InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If `veca=a_(1)hati+a_(2)hatj+a_(3)hatk, vecb= b_(1)hati+b_(2)hatj + b_(3)hatk, vecc=c_(1)hati+c_(2)hatj+c_(3)hatk and [3veca+vecb 3vecb+vecc 3vecc + veca] =lambda|{:(veca.hati,veca.hatj,veca.hatk),(vecb.hati,veca.hatj,hatb.hatk),(vecc.hati,vecc.hatj,vecc.hatk):}| " then find the value of " lambda/4` |
|
Answer» Correct Answer - 7 `veca=a_(1)hati=a_(2)hatj +a_(3)hatk` `vecb=b_(1)hati+b_(2)hatj+b_(3)hatk` `vecc = c_(1)hati +c_(2)hatj +c_(3)hatk` L.H.S = ` [3veca +vecb 3vecb+vecc 3vecc +veca]` `[3veca 3vecb 3vecc] + [vecb vecc veca]` `3^(3)[veca vecb vecc] + [veca vecb vecc]` `28 [veca vecb vecc]` |
|
| 2. |
`veca, vecb and vecc` are unit vecrtors such that `|veca + vecb+ 3vecc|=4` Angle between `veca and vecb is theta_(1)` , between `vecb and vecc is theta_(2)` and between `veca and vecb` varies `[pi//6, 2pi//3]` . Then the maximum value of `cos theta_(1)+3cos theta_(2)` isA. 3B. 4C. `2sqrt2`D. 6 |
|
Answer» Correct Answer - b `|veca + vecb + 3 vecc |^(2) = 16` `Rightarrow |veca|^(2) + |vecb|^(2) + 9 |vecc|^(2) + 2cos theta_(1) + 6 cos theta_(2)` ` + 6 cos theta_(3) = 16, theta_(3) ne [ pi//6, 2pi//3]` `or 2 cos theta_(1)+ 6 cos theta_(2) = 5-6 cos theta_(3)` ` or ( cos theta_(1) + 3 costheta_(2))_(max) = 4` |
|
| 3. |
The volume of a tetrahedron fomed by the coterminus edges `veca , vecb and vecc is 3` . Then the volume of the parallelepiped formed by the coterminus edges `veca +vecb, vecb+vecc and vecc + veca` isA. 6B. 18C. 36D. 9 |
|
Answer» Correct Answer - c `3 =-1/6 [veca vecb vecc] ` `or [veca vecb vecc] =m 18` volume of the required parallelepiped lt brgt `[ veca + vecb vecb + vecc vecc + veca]` ` 2[veca vecb vecc] =36 ` |
|
| 4. |
Let `vecb=4hati+3hatj and vecc` be two vectors perpendicular to each other in the xy-plane. Find all vetors in te same plane having projection 1 and 2 along `vecb and vecc` respectively. |
|
Answer» Correct Answer - `2hati-hatj` Let `vecc = alpha hati + beta hatj` Give n that ` vecb bot vecc` ` vecb.vecc=0` `Rightarrow (4hati+3hatj) .(alphahati+betahatj)=0` `or 4alpha + 3beta=0` `or alpha/3 = beta/(-4) =0` `or alpha=3 lambda, beta= -4 lambda` Now let `veca = xhati + yhatj` be the required vectors,porjection of `veca " along " vecb` given `(veca.vecb)/(|vecb|) = (4x + 3y)/(sqrt(4^(2)+3^(2)))=1` `or 4x + 3y =5 ` Also projection of `veca ` along `vecc` given `(veca.vecc)/(|vecc|)=2` ` Rightarrow (alphax +betay)/(sqrt(alpha^(2) +beta^(2)))=2` `or 3lambda xx - 4 lambday = 10 lambda` `or 3x - 4y =10` solving (ii) and (iii) we get x=2,y=-1 therefore, the required vector is `2hati - hatj` |
|
| 5. |
Let `veca and vecb` be unit vectors that are perpendicular to each other l. then `[veca+ (veca xx vecb) vecb + (veca xx vecb) veca xx vecb]` will always be equal toA. 1B. 0C. `-1`D. none of these |
|
Answer» Correct Answer - a `[ veca + (hata xx vecb) vecb + (veca xx vecb) veca xx vecb]` ` (veca + (veca xx vecb)) . (( vecb + (veca xx vecb))xx (veca xx vecb))` ` (veca + (veca xx vecb)) . (vecb xx (veca xx vecb))` ` (veca + (veca xx vecb)) . (veca- (veca.vecb) vecb)` `veca. veca =1 " " (as veca. vecb =0, veca, (veca xx vecb) =0)` |
|
| 6. |
Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecxxx(vecyxx(veczxxvecx)=vecb nd vecxxxvecy=vecc, find vecx, vecy, vecz` in terms of `veca,vecb and vecc`.A. `1/2 [(veca + vecc)xxvecb- vecb -veca]`B. `1/2 [(veca - vecc)xxvecb+ vecb +veca]`C. `1/2 [(veca - vecb)xxvecc+ vecb +veca]`D. `1/2[(veca-vecc)xx veca + vecb -veca]` |
|
Answer» Correct Answer - c Given that `|vecx|= |vecy|=|vecz|=sqrt2` and they are inclined at an angle of `60^(@)` with each other. `vecx.vecy=vecy.vecz=vecz.vecx=sqrt2.sqrt2cos 60^(@)=1 vecx xx (vecyxxvecz)=veca` `or (vecx.vecz)vecy-(vecx.vecy)vecz=vecaor vecy-vecz=veca` (i) similarly `vecyxx(vecz xxvecx)=vecb Rightarrow vecz-vecx=vecb` `vecy=veca+vecz,vecx=vecz-vecb` Now , ` vecx, xx vecy=vecc` ` Rightarrow (vecz - vecb) xx (vecz + veca) = vecc` ` or vecz xx (veca xx vecb) = vecc + (vecb xxx veca)` ` or (veca + vecb) xx {vecz xx (veca + vecb)} ` `= (veca xx vecb) xx vecc+ (veca +vecb) xx (vecbxxveca)` `or (veca + vecb) ^(2)vecz - {(veca + vecb).vecz} (veca + vecb)` `= (veca + vecb) xx vecc + |veca|^(2)vecb-|vecb|^(2)veca` `+ (veca.vecb) (vecb.veca)` `Now , (i) Rightarrow |veca|^(2)= |vecy-vecz|^(2)=2 +2-2=2` similarly , (ii) `Rightarrow |vecb|^(2)=2` Also (i) and (ii) `Rightarrow veca+vecb=vecy-vecx` `Rightarrow |veca+vecb|^(2)=2` `Also (veca +vecb).vecz= (vecy -vecx).vecz = vecy.vecz-vecx.vecz` 1-1=0 `and veca.vecb= (vecy.vecz). (vecz-vecx)` ` =vecy.vecz-vecx.vecy-|vecz|^(2)+vecx.vecz= -1` Thus from (v) , we have `2vecz=(veca+vecb)xxvecc+2(vecb-veca)-(vecb-veca)` `or vecz= (1//2)[(veca + vecb) xx vecc + vecb-veca]` `vecy= veca+vecz= (1//2)[(veca+vecb)xxvecc+vecb+veca]` `and vecx=vecz-vecb=(1//2)[(veca+vecb)xxvecc-(veca+vecb)]` |
