InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If sinA/sinB = √3/2 and cosA/cosB = √5/2 then tanA+tanB is equal to |
|
Answer» sinA/sinB = √3/2 => sinA = (√3/2)sinB ...............(1) cosA/cosB = √5/2 => cosA = (√5/2)cosB ...............(2) Squaring and adding (1) and (2), 1 = (3/4)(sinB)2 + (5/4)(cosB)2 => 3(sinB)2 + 5(cosB)2 = 4 => 3(sinB)2 + 3(cosB)2+ 2(cosB)2 = 4 => 3{(sinB)2 + (cosB)2} + 2(cosB)2 = 4 => (cosB)2 = 1/2 => cosB = 1/√2 or -1/√2 => sinB = 1/√2 or -1/√2 => sinA = √3/(2√2) or -√3/(2√2) from (1) => cosA = √5/(2√2) or -√5/(2√2) from (2) Hence, tanA + tanB = √3/√5 + 1 |
|
| 2. |
If sin x + cos x = a, then(i) sin6 x + cos6 x = _______(ii) | sin x – cos x | = _______. |
|
Answer» (i) (1/4)[4 – 3(a2 – 1)2] (ii) √(2 − a2) |
|
| 3. |
In a triangle ABC, if \(\frac{sin(A-B)}{sin(A+B)}=\frac{a^2-b^2}{a^2+b^2},\) Prove that the triangle is either isosceles or right angled. |
|
Answer» Given, \(\frac{sin(A-B)}{sin(A+B)}=\frac{a^2-b^2}{a^2+b^2}\) Applying componendo and dividendo \(\frac{sin(A-B)+sin(A+B)}{sin(A-B)-sin(A+B)} \)\(=\frac{a^2-b^2+a^2+b^2}{a^2-b^2-a^2-b^2}\) ⇒ \(-\frac{2\,sin\,A\,cos\,B}{2\,cos\,A\,sin\,B}=\frac{2a^2}{-2b^2}\) ⇒ \(\frac{sin\,A\,cos\,B}{cos\,A\,sin\,B}=\frac{a^2}{b^2}\) ⇒ b2 sin A cos B = a2 cos A sin B Putting sin A = ka, sin B = kb ⇒ b2ka cos B = a2kb cos A ⇒ b cos B = a cos A Applying cosine formula, \(b(\frac{a^2+c^2-b^2}{2ac})\) = \(a(\frac{b^2+c^2-b^2}{2bc})\) ⇒ b2 (a2 + c2 – b2 ) = a2 (b2 + c2 – a2) ⇒ a2b2 + b2c2 – b4 = a2b2 + a2c2 – a4 ⇒ b2c2 – a2c2 – b4 + a4 = 0 ⇒ c2 (b2 – a2) – (b2 – a2 ) (b2 + a2 ) = 0 ⇒ (b2 – a2) (c2 – b2 – a2 ) = 0 ⇒ Either b2 – a2 = 0 or, c2 – b2 – a2 = 0 ⇒ b = a or, c2 = b2 + a2 ∴ Triangle is isosceles if b = a ∴ Triangle is right angled if c2 = b2 + a2 |
|
| 4. |
If polar co-ordinates of a point are then its cartesian co-ordinates are ______.(a) (2, √2) (b) (√2, 2) (c) (2, 2) (d) (√2 ,√2) |
|
Answer» Correct option is: (d) (√2 ,√2) |
|
| 5. |
If tan(A +B) = And tan(A -B) = y, find the values of tan 2A And tan 2B. |
|
Answer» Given tan(A +B) = x And tan(A –B) = y Consider tan 2A = tan(A +A) = tan(A +B +A –B) We know that tan(A+B) = \(\frac{tanA+tanB}{1-tanAtanB}\) ⇒ tan(A + B + A - B) = \(\frac{tan(A+B)+tan(A-B)}{1-tan(A+B)tan(A-B)}\) = \(\frac{x+y}{1-xy}\) Consider tan 2B = tan(B +B) = tan(B +A +B –A) = \(\frac{tan(B+A)+tan(B-A)}{1-tan(B+A)tan(B-A)}\) We know that tan(-θ) = - tan θ = \(\frac{tan(A+B)-tan(A-B)}{1+tan(A+B)tan(A-B)}\) = \(\frac{x-y}{1+xy}\) |
|
| 6. |
