in (-pi, 0)` `cos (-2 theta) = cos 2 theta = (1 - tan^(2) theta)/(1 + tan^(2) theta) = (-3)/(5)` or `-2 theta = cos^(-1) ((-3)/(5)) = pi - cos^(-1).(3)/(5)` or `2 theta = pi + cos^(-1).(3)/(5) = - pi + tan^(-1).(4)/(3)` `= - pi + cot^(-1).(3)/(4) = - pi + (pi)/(2) - tan^(-1). (3)/(4)` `= - (pi)/(2) - tan^(-1).(3)/(4) = - (pi)/(2) + tan^(-1) (-(3)/(4))` |
|