|
| 7. |
Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecxxx(vecyxx(veczxxvecx)=vecb nd vecxxxvecy=vecc, find vecx, vecy, vecz` in terms of `veca,vecb and vecc`.A. `1/2[(veca-vecc) xx vecc-vecb+veca]`B. `1/2[(veca-vecb) xx vecc+vecb-veca]`C. `1/2[veccxx(veca-vecb) + vecb +veca]`D. none of these |
|
Answer» Correct Answer - b Given that `|vecx|= |vecy|=|vecz|=sqrt2` and they are inclined at an angle of `60^(@)` with each other. `vecx.vecy=vecy.vecz=vecz.vecx=sqrt2.sqrt2cos 60^(@)=1 vecx xx (vecyxxvecz)=veca` `or (vecx.vecz)vecy-(vecx.vecy)vecz=vecaor vecy-vecz=veca` (i) similarly `vecyxx(vecz xxvecx)=vecb Rightarrow vecz-vecx=vecb` `vecy=veca+vecz,vecx=vecz-vecb` Now , ` vecx, xx vecy=vecc` ` Rightarrow (vecz - vecb) xx (vecz + veca) = vecc` ` or vecz xx (veca xx vecb) = vecc + (vecb xxx veca)` ` or (veca + vecb) xx {vecz xx (veca + vecb)} ` `= (veca xx vecb) xx vecc+ (veca +vecb) xx (vecbxxveca)` `or (veca + vecb) ^(2)vecz - {(veca + vecb).vecz} (veca + vecb)` `= (veca + vecb) xx vecc + |veca|^(2)vecb-|vecb|^(2)veca` `+ (veca.vecb) (vecb.veca)` `Now , (i) Rightarrow |veca|^(2)= |vecy-vecz|^(2)=2 +2-2=2` similarly , (ii) `Rightarrow |vecb|^(2)=2` Also (i) and (ii) `Rightarrow veca+vecb=vecy-vecx` `Rightarrow |veca+vecb|^(2)=2` `Also (veca +vecb).vecz= (vecy -vecx).vecz = vecy.vecz-vecx.vecz` 1-1=0 `and veca.vecb= (vecy.vecz). (vecz-vecx)` ` =vecy.vecz-vecx.vecy-|vecz|^(2)+vecx.vecz= -1` Thus from (v) , we have `2vecz=(veca+vecb)xxvecc+2(vecb-veca)-(vecb-veca)` `or vecz= (1//2)[(veca + vecb) xx vecc + vecb-veca]` `vecy= veca+vecz= (1//2)[(veca+vecb)xxvecc+vecb+veca]` `and vecx=vecz-vecb=(1//2)[(veca+vecb)xxvecc-(veca+vecb)]` |
|
| 8. |
Let `veca=hati+4hatj+2hatk,vecb=3hati-2hatj+7hatk and veca=2hati-2hatj+4hatk` . Find a vector `vecd` which perpendicular to both `veca and vecb and vecc.vecd=15`. |
|
Answer» Vector `vecd` is perpendicular to vectors `veca=hati+4hatj+2hatk,hatn=3hati-2hati-2hatj+7hatk` `vecd=lambda|{:(hati,hatj,hatk),(1,4,2),(3,-2,7):}|=lambda(32hati-hatj-14hatk)` `Also" " vecc.vecd=15` `lambda(2hati-hatj+4hatk).(32hati-hatj-14hatk)15` ` or 9 lambda =15` `or lambda = 5/3` Hence, the required vector `vecd=1/3(160hati-5hatj-70hatk)` |
|
| 9. |
The value of a so thast the volume of parallelpiped formed by vectors `hati+ahatj+hatk, hatj+ahatk, ahati+hatk` becomes minimum is (A) `sqrt93)` (B) 2 (C) `1/sqrt(3)` (D) 3 |
|
Answer» `V=|{:(1,a,1),(0,1,a),(a,0,1):}|=1-a+a^(3)` `Rightarrow" " (dV)/(da)=3a^(2)-1` V is minimum at a `=1/sqrt3` |
|
| 10. |
If `vecr and vecs` are non-zero constant vectors and the scalar b is chosen such that `|vecr+bvecs|` is minimum, then the value of `|bvecs|^(2)+|vecr+bvecs|^(2)` is equal toA. `2|vecr|^(2)`B. `|vecr|^(2)//2`C. `3|vecr|^(2)`D. `|vecr|^(2)` |
|
Answer» Correct Answer - b For minimum value `|vecr+ bvecs|=0` Let `vecr and vecs` are anti - parallel so `bvecs =- vecr` `|bvecs|^(2) + |vecr + bvecs|^(2) = |-vecr|^(2) + |vecr-vecr|^(2) = |vecr|^(2) ` |
|
| 11. |
If `P`is any arbitrary point onthe circumcirlce of the equllateral trangle of side length `l`units, then `| vec P A|^2+| vec P B|^2+| vec P C|^2`is always equal to`2l^2`b. `2sqrt(3)l^2`c. `l^2`d. `3l^2`A. `2l^(2)`B. `2sqrt3l^(2)`C. `l^(2)`D. `3l^(2)` |
|
Answer» Correct Answer - a Let P.V. of A,B and C be `vecp, veca, vecb and vecc` respectively, and `O(vec0)` be the circumcentre of equilateral traingle ABC. Then `|vecP| = |vecb| = |veca|= |vecc| = l/ sqrt3` Now `|vec(PA)|^(2) = |veca - vecp|^(2)= |veca|^(2) + |vecp|^(2) - 2vecp` ` and |vecPC|^(2) = |vecc|^(2) + |vecp|^(2) - 2vecp. vecc` ` Rightarrow sum|vec(PA)|^(2) = 6. l^(2)/3 - 2vecp . (veca + vecb + vecc)` ` 2l^(2) (as veca + vecb + vecc//3 = vec0)` |
|
| 12. |