In ∆ABC if ∠A = 45°, ∠B = 60° then the ratio of its sides are _________.(a) 2 :\(\cfrac{\pi}{2}\) : \(\cfrac{\pi}{3}\)+ 1 (b) \(\cfrac{\pi}{2}\): 2 : \(\cfrac{\pi}{3}\) + 1 (c) 2 : \(\cfrac{\pi}{2}\) : \(\cfrac{\pi}{2}\)(d) 2 : 2\(\cfrac{\pi}{2}\) : \(\cfrac{\pi}{3}\)+ 1 |
|
Answer» Correct option is: (a) 2 :\(\cfrac{\pi}{2}\) : \(\cfrac{\pi}{3}\)+ 1 |
|
| 7. |
If α + β - γ = π, and sin2 α + sin2 β – sin2 γ = λ sin α sin β cos γ, then write the value of λ. |
|
Answer» α + β = π + γ Sin (α + β) =sin (π + γ) Sin (α) cos (β) + sin (β) cos (α)=-sin(γ) Take square both side [sin(α)cos(β)+sin(β)cos(α)]2=sin2(γ) sin2(α)cos2(β)+sin2(β)cos2(α)+2 Sin(α)cos(β)sin(β)cos(α)= sin2(γ) sin2(α)[1-sin2(β)]+sin2(β)[1-sin2(α)]+2 Sin(α)cos(β)sin(β)cos(α) = sin2(γ) sin2(α)-Sin2(α)sin2(β)+sin2(β)-sin2(β)sin2(α) -sin2(γ)=- 2Sin(α)cos(β)sin(β)cos(α) sin2(α)+sin2(β)-sin2(γ) = 2Sin2(α)sin2(β) - 2Sin(α)cos(β)sin(β)cos(α) sin2(α)+sin2(β)-sin2(γ) = - 2Sin(α)sin(β)[ cos(β) cos(α)- Sin(α)sin(β)] sin2(α)+sin2(β) - sin2(γ) = - 2Sin(α)sin(β) cos(α+ β) sin2(α)+sin2(β) - sin2(γ) = 2Sin(α)sin(β) sin(γ) |
|
| 8. |
If sin θ + cos θ = 1, then the value of sin 2θ is equal to A. 1 B. 1/2 C. 0 D. –1 |
|
Answer» C. 0 Given that, sin θ + cos θ = 1 Squaring both sides, we get ⇒ (sin θ + cos θ)2 = 1 ⇒ sin2θ + cos2θ + 2sin θ cos θ = 1 ⇒ 1 + sin2θ = 1 ⇒ sin2θ = 1-1 = 0 |
|
| 9. |
Prove the identity: sin 2x/(1 – cos 2x) = cot x |
|
Answer» Let us consider the LHS sin 2x/(1 – cos 2x) As we know that cos 2x = 1 – 2 sin2 x Sin 2x = 2 sin x cos x Therefore, sin 2x/(1 – cos 2x) = (2 sin x cos x)/(1 – (1 – 2sin2 x)) = (2 sin x cos x)/(1 – 1 + 2sin2 x)] = [2 sin x cos x/2 sin2 x] = cos x/sin x = cot x = RHS Thus proved. |
|
| 10. |
Prove the identity: sin 2x/(1 + cos 2x) = tan x |
|
Answer» Let us consider the LHS sin 2x/(1 + cos 2x) As we know that cos 2x = 1 – 2 sin2 x = 2 cos2 x – 1 Sin 2x = 2 sin x cos x Therefore, sin 2x/(1 + cos 2x) = [2 sin x cos x/(1 + (2cos2x – 1))] = [2 sin x cos x/(1 + 2cos2 x – 1)] = [2 sin x cos x/2 cos2 x] = sin x/cos x = tan x = RHS Thus proved. |
|
| 11. |
Prove the identity:√[(1 – cos 2x)/(1 + cos 2x)] = tan x |
|
Answer» Let us consider the LHS √[(1 – cos 2x)/(1 + cos 2x)] As we know that cos 2x = 1 – 2 sin2 x = 2 cos2 x – 1 Therefore, √[(1 – cos 2x)/(1 + cos 2x)] = √[(1 – (1 – 2sin2 x))/(1 + (2cos2x – 1))] = √[(1 – 1 + 2sin2 x)/(1 + 2cos2 x – 1)] = √[2 sin2 x/2 cos2 x] = sin x/cos x = tan x = RHS Thus proved. |
|
| 12. |
Prove the identity: 2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1 = 0 |
|