Let `veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk` be three vectors . A vector in the pland of `vecb and vecc` whose projection on `veca` is of magnitude `sqrt((2/3))`is (A) `2hati+3hatj+3hatk` (B) `2hati+3hatj-3hatk` (C) `-2hati-hatj+5hatk` (D) `2hati+hatj+5hatk`A. `2hati+3hatj-3hatk`B. `-2hati-hatj+5hatk`C. `2hati+3hatj+3hatk`D. `2hati+hatj+5hatk` |
|
Answer» Correct Answer - b Let the required vector be `vecr`. Then `vecr = x_(1) vecb + x_(2) vecc and vecr .veca = sqrt(2/3) " " (|veca|)=2` Now ` vecr.veca = x_(1) veca. Vecb + x_(2) veca.vecc` ` Rightarrow 2 = x_(1) ( 2-2-1) + x_(2) ( 2-1-2)` ` Rightarrow x_(1) + x_(2) = -2` ` Rightarrow vecr = x_(1) ( hati + 2hatj -hatk) + x_(2) (hati +hatj - 2hatk)` `= hati (x_(1) + x_(2) +hatj ( 2x_(1) + x_(2) ) -hatk ( 2x_(2) +x_(1))` ` 2hati + hatj (x_(1) -2) -hatk(-4-x_(1))`, |
|
| 13. |
If `vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd` show that `(veca-vecd)` is parallel to `(vecb-vecc). It is given that `vec!=vecd and vecb!=vecc. |
|
Answer» `{:("we have ",vecaxxvecb=veccxxvecd),(and,vecaxxvecc=vecbxxvecd):}]` `veca-vecd "will be parallel to" vecb-vecc` `if (veca-vecd)xx(vecb-vecc)=vec0` ` if(veca-vecd)xx(vecb-vecc)=vec0` `i.e. if vecaxxvecb-vecaxxvecc-vecd xxvecb+vecd xxvecc=vec0` `if (vecaxxvecb+vecd xx vecc)-(vecaxxvecc+vecd xxvecb)=vec0` `if (veca xx vecb-veccxxvecd)-(vecaxxvecc-vecb xxvecd)=vec0` `if vec0-vec0=vec0` `vec0=vec0` which is ture Hence the result. |
|
| 14. |
The position vectors of points A,B and C are `hati+hatj,hati + 5hatj -hatk and 2hati + 3hatj + 5hatk`, respectively the greatest angle of triangle ABC isA. `120^(@)`B. `90^(@)`C. `cos^(-1)(3//4)`D. none of these |
|
Answer» Correct Answer - b Since `vec(OA) = hati +hatj + hatk` ` vec(OB) = hati + 5hatj -hatk` `vec(OC) = 2hati + 3hatj + 5hatk` ` a = BC |vec(BC)|= |vec(OC) - vec(OB)|` `|hati - 2hatj + 6hatk| = sqrt41` `b = CA= |vec(CA)|= |vec(OA) -vec(OC)|` ` = | -hati - 2hatj - 4hatk| = sqrt21` `and c= AB= |vec(AB)| = |vec(OB)-vec(OA)|` `|0 hati + 4hatj - 2hatk| =sqrt20` Since `a gt b gt c`, A is the greatest angle l. therefore, ` cos A = (b^(2) + c^(2)-a^(2))/2bc) = (21 + 20 -41)/(2. sqrt21 . sqrt20) = 0` `angleA = 90^(@)` |
|
| 15. |
If `veca and vecb` be two non-collinear unit vectors such that `vecaxx(vecaxxvecb)=1/2vecb` then find the angle between `veca and vecb`. |
|
Answer» `vecaxx (vecaxxvecb) =1/2 vecb Rightarrow(veca.vecb)veca-(veca.veca) vecb= 1/2vecb` `Rightarrrow veca.vecb = 0 , veca. Veca = -1/2 ` ( which is not possible). thus, the given information is inconsistent. |
|
| 16. |
Given three vectors e`veca, vecb and vecc` two of which are non-collinear. Futrther if `(veca + vecb)` is collinear with `vecc, (vecb +vecc)` is collinear with `veca, |veca|=|vecb|=|vecc|=sqrt2` find the value of `veca. Vecb + vecb.vecc+vecc.veca`A. 3B. `-3`C. 0D. cannot of these |
|
Answer» Correct Answer - b ` veca + vecb = lambdavecc` ` and vecb + vecc = mu veca` ` ( lambda vecc - veca) = mu veca ("putting" vecb = lambda vecc - veca)` ` Rightarrow ( lambda = mu = -1)` ` Rightarrow veca + vecb + vecc =0` ` or |veca|^(2) + |vecb|^(2) + |vecc|^(2)` ` + 2 (veca .vecb + vecb .vecc + vecc. veca) =0` ` or veca. vecb + vecb . vecc + vecc. veca = -3` |
|
| 17. |
Let `veca, vecb and vecc` be non-zero vectors such that no two are collinear and `(vecaxxvecb)xxvecc=1/3 |vecb||vecc|veca` if `theta` is the acute angle between vectors `vecb and vecc` then find value of `sin theta`. |
|
Answer» we have `(veca xx vecb ) xx vecc = 1/3 |vecb||vecc|veca` `or (veca .vecc) vecb - (vecb .vecc)veca = 1/3 |vecb||vecc|veca` `or (veca. Vecc) vecb- {(vecb.vecc) + 1/3 |vecb|vecc|} veca =vec0` `Rightarrow veca.vecc =0 and vecb.vecc + 1/3 |vecb|vecc|=0` (`veca and vecb` are non-collinear) or `|vecb||vecc|cos theta+ 1/3 |vecb |vecc| =0` `or cos theta = -1//3` `Rightarrow sin theta = sqrt(8/9) = ( 2sqrt2)/3` |
|
| 18. |
If `veca xx vecb = vecb xx vecc ne 0 ` where `veca , vecb and vecc` are coplanar vectors, then for some scalar k prove that `veca+vecc = kvecb`. |
|
Answer» since `veca xx vecb = vecb xx vecc ne vec0` , we have `veca xx vecb - vecb xx vecc = vec0` ` or veca xx vecb + vecc xx vecb = vec0` `or ( veca + vecc) xx vecb = vec0 ` Hence, `veca + vecb` is parallel to `vecb` . Thus , `veca + vecc = k vecb` |
|
| 19. |
If `veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck`, then find the value of `(veca xx vecb).(vecaxxvecc)` |