Answer» Let us consider the LHS 2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1 As we know, (a + b)2 = a2 + b2 + 2ab a3 + b3 = (a + b) (a2 + b2 – ab) Therefore, 2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1 = 2{(sin2 x)3 + (cos2 x)3} – 3{(sin2 x)2 + (cos2 x)2} + 1 = 2{(sin2 x + cos2 x) (sin4 x + cos4 x – sin2 x cos2 x} – 3{(sin2 x)2 + (cos2 x)2 + 2sin2 x cos2 x – 2sin2 x cos2 x} + 1 = 2{(1) (sin4 x + cos4 x + 2 sin2 x cos2 x – 3 sin2 x cos2 x} – 3{(sin2 x + cos2 x)2 – 2sin2 x cos2 x} + 1 As we know, sin2 x + cos2 x = 1 = 2{(sin2 x + cos2 x)2 – 3 sin2 x cos2 x} – 3{(1)2 – 2sin2 x cos2 x} + 1 = 2{(1)2 – 3 sin2 x cos2 x} – 3(1 – 2sin2 x cos2 x) + 1 = 2(1 – 3 sin2 x cos2 x) – 3 + 6 sin2 x cos2 x + 1 = 2 – 6 sin2 x cos2 x – 2 + 6 sin2 x cos2 x = 0 = RHS Thus proved. |
|
| 13. |
Prove the identity: 3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x) = 13 |
|
Answer» Let us consider the LHS 3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x) As we know, (a + b)2 = a2 + b2 + 2ab (a – b)2 = a2 + b2 – 2ab a3 + b3 = (a + b) (a2 + b2 – ab) Therefore, 3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x) = 3{(sin x – cos x) 2}2 + 6 {(sin x)2 + (cos x)2 + 2 sin x cos x)} + 4{(sin2 x)3 + (cos2 x)3} = 3{(sin x)2 + (cos x)2 – 2 sin x cos x)}2 + 6(sin2 x + cos2 x + 2 sin x cos x) + 4{(sin2 x + cos2 x) (sin4 x + cos4 x – sin2 x cos2 x)} = 3(1 – 2 sin x cos x)2 + 6 (1 + 2 sin x cos x) + 4{(1) (sin4 x + cos4 x – sin2 x cos2 x)} As we know, sin2 x + cos2 x = 1 Therefore, = 3{12 + (2 sin x cos x)2 – 4 sin x cos x} + 6(1 + 2 sin x cos x) + 4{(sin2 x)2 + (cos2 x)2 + 2 sin2 x cos2 x – 3 sin2 x cos2 x)} = 3{1 + 4 sin2 x cos2 x – 4 sin x cos x} + 6(1 + 2 sin x cos x) + 4{(sin2 x + cos2 x) 2 – 3 sin2 x cos2 x)} = 3 + 12 sin2 x cos2 x – 12 sin x cos x + 6 + 12 sin x cos x + 4{(1)2 – 3 sin2 x cos2 x)} = 9 + 12 sin2 x cos2 x + 4(1 – 3 sin2 x cos2 x) = 9 + 12 sin2 x cos2 x + 4 – 12 sin2 x cos2 x = 13 = RHS Thus proved. |
|
| 14. |
Prove the identity: cos 4x = 1 – 8 cos2 x + 8 cos4 x |
|
Answer» Let us consider the LHS cos 4x As we know, cos 2x = 2 cos2 x – 1 Therefore, cos 4x = 2 cos2 2x – 1 = 2(2 cos2 2x – 1)2 – 1 = 2[(2 cos2 2x)2 + 12 – 2 × 2 cos2 x] – 1 = 2(4 cos4 2x + 1 – 4 cos2 x) – 1 = 8 cos4 2x + 2 – 8 cos2 x – 1 = 8 cos4 2x + 1 – 8 cos2 x = RHS Thus proved. |
|
| 15. |
Prove the identity: sin 4x = 4 sin x cos3 x – 4 cos x sin3 x |
|
Answer» Let us consider the LHS sin 4x As we know, sin 2x = 2 sin x cos x cos 2x = cos2 x – sin2 x Therefore, sin 4x = 2 sin 2x cos 2x = 2(2 sin x cos x) (cos2 x – sin2 x) = 4 sin x cos x (cos2 x – sin2 x) = 4 sin x cos3 x – 4 sin3 x cos x = RHS Thus proved. |
|
| 16. |
Prove the identity: (1 + tan α tan β)2 + (tan α – tan β)2 = sec2 α sec2 β |
|
Answer» Let us consider the LHS (1 + tan α tan β)2 + (tan α – tan β)2 1+ tan2 α tan2 β + 2 tan α tan β + tan2 α + tan2 β – 2 tan α tan β 1 + tan2 α tan2 β + tan2 α + tan2 β tan2 α (tan2 β + 1) + 1 (1 + tan2 β) (1 + tan2 β) (1 + tan2 α) As we know, 1 + tan2 θ = sec2 θ Therefore, sec2 α sec2 β = RHS ∴ LHS = RHS Thus proved. |
|
| 17. |
Prove the identity: (cos α + cos β)2 + (sin α + sin β)2 = 4 cos2(α – β)/2 |
|
Answer» Let us consider the LHS (cos α + cos β)2 + (sin α + sin β)2 Now, upon expansion, we get, (cos α + cos β)2 + (sin α + sin β)2 = cos2 α + cos2 β + 2 cos α cos β + sin2 α + sin2 β + 2 sin α sin β = 2 + 2 cos α cos β + 2 sin α sin β = 2 (1 + cos α cos β + sin α sin β) = 2 (1 + cos (α – β)) [since, cos (A – B) = cos A cos B + sin A sin B] = 2 (1 + 2 cos2 (α – β)/2 – 1) [since, cos2x = 2cos2 x – 1] = 2 (2 cos2 (α – β)/2) = 4 cos2 (α – β)/2 = RHS Thus proved. |
|
| 18. |
Prove the identity: 1 + cos2 2x = 2(cos4 x + sin4 x) |
|
Answer» Let us consider the LHS 1 + cos2 2x As we know, cos2x = cos2 x – sin2 x cos2 x + sin2 x = 1 Therefore, 1 + cos2 2x = (cos2 x + sin2 x)2 + (cos2 x – sin2 x)2 = (cos4 x + sin4 x + 2 cos2 x sin2 x) + (cos4 x + sin4 x – 2 cos2 x sin2 x) = cos4 x + sin4 x + cos4 x + sin4 x = 2 cos4 x + 2 sin4 x = 2(cos4 x + sin4 x) = RHS Thus proved. |
|
| 19. |
Prove the identity: sin2(π/8 + x/2) – sin2(π/8 – x/2) = 1/√2 sin x |
|
Answer» Let us consider the LHS sin2(π/8 + x/2) – sin2(π/8 – x/2) As we know, sin2 A – sin2 B = sin(A + B) sin(A - B) Therefore, sin2(π/8 + x/2) – sin2(π/8 – x/2) = sin (π/8 + x/2 + π/8 – x/2) sin (π/8 + x/2 – (π/8 – x/2)) = sin (π/8 + π/8) sin (π/8 + x/2 – π/8 + x/2) = sin π/4 sin x = 1/√2 sin x [since, π/4 = 1/√2] = RHS Thus proved. |
|
| 20. |
Show that 2 sin2 β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α |
|
Answer» LHS = 2 sin2 β + 4 cos (α + β) sin α sin β + cos 2(α + β) = 2 sin2 β + 4 (cos α cos β – sin α sin β) sin α sin β + (cos 2α cos 2β – sin 2α sin 2β) = 2 sin2 β + 4 sin α cos α sin β cos β – 4 sin2 α sin2 β + cos 2α cos 2β – sin 2α sin 2β = 2 sin2 β + sin 2α sin 2β – 4 sin2 α sin2 β + cos 2α cos 2β – sin2α sin2β = (1 – cos 2β) – (2 sin2 α) (2 sin2 β) + cos 2α cos 2β = (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β = cos 2α |
|
| 21. |
If tan α =1/7, tan β =1/3, then cos 2α is equal to(A) sin 2β (B) sin 4β (C) sin 3β (D) cos 2β |