|
Answer» `vecaxxvecb= |{:(hati, hatj,hatk),(2,3,-4),(-1,2,-4):}|= - 10 veci + 9 vecj + 7 veck` `vecaxxvecb= |{:(hati, hatj,hatk),(2,3,-1),(1,1,1):}|= - 4 veci - 3 vecj -veck` `Rightarrow (vecaxxvecb) . (vecaxxvecc) = - 40 - 27 - 7 = -74` |
|
| 20. |
If `veca,vecb, vecc` are unit coplanar vectors then the scalar triple product `[2veca-vecb 2vecb-c vec2c-veca]` is equal to (A) `0` (B) `1` (C) `-sqrt(3)` (D) `sqrt(3)` |
|
Answer» Correct Answer - a `veca vecb and vecc` are unit coplanar vectors, `2veca- vecb , 2vecb - 2vecc and 2vecc - veca` are also coplanar, vectors ], being a linear combination of `veca , vecb and vecc` thus ` [ 2 veca - vecb 2vecb - vecc 2vecc - veca] =0` |
|
| 21. |
Find `veca.vecb if |veca|2, |vecb|=5,a and |vecaxxvecb|=8` |
|
Answer» `veca.vecb= |veca||vecb|costheta,but |vecaxxvecb|=|veca||vecb|sintheta` ` or sin theta (|veca xx vecb|)/(|veca||vecb|)= 4/5 Rightarrow 4/5 Rightarrow theta= 3/5` thereforem , `veca.vecb= 2xx5xx 3/5 = 6` |
|
| 22. |
If vectors `veca and vecb` are non collinear then `veca/(|veca|)+vecb/(|vecb|)` is (A) a unit vector `in the plane of `veca and vecb` (B) in the plane of `veca and vecb` (C) equally inclined ot vecas and vecb` (D) `perpendiculat to `veca xx vecb`A. a unit vectorB. in the plane of `veca and vecb`C. equally inclined to `veca and vecb`D. perpendicular to `veca xx vecb` |
|
Answer» Correct Answer - b,c,d Obviosusly, ` veca/ (|veca| ) + vecb/(|vecb|)` is a vector in the palane of `veca and vecb` and hence perpendicular to `veca xx vecb` . It is also equally inclined to `veca and vecb` as it is along bisector. |
|
| 23. |
If `veca, vecb and vecc` are three non-coplanar non-zero vectors, then prove that `(veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca` |
|
Answer» As `veca ,vecb and vecc` are non- coplanar, `vecb xx veca,veccxxveca and vecaxxvecb` are also non-coplanar, So, any vector con be expressend as a linear combination of these vectors. `veca=lambdavecbxxvecc+mu vecc xx veca+ v vecaxxvecb` `veca.veca=lambda[vecbveccveca],veca.vecb=mu [vecc vecavecb], veca.vecc=v[vecavecbvecc]` `veca=((veca.veca)vecbxxvecc)/([vecb veccveca])+((veca.vecb)veccxxveca)/([veccvecavecb])+((veca.vecc)vecaxxvecb)/([vecavecbvecc])` |
|
| 24. |
If `veca xx vecb = vecb xx vecc ne 0 ` where `veca , vecb and vecc` are coplanar vectors, then for some scalar k prove that `veca+vecc = kbvecb`. |
|
Answer» since `veca xx vecb = vecb xx vecc ne vec0` , we have `veca xx vecb - vecb xx vecc = vec0` ` or veca xx vecb + vecc xx vecb = vec0` `or ( veca + vecc) xx vecb = vec0 ` Hence, `veca + vecb` is parallel to `vecb` . Thus , `veca + vecc = k vecb` |
|
| 25. |
If `veca and vecb` are unequal unit vectors such that `(veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb` then angle `theta " between " veca and vecb` is |
|
Answer» Correct Answer - b,d `(vecaxxvecb)xx[(vecb+veca)xx (2veca+ vecb)] = vecb+veca` `or {(veca-vecb).(2veca+vecb) } (vecb +veca) ` `-{(veca-vecb). (vecb+veca)}(2veca + vecb)= vecb+veca` `or (2-veca.vecb- 1) (vecb +veca) = veca.vecb=1` `Rightarrow "either " vecb +veca =vec0 or 1 - veca.vecb=1` `Rightarrow "either " vecb = -veca or veca.vecb=0` `Rightarrow "either " theta= pi" "theta = pi//2` |
|
| 26. |
If `(vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc` are non zero vectors then (A) `veca,vecb and vecc can be coplanar (B) `veca,vecb and vecc` must be coplanar (C) `veca,vecb and vecc cannot be coplanar (D) none of theseA. `veca,vecb and vecv` can be coplanarB. `veca, vecb and vecc` must be coplanarC. `veca,vecb and vecc` cannot be coplanarD. none of these |
|
Answer» Correct Answer - c `(veca xx vecb) xx (vecb xx vecc) = vecb` ` or [veca vecb vecc] vecb = vecb` ` or [veca vecb vecc] =1 ` therefore, `veca , vecb and vecc` cannot be coplanar. |
|
| 27. |
If `veca and vecb` are two unit vectors perpenicualar to each other and `vecc= lambda_(1)veca+ lambda_2 vecb+ lambda_(3)(vecaxx vecb),` then which of the following is (are) true ?A. `lambda_(1)= veca.vecc`B. `lambda_(2)= |vecb xx vecc|`C. `lambda_(3)= |(vecaxx vecb|xxvecc|`D. `lambda_(1)veca + lambda_(2) vecb + lambda_(3) (vecaxxvecb)` |
|
Answer» Correct Answer - a,d Given `vecc= lambda_(1)veca+lambda_(2)vecb + lambda_(3)(vecaxxvecb)` `and veca. vecc= lambda_(1),vecc.vecb=lambda_(2)` ` and vecc. (veca xx vecb) |veca xx vecb|^(2) lambda_(3)` ` (1.1 sin 90^(@))^(2) lambda_(3) = lambda_(3)` Hence, ` lambda_(1), + lambda_(2), + lambda_(3) = (veca + vecb + veca xx vecb) . vecc` |