|
Answer» Answer is (B) sin 4β |
|
| 22. |
If cosec x = 1 + cot x then x = 2nπ, 2nπ + π/2 |
|
Answer» Answer is True |
|
| 23. |
If sin A = 1/2, cos B = 12/13, where π/2 < A < π and 3π/2 < B < 2π, find tan(A – B). |
|
Answer» Given as sin A = 1/2, cos B = 12/13, where π/2 < A < π and 3π/2 < B < 2π As we know that, A is in second quadrant, B is in fourth quadrant. Since, in the second quadrant, sine function is positive, cosine and tan functions are negative. Since, in the fourth quadrant, sine and tan functions are negative, cosine function is positive. On using the formulas, cos A = – √(1 – sin2 A) and sin B = -√(1 – cos2 B) Therefore let us find the value of cos A and sin B cos A = – √(1 – sin2 A) = – √(1 – (1/2)2) = – √(1 - 1/4) = – √((4 - 1)/4) = – √(3/4) = -√3/2 sin B = -√(1 – cos2 B) = – √(1 - (12/13)2) = – √(1 - 144/169) = – √((169 - 144)/169) = – √(25/169) = – 5/13 As we know, tan A = sin A/cos A and tan B = sin B/cos B tan A = (1/2)/( -√3/2) = -1/√3 and tan B = (-5/13)/(12/13) = -5/12 Therefore, tan (A – B) = (tan A – tan B)/(1 + tan A tan B) = ((-1/√3) – (-5/12))/(1 + (-1/√3) × (-5/12)) = ((-12 + 5√3)/12√3)/(1 + 5/12√3) = ((-12 + 5√3)/12√3)/((12√3 + 5)/12√3) = (5√3 – 12)/(5 + 12√3) |
|
| 24. |
If cos x = -3/5 and π < x < 3π/2 find the values of other five trigonometric functions and hence evaluate (cosec x + cot x)/(sec x - tan x) |
|
Answer» Given as cos x = -3/5 and π < x < 3π/2 As we know that in the third quadrant, tan x and cot x are positive and all other rations are negative. On using the formulas, Sin x = – √(1 - cos2 x) Tan x = sin x/cos x Cot x = 1/tan x Sec x = 1/cos x Cosec x = 1/sin x Then, Sin x = – √(1 - cos2 x) = – √(1 - (-3/5)2) = – √(1 - 9/25) = – √((25 - 9)/25) = – √(16/25) = – 4/5 Tan x = sin x/cos x = (-4/5)/(-3/5) = -4/5 × -5/3 = 4/3 Cot x = 1/tan x = 1/(4/3) = 3/4 Sec x = 1/cos x = 1/(-3/5) = -5/3 Cosec x = 1/sin x = 1/(-4/5) = -5/4 ∴ (cosec x + cot x)/(sec x - tan x) = [(-5 + 3)/4]/[(-5 - 4)/3] = [-2/4]/[-9/3] = [-1/2]/[-3] = 1/6 |
|
| 25. |
Prove that cos(3π/2 + x)cos(2π + x) [cot(3π/2 - x) + cot(2π + x)] = 1 |
|
Answer» LHS = (sinx)cosx[tanx + cotx] = sinxcosx[sinx/cosx + cosx/sinx] = sin2x + cos2x = 1 = RHS. |
|
| 26. |
Find the general solution of the equation (√3 – 1) cos θ + (√3 + 1) sin θ = 2[Hint: Put √3 – 1 = r sin α, √3 + 1 = r cos α which gives tan α = tan((π/4) – (π/6)) α = π/12] |
|