|
| 28. |
Unit vectors `veca and vecb` ar perpendicular , and unit vector `vecc` is inclined at an angle `theta` to both `veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb)` then.A. `alpha = beta `B. `gamma^(2) = 1- 2alpha^(2)`C. `gamma^(2) =-cos 2 theta`D. `beta^(2) = (1+ cos 2theta)/2` |
|
Answer» Correct Answer - a,b,c,d Since, `veca, vecb, and vecc` are unit vectors inclined at an angle `theta` we have `|veca|=|vecb|=1 and cos theta = veca.vecc = vecb.vecc` Now, ` vecc = alpha veca + beta vecb + gamma (veca xx vecb)` ` Rightarrow veca.vecc=alpha(veca. veca)+beta(veca.vecb) +gamma{veca.(vecaxx vecb)}` `Rightarrow cos theta=alpha|veca|^(2) " " (therefore veca. vecb=0, veca. (vecaxxvecb) =0) = alpha` similarly, by taking dot product on both sides of (i) by `vecb " we get " beta =cos tehta` Again ` vecc= alpha veca + beta vecb + gamma (veca xx vecb) ` ` Rightarrow |vecc|^(2) = |alphaveca + beta vecb + gamma (veca xx vecb)` `=alpha^(2) |veca|^(2) +beta^(2) |vecb|^(2) +gamma^(2)|vecaxxvecb|^(2)` ` + 2alphabeta(veca .vecb) + 2alphagamma{veca. (vecaxxvecb)}` `+ 2 betagamma(vecb.{vecaxxvecb})` ` Rightarrow 1 = alpha^(2) +beta^(2) +gamma^(2) |vecaxxvecb|^(2)` ` = 2alpha^(2) + gamma^(2) {|veca|^(2) |vecb|^(2) sin^(2) pi//2}` `= 2alpha^(2) +gamma^(2) or alpha^(2)(1-gamma^(2))/2` But `alpha = beta = cos theta` `1=2alpha^(2) +gamma^(2) Rightarrow1-2cos^(2) theta-cos 2theta` ` beta^(2) (1-gamma^(2))/2 = (1+cos2theta)/2` |
|
| 29. |
If `veca , vecb and vecc` are non- coplanar vectors and `veca xx vecc` is perpendicular to `veca xx (vecb xx vecc)` , then the value of `[ veca xx ( vecb xx vecc)] xx vecc` is equal toA. ` [veca vecb vecc] vecc`B. `[ veca vecb vecc] vecb`C. ` vec0`D. `[veca vecb vecc] veca` |
|
Answer» Correct Answer - c Given that `veca, vecb and vecc` are non-coplanar, thus ` [veca vecb vecc] ne 0` again ` veca xx (vecb xx vecc) . (veca xx vecc) =0` `or (veca .vecc) =0` Hence, ` veca and vecc` are perpendicular, ` veca xx (vecb xx vecc) = (veca .vecc) vecb - (veca .vecb) vecc` ` or [veca xx (vecb xx vecc)] xx vecc = vec0` |
|
| 30. |
If `veca,vecb and vecc` are three non-coplannar vectors, then prove that `(|hataxx(hatbxxhatc)|)/sinA=(|hatbxx(hatcxxhata)|)/sinB=(|hatcxx(hataxxhatb)|)/sin C = (prod|hata xx(hatbxx hatc)|)/(|sum sinalpha cosbeta cosgamma hatn_(1)|)` |
|
Answer» Since `veca,vecb and vecc` are non - coplanar, vectors `vecaxxvecb,vecb xxveccandveccxxveca` are also non-coplanar. Let `vecd=l(vecbxxvecc)+vecm(veccxxveca)+vecn(vecaxxvecb)` now multiplying both sides of (i) scalarly by `veca` we have `veca.vecd=lveca.(vecbxxvecc)+mveca.(veccxxveca)+nveca.(vecaxxvecb)=l[vecavecc veca]([veca vecc veca]=0=[veca veca vecb])` `l=(veca.vecd)//[veca vecb vecc]` putting these values oif l,nm and n and (i) , we get the required relation. |
|
| 31. |
Let `hata,vecb and vecc` be the non-coplanar unit vectors. The angle between `hatb and hatc is alpha "between" hatc and hata is beta and "between" hata and hatb is gamma`. If `A(hatacos alpha),B(hatbcosbeta) and C(hatc cosgamma),` then show that in triangle ABC, `(|hataxx(hatbxxhatca)|)/(sinA)=(|hatbxx(hatcxxhata)|)/sinB = (|hatcxx(hataxxhatb)|)/sinC=(prod|hataxx(hat xx hatc|))/(sumsin alpha-cosbeta. cos gammahatn_(1))` where `hatn_(1)=(hatbxxhatc)/(|hatbxxhatc|),hatn_(2)=(hatcxxhata)/(|hatcxxhata|)and hatn_(3)=(hataxxhatb)/(|hataxxhatb|)` |
|
Answer» From the sine rule, we get `(AB)/(sin C)=(AC)/(sinB)=(BC)/(sinA)= ((AB)(BC)(CA))/(2DeltaABC)` `BC=|vec(BC)|=|hatc cos gamma=-hatbcosbeta|=|(hata.hatb)hatc-(hatc.hata)hatb|=|(hataxx(hatbxxhatc))|` `AC = |vec(AC)|=|hatbxx(hatcxxhata)|and AB = |vec(AB)|=hatcxx(hataxx hatb)|` `DeltaABC=1/2|vec(BC)xxvec(BA)|` `=1/2 |(hatc cosgamma-hatb cos beta)xx(hata cosalpha-hatbcosbeta)|` `=1/2 |(hatc xxhata)cosalpha cosgamma+(hatbxxhatc)cosalphacosbeta+(hata xx hatb)cos beta cos alpha|` `2DeltaABC=|sumhatn_(1)sinalphacosbeta cosgamma|` `(|hataxx(hatbxxhatc)|)/sinA=(|hatbxx(hatcxxhata)|)/sinB=(|hatcxx(hataxxhatb)|)/sin C = (prod|hata xx(hatbxx hatc)|)/(|sum sinalpha cosbeta cosgamma hatn_(1)|)` |
|
| 32. |
Value of `[vec a xx vec b,vec a xx vecc,vec d]` is always equal toA. `(veca.vecd) [vecavecbvecc]`B. `(veca.vecc)[veca vecb vecd]C. `(veca.vecb)[veca vecb vecd]`D. none of these |
|
Answer» Correct Answer - a ` [veca xx vecb veca xx vecc vecd]` `= (veca xx vecb) .(( veca xx vecc) xx vecd)` ` (veca xx vecb) . ((veca.vecd)vecc= (vecc.vecd) veca)` ` (veca.vecd) [veca vecb vecc]` |
|
| 33. |
If `4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxveca)]` is equal toA. a vector perpendicular to the plane of `veca, vecb and vecc`B. a scalar quantityC. `vec0`D. none of these |
|
Answer» Correct Answer - c `4 veca + 5 vecb + 9 vecc =0` `Rightarrow "vcectors" veca,vecb and vecc` are coplanar. `Rightarrow vecb xx vecc and vecc xx veca` are collinear. `Rightarrow (vecb xx vecc) xx (vecc xx veca) = vec0` |
|
| 34. |
Let `vecr, veca, vecb` and `vecc` be four non-zero vectors such that `vecr.veca=0, |vecrxxvecb|=|vecr||vecb|,|vecrxxvecc|=|vecr||vecc|` then `[(veca, vecb, vecc)]=`A. |a||b||c|B. `-|a||b||c|`C. 0D. none of these |
|
Answer» Correct Answer - c `vecr.veca = 0, |vecr xx vecb| = |vecr||vecb| and |vecr xx vecc|` `|vecr||vecc|` ` [ veca vecb vecc] =0` |
|
| 35. |
If `veca and vecb` are two vectors and angle between them is `theta` , thenA. `|vecaxxvecb|^(2)+ (veca.vecb)^(2)= |veca|^(2)|vecb|^(2)`B. `|vecaxxvecb|^(2)+ (veca.vecb)^(2), if theta= pi//4`C. `veca xx vecb = (veca. Vecb) hatn` ( where `hatn` is a normal unit vector ) `if theta f= pi//4`D. `(veca xx vecb ) . (veca + vecb) =0` |
|
Answer» Correct Answer - a,b,c,d `vecaxx vecb= |veca||vecb| sin theta hatn ` `or |vecaxx vecb|=|veca||vecb|sintheta` `or sin theta (|vecaxxvecb|)/(|veca||vecb|)` `veca. vecb= |veca||vecb|cos theta` `Rightarrow cos theta= (|veca.vecb|)/(|veca||vecb|)` From (i) and (ii) . `sin^(2)theta + cos ^(2) theta=1` `if theta= pi//4 "then" sintheta=costheta= 1//sqrt2.` Therefore, `|vecaxxvecb|= (|veca||vecb|)/sqrt2 and veca.vecb= (|veca||vecb|)/sqrt2` `|vecaxxvecb|= veca.vecb` `vecaxxvecb= |veca||vecb|sinthetahatn = (|veca||vecb|)/sqrt2hatn` `(veca.vecb)hatn` |
|
| 36. |
If `vecca xx (vec b xx vecc)` is perpendicular to `(veca xx vecb ) xx vecc`, we may haveA. `(veca.vecb)|vecb|^(2)= (veca.vecb)(vecb.vecc)`B. `veca.vecb=0`C. `veca.vecc=0`D. `vecb.vecc=0` |
|
Answer» Correct Answer - a,c `vecaxx(vecbxxvecc)= (veca.vecc)vecb-(veca.vecb)vecb]and (vecaxx vecb) xxvecc=-(vecc. vecb) veca + (veca.vecc)vecb` we have been givn `(veca xx (vecbxx vecc)). ((vecaxxvecb)xxvecc)=0` ` or (veca . vecc)^(2)|vecb|^(2)- (veca.vecc)(vecb.vecc) (veca.vecb)` ` - (veca.vecb) (veca.vecc)(vecb.vecc)+ (veca.vecb)(vecb.vecc)(vecc.veca)=0` `or (veca.vecc)^(2)|vecb|^(2)= (veca.vecc)(veca.vecb)(vecb.vecc)` `or (veca.vecc)((veca.vecc)(vecb.vecb)- (veca.vecb) (vecb.vecc))=0` `veca.veca=0 or (veca.vecc) |vecb|^(2) = (veca.vecb)(vecb.vecc)` |
|
| 37. |
`a_(1), a_(2),a_(3) in R - {0} and + a_(1)+ a_(2)cos2x+ a_(3)sin^(2)x=0` " for all " x in R` thenA. vectors `veca=a_(1) hati+ a_(2) hatj + a_(3) hatk and vecb = 4hati + 2hatj + hatk` are perpendicular to each otherB. vectors `veca=a_(1) hati+ a_(2) hatj + a_(3) hatk and vecb = hati + hatj + 2hatk` are parallel to each each otherC. if vector `veca=a_(1) hati+ a_(2) hatj + a_(3) hatk` is of length `sqrt6` units, then on of the ordered trippplet `(a_(1), a_(2),a_(3)) = (1, -1,-2)`D. if `2a_(1) + 3 a_(2) + 6 a_(3) + 6a_(3) = 26 , " then " |veca hati + a_(2) hatj + a_(3) hatk | is 2sqrt6` |
|
Answer» Correct Answer - a,b,c,d `a_(1)+a_(2)cos2x+a_(3)sin^(2)x=0AAx inR` `or (a_(1)+ a_(2)) + sin ^(2)x (a_(3)- 2a_(2)=0` `Rightarrow a_(1)+a_(2)=0 and a_(3)-2a_(2)=0` ` a_(1)/(-1)=a_(2)/1=a_(3)/2 = lambda(ne0)` `Rightarrow a_(1) =lamda, a_(2)-lamda, a_(3)= 2lambda` |
|
| 38. |
If `vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)])` where `veca,vecb,vecc` are three non-coplanar vectors, then the value of the expression `(veca+vecb+vecc).(vecp+vecq+vecr)` isA. `x [veca vecb vecc] + ([vecp vecqvecr])/x ` has least value 2B. `x^(2) [veca vecb vecc]^(2) + ([vecp vecqvecr])/x^(2) ` has least value `(3//2^(2//3))`C. `[vecp vecq vecr] gt 0 `D. none of these |
|
Answer» Correct Answer - a,c we have ` [vecp vecq vecr] = 1/ ([ veca vecb vecc])` therefore, ` [vecp vecq vecr] gt 0` a. ` x gt 0, x [veca vecb vecc] + ([vecp vecq vecr])/x ge 2` ( using ` A.M. ge G.M.`) b . Similarly, use `A.M. ge G.M` |
|
| 39. |