Answer» Let, r sinα = √3 – 1 and r cosα = √3 + 1 Therefore, r = √{(√3 – 1)2 + (√3 + 1)2} = √8 = 2√2 And, tan α = (√3 – 1) / (√3 + 1) Therefore, r(sinα cos θ + cosα sin θ) = 2 ⇒ r sin (θ+α) = 2 ⇒ sin (θ+α) = 1/√2 ⇒ sin (θ+α) = sin (π/4) ⇒ θ+α = nπ + (– 1)n (π/4), n ∈ Z ⇒ θ = nπ + (– 1)n (π/4) – (π/12), n ∈ Z |
|
| 27. |
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x |
|
Answer» We have, (sin x + sin 3x) – 3 sin 2x = (cos x + cos 3x) – 3 cos 2x => 2 sin 2x cos x – 3 sin 2x = 2 cos 2x.cos x – 3 cos 2x => sin 2x(2 cos x – 3) = cos 2x(2 cos x – 3) => sin 2x = cos 2x (As cos x ≠ 3/2) => tan 2x = 1 => tan 2x = tan π/4 => 2x = nπ + π/4 , n∈Z x = nπ/2 +π/8 , n∈Z |
|
| 28. |
If A, B, C, D be the angles of a cyclic quadrilateral taken in order prove that : cos(180°– A) + cos (180°+ B) + cos (180°+ C) – sin (90°+ D) = 0 |
|
Answer» Given A, B, C and D are the angles of a cyclic quadrilateral. ∴ A + C = 180° and B + D = 180° ⇒ A = 180° – C and B = 180° - D Now, LHS = cos(180°– A) + cos (180°+ B) + cos (180°+ C) – sin (90°+ D) = -cos A + [-cos B] + [-cos C] + [-cos D] = -cos A – cos B – cos C – cos D = -cos (180° - C) – cos (180° - D) – cos C – cos D = -[-cos C] – [-cos D] – cos C – cos D = cos C + cos D – cos C – cos D = 0 = RHS Hence proved. |
|
| 29. |
Prove that sin2x = {(2sinxcosx), (2tanx/(1 + tan2x))sin 2x = \(\begin{cases}2\sin\mathrm x\cos\mathrm x\\\frac{2\tan\mathrm x}{1+\tan^2\mathrm x}\end{cases}\) |
|
Answer» We have sin(x + y) = sin xcosy + cosxsiny Replacing y by x we get sin 2x = 2sinx cosx Again sin2x = \(\frac{2\sin \mathrm \cos \mathrm x}{\sin^2\mathrm x+\cos^2\mathrm x}\) Dividing numerator and denominator by cos2x, We get sin2x = \(\cfrac{\frac{2\sin \mathrm x\cos \mathrm x}{\cos^2\mathrm x}}{1+\frac{\sin^2\mathrm x}{\cos^2\mathrm x}}\) = \(\frac{2\tan\mathrm x}{1+\tan^2\mathrm x}\) (i) \(\because\) sin(x + y) = sin x cos y + cos x sin y put y = x, we obtain sin 2x = sin x cos x + cos x sin x = 2sin x cos x (ii) \(\because\) sin 2x = 2sin x cos x = 2 \(\frac{\sin \mathrm x}{\cos \mathrm x}\) cos2x = \(\frac{2\tan\mathrm x}{\sec^2\mathrm x}\) (\(\because\) sec x = \(\frac{1}{\cos\mathrm x}\) & tan x = \(\frac{\sin\mathrm x}{\cos\mathrm x}\)) \(=\frac{2\tan\mathrm x}{1+\tan^2\mathrm x}\) (\(\because\) sec2x = 1 + tan2x) |
|
| 30. |
Prove that cos 6x = 32 cos6 x- 48 cos4 x + 18 cos2 x- 1. |
|
Answer» L.H.S. = cos 6x = cos 3(2x) [∵ cos 3x = 4 cos3 x – 3 cos x] = 4 cos3 2x – 3 cos 2x = cos 2x (4 cos2 2x – 3) = cos 2x [4(cos 2x)2 – 3] [∵ cos 2x = 2 cos2 x – 1] = cos 2x [4(2 cos2 x – l)2 – 3] = cos 2x [4(4 cos4 x + 1 – 4 cos2 x) – 3] = cos 2x (16 cos4 x + 4 – 16 cos2 x – 3) = (2 cos2 x – 1) (16 cos4 x + 4 – 16 cos2 x – 3) = 32 cos6 x + 8 cos2 x – 32 cos4 x – 6 cos2 x – 16 cos4 x – 4 + 16 cos2 x + 3 = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1 = R.H.S. Hence Proved. |