Let `vecr` be a unit vector satisfying `vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2`A. `vecr= 2/3(veca+ veca xx vecb)`B. `vecr= 1/3(veca+ veca xx vecb)`C. `vecr= 2/3(veca- veca xx vecb)`D. `vecr= 1/3(-veca+ veca xx vecb)` |
|
Answer» Correct Answer - b,d `veca xx (vecr xx veca) = vecaxxvecb` ` 3 vecr - (veca.vecr) veca = veca xx vecb` Also, `|vecrxxveca|= |vecb|` `Rightarrow sin^(2)theta= 2/3` `or (1-cos^(2)theta) = 2/3` `or 1/3 = cos^(2)theta` `Rightarrow veca.vecr = +- 1` `Rightarrow 3 vecr +- veca = veca xx vecb1` `or vecr = 1/3(vecaxx vecb +- veca)` |
|
| 40. |
If vector ` vec b=(t a nalpha,-12sqrt(sinalpha//2))a n d vec c=(t a nalpha, t a nalpha-3/(sqrt(sinalpha//2)))`are orthogonal and vector ` vec a=(13,sin2alpha)`makes an obtuse angle withthe z-axis, then the value of `alpha`is`alpha=(4n+1)pi+tan^(-1)2`b. `alpha=(4n+1)pi-tan^(-1)2`c. `alpha=(4n+2)pi+tan^(-1)2`d. `alpha=(4n+2)pi-tan^(-1)2`A. `alpha= ( 4n+1 ) pi + tan^(-1) 2`B. `alpha= ( 4n+1 ) pi - tan^(-1) 2`C. `alpha= ( 4n+2 ) pi + tan^(-1) 2`D. `alpha= ( 4n+2 ) pi - tan^(-1) 2` |
|
Answer» Correct Answer - b,d Since `veca = 1,3, sin 2 alpha) ` makes on abtuse angle with the z-axis its z-component is negtive, thus, ` -1 le sin 2 alpha lt 0` But `vecb.vecc=0` ` tan^(2) alpha - tan alpha -6 =0` `(tan alpha -3) (tan alpha + 2) =0` ` Rightarrow tan alpha 3, -2` Now, `tan alpha =3,` therefore, `sin2 alpha = (2 tanalpha)/(1+tan^(2)alpha)= 6/(1+9)= 3/5` ( not possible as `sin 2 alpha lt 0`) Now , if ` tan alpha = -2` `Rightarrow sin2 alpha= (2tan alpha)/(1+ tan^(2)alpha)= (-4)/(1+_5) = (-4)/5` `tan 2 alpha gt0` Hence, ` 2alpha` is the third quadrant , Also , `sqrt(sin alpha//2)` is meaningful. if `0 lt sin alpha//2 1, ` then `alpha= (4 n + 1) pi-tan^(-1)2` `and alpha= (4n+2) pi - tan^(-1) 2` |
|
| 41. |
Let ` overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(a) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(a) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k)` be three non- zero vectors such that `overset(to)(c )` is a unit vectors perpendicular to both the vectors `overset(to)(c )` and `overset(to)(b)`. If the angle between `overset(to)(a) " and " overset(to)(n)` is `(pi)/(6)` then `|{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|` is equal to |
|
Answer» Correct Answer - c We are given that `veca = a_(1)hati+a_(2)hatj +a_(3)hatk` `vecb = b_(1)hati +b_(2)hatj +b_(3)hatk` `vecc =c_(1)hati +c_(2)hatj +c_(3)hatk` `"then"|{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|^(2)=[veca vecbvecc]^(2)` ` (veca xx vecb.vecc)^(2)` `(|veca xx vecb|.1cos)^(@2)` (since `vecc` is `bot "to" veca and vecb, vecc "is " bot "to" vecaxx vecb)` `(|veca xx vecb|)^(2)` `(|veca||vecb|.sin""pi/6)^(2)` `(1/2sqrt(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))sqrt(b_(1)^(2)+b_(2)^(2)+b_(3)^(2)))^(2)` `1/4(a_(1)^(2)+a_(2)^(2)+a_(2)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))` |
|
| 42. |
The scalars l and m such that `lveca + m vecb =vecc, " where " veca, vecb and vecc` are given vectors, are equal toA. `l= ((veccxxvecb).(vecaxxvecb))/((vecaxxvecb)^(2))`B. `l = ((vecc xx veca). (vecb xxveca))/((vecbxxveca))`C. `m = ((veccxx veca). (vecbxxveca))/((vecb xx veca)^(2))`D. `m = ((veccxx veca). (vecbxxveca))/((vecb xx veca))` |
|
Answer» Correct Answer - a,c Here, ` (l veca +mvecb) xx vecb =vecc xx vecb ` `or lveca xx vecb =vcec xx vecb` `or l(veca xx vecb)^(2) = (vecc xx vecb) / (veca xx vecb)` `or l= ((vecc xx vecb) . (veca xx vecb))/ ((veca xx vecb)^(2))` similarly, `m = ((veccxxveca). (vecb xx veca))/((vecbxxveca)^(2))` |
|
| 43. |
If the vectors `veca, vecb, vecc` are non -coplanar and `l,m,n` are distinct scalars such that `[(lveca+mvecb+nvecc, lvecb+mvecc+nveca,lvecc+mveca+nvecb)]=0` thenA. ` l + m + n=0`B. roots of the equation `lx^(2) + mx + n =0` are equalC. `l^(2)+m^(2) + n^(2) =0`D. `l^(3) + m^(2) + n^(3) = 3 lmn ` |
|
Answer» Correct Answer - a,b,d `{:(vecV_(1)=lveca+mvecb+nvecc),(vecV_(2)=n veca+lvecb + mvecc),(vecV_(3) = mveca + nvecb+lvecc):}}when,veca, vecb and vecc " are non- coplanar".` Therefore, `[vecV_(1)vecV_(2)vecV_(3)]= |{:(l,m,n),(n,l,m),(m,n,l):}|=0` `or (l + m +n) [(l-m)^(2) + (m-n)^(2)+ (n-l)^(2)=0` ` or l + m+n =0` obviously, `lx^(2) + mx + n =0` is satisfied by x =1 due to (i). ` l^(3) +m^(3) + n^(3) = 3lmn ` `Rightarrow (l+m +n) (l^(2) + m^(2) +n^(2)-lm -mn -ln) =0` which is true |
|
| 44. |
If `vecr=x_(1)(vecaxx vecb) + x_(2) (vecb xxveca) + x_(3)(vecc xxvecd) and 4[veca vecb vecc] =1 " then " x_(1) + x_(2) + x_(3)` is equal toA. `1/2vecr.(veca + vecb + vecc)`B. `1/4vecr.(veca + vecb + vecc)`C. `2vecr.(veca + vecb + vecc)`D. `4vecr.(veca + vecb + vecc)` |
|
Answer» Correct Answer - d `vecr= x_(1)(vecaxx vecb) + x_(2)(vecb xx vecc)+x_(3)(vecc xxveca)` `Rightarrow vecr.veca=x_(2)[veca vecb vecc] . vecr.vecb=x_(3)[vecb vecc veca]` ` and vecr.vecc= x_(1)[vecc veca vecb] =x_(1) [vecb vecc veca]` ` Rightarrow x_(1)+x_(2)+x_(3)=4vecr. (veca +vecb+vecc)` |
|
| 45. |
If the vectors `veca` and `vecb` are perpendicular to each other then a vector `vecv` in terms of `veca` and `vecb` satisfying the equations `vecv.veca=0, vecv.vecb=1` and `[(vecv, veca, vecb)]=1` isA. `(vecb)/(|vecb|^(2))+ (vecaxx vecb)/(|vecaxxvecb|^(2))`B. `(vecb)/(|vecb|)+ (vecaxx vecb)/(|vecaxxvecb|^(2))`C. `(vecb)/(|vecb|)+ (vecaxx vecb)/(|vecaxxvecb|)`D. none of these |
|
Answer» Correct Answer - a Let `vecc = xveca + yvecb +z veca xx vecb` Given : `veca. Vecb = 0, veca. Vecb = 1 , [ vecv veca vecb] =1 ` `Rightarrow vecv.veca=xveca.veca = x|veca|^(2)` ` ( veca. Vecb =0, veca.veca xx vecb =0)` ` Rightarrow x =0` Again, ` vecv. (veca xx vecb) = z (veca xx vecb)^(2)` ` Rightarrow 1=z (veca xx vecb)^(2) or z= 1/(|veca xx vecb|^(2))` Hence, `vecv= 1/|vecb|^(2) vecb+ 1 / (|veca xx vecb|^(2)) veca xx vecb` |
|
| 46. |
If `vecd=vecaxxvecb+vecbxxvecc+veccxxveca` is a on zero vector and `|(vecd.vecc)(vecaxxvecb)+(vecd.veca)(vecbxxvecc)+(vecd.vecb)(veccxxveca)|=0` then (A) `|veca|+|vecb|+|vecc|=|vecd|` (B) `|veca|=|vecb|=|vecc|` (C) `veca,vecb,vecc` are coplanar (D) `veca+vecc=vec(2b)`A. `|veca|=|vecb|=|vecc|`B. `|veca|+|vecb|+|vecc|=|vecd|`C. `veca, vecb and vecc` are coplanarD. none of these |
|
Answer» Correct Answer - c `vecd.vecc=vecd.vecb=vecd .vecc= [veca vecb vecc]` then `| (vecd.vecc) + (vecd.vecb) (vecc xx veca) =0 ` `or [veca vecb vecc] |veca xx vecb +vecb xx vecc +vecc xx veca)|=0` `or [veca vecb vecc] = 0 " " ( vecd` is non -zero) Hence. ` veca,vecb vecc` are coplanar. |
|
| 47. |
If `a`is real constant `A ,Ba n dC`are variable angles and `sqrt(a^2-4)tanA+atanBsqrt(a^2+4)tanc=6a ,`then the least vale of `tan^2A+tan^2b+tan^2Ci s``6`b. `10`c. `12`d. `3`A. 6B. 10C. 12D. 3 |
|
Answer» Correct Answer - d The given relation can be rewritten as the vector expression ` (sqrt(a^(2)-4) hati + ahatj + sqrt(a^(2) + 4hatk)` ` (tan A hati tanB hatj + tan C hatk) = 6a` `( sqrt( a^(2) -4 =a^(2) =a^(2) +4))` `(sqrt(tan^(2)A + tan^(2) B+ tan^(2) C)). (cos theta) = 6a` ` ( veca. vecb = |veca||vecb|cos theta)` ` sqrt3 a sqrt(tan^(2) A + tan^(2) B + tan^(2)C). (cos theta) = 6a` `tan^(2) A + tan^(2)B + tan^(2)C = 12 sec^(2) theta ge 12` ` (sec^(2) theta ge 1)` the least value of `tan^(2) A + tan^(2)B + tan^(2)B+ tan^(2)C is 12`. |
|
| 48. |
Let ` vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot]`denotes the greatest integer function. Then thevectors ` vecf(5/4)a n df(t),0A. parallel to each otherB. perpendicular to each otherC. inclined at `cos^(-1) 2/(sqrt7(1-t^(2))`D. inclined at `cos ^(-1) (8+t)/(9sqrt(1+t^(2)))` |
|
Answer» Correct Answer - d `vecf""(5/4)= [5/4] hati+ (5/4-[5/4])hatj + [5/4=1]hatk` `hati+ (5/4-1)hatj + 2hatk` `hati + 1/4 hatj + 2hatk` when `0 lt t 1 ,vecf "" (t) = 0 hati + { t-0} hatj +hatk` ` hatj +hatk` ` vecf "" (5/4) .vecf"" (t) = 2+t/4` so, `costheta= 4/(|vect+1/4hatj + 2hatk||thatj +hatk|)` `(2+t/4)/(sqrt(1+1/16=4)sqrt(1+t^(2)))` ` ( 8 +t)/(9sqrt(1 + t^(2)))` |
|
| 49. |
Two adjacent sides of a parallelogram ABCD are `2hati+4hatj -5 hatkand hati+2hatj+3hatk`. Then the value of `|vec(AC)xxvec(BD)|` isA. `20sqrt5`B. `22sqrt5`C. `24sqrt5`D. `26sqrt5` |
|
Answer» Correct Answer - b `|vec(AC) xx vec(BD)|=2 |vec(AB)xxvec(AD)|` `2|{:(hati,hatj,hatk),(2,4,-5),(1,2,3):}|` `|2[hati(12+10)-hatj (6+5)+hatk (4-4)]|` `|2[22hati -11 hatj]|` `22 |[2hati - hatj]|` `22xx sqrt5` |
|
| 50. |
If `veca and vecb ` are any two vectors of `magnitude` `2 and 3` respectively such that `|2(vecaxxvecb)|+|3(veca.vecb)|=k` then the maximum value of k isA. `sqrt13`B. `2sqrt13`C. `6sqrt13`D. `10sqrt13` |
|
Answer» Correct Answer - c `k= |2(veca xx vecv) |+ |3 (veca .vecb) |` ` = 12 sin theta + 18 cos theta` ` Rightarrow` maximum value of k = `sqrt(12^(2) + 18^(2)) = 6sqrt13` |
|