|
| 31. |
Prove that cos 4x = 1 – 8 sin2 x cos2 x. |
|
Answer» L.H.S. = cos 4x = cos 2(2x) (cos θ = 1 – 2 sin2 θ) = 1 – 2 sin2 2x = 1 – 2 (2 sin x cos x)2 [∵ sin 2x = 2 sin x cos x] = 1 – 2 x 4 sin2 x cos2 x = 1 – 8 sin2 x cos2 x = R.H.S. |
|
| 32. |
Prove that sin( x – y) = sin x cos y – cos x sin y. |
|
Answer» sin(x – y) = sin[x + (-y)] = sin x cos(-y) + cos x sin(-y) = sin x cos y-cos x sin y . |
|
| 33. |
Prove that cos3x = 4cos3 x -3cosx . |
|
Answer» cos3x = cos(2x + x) = cos2x cos x – sin2xsinx = (2cos2x - 1)cosx – 2sinxcosxsinx = 2cos3x - cosx - 2cosx(1 - cos2x) = 4cos3 x - 3cosx |
|
| 34. |
Prove that cos22x - cos26x = sin4x sin8x . |
|
Answer» LHS = (1 – sin22x) – (1 – sin26x) = sin26x – sin22x = sin(6x + 2x)sin(6x – 2x) = sin8x sin4x = RHS |
|
| 35. |
Reduce each of the following expressions to the Sine And Cosine of A single expression:\(\sqrt3\)sin x - cos x |
|
Answer» Let f(x) = √3 sin x – cos x Dividing and multiplying by √(3 + 1) = 2, ⇒ f(x) = 2\((\frac{\sqrt3}2sinx - \frac{1}2cosx)\) Sine of expression: ⇒ f(x) = 2\((cos\frac{π }6sinx-sin\frac{π }6cosx)\) We know that sinA cosB – cosA sinB = sin(A –B) ∴ f(x) = 2sin\((x-\frac{π }6)\) Cosine of the expression: ⇒ f(x) = 2\((sin\frac{π }6sinx-cos\frac{π }6cosx)\) We know that cosA cosB – sinA sinB = cos(A +B) ∴ f(x) = -2cos\((\frac{π }3+x)\) |
|
| 36. |
Solve 2 tan2 x + sec2 x = 2 for 0 < x < 2π |
|
Answer» We have: 2 tan2 x+ sec2 x= 2 2 tan2 x + 1 + tan2 x = 2 Which gives tan x = ± \(\frac{1}{\sqrt{3}}\) If we take tan x = \(\frac{1}{\sqrt{3}}\) ,then x = \(\frac{\pi}{6}\) or \(\frac{7\pi}{6}\) Again, if we take tanx = −\(\frac{1}{\sqrt{3}}\) , then x = \(\frac{5\pi}{6}\) or \(\frac{11\pi}{6}\) Therefore, the possible solutions of above equations are x = \(\frac{\pi}{6}\) , \(\frac{5\pi}{6}\) , \(\frac{7\pi}{6}\) and \(\frac{11\pi}{6}\) Where 0 ≤ x ≤ 2π |
|
| 37. |
Solve \(\sqrt{3}\) cosx − sinx =1 |
|
Answer» We have: \(\sqrt{3 }\)cos x − sin x = 1 Dividing both sides by 2, we get cos x. \(\frac{\sqrt{3}}{2}\) − sin x . \(\frac{1}{2}\) = \(\frac{1}{2}\) ⇒ cos x . cos \(\frac{\pi}{6}\) − sin x . sin \(\frac{\pi}{6}\) = \(\frac{1}{2}\) ⇒ cos (x + \(\frac{\pi}{6}\) ) = cos ( \(\frac{\pi}{3}\) ) ⇒ x + \(\frac{\pi}{6}\) = \(2n\pi\) ± \(\frac{\pi}{3}\) ⇒ x = \(2nx\) ± \(\frac{\pi}{3}\) − \(\frac{\pi}{6}\) ⇒ x = \(2n\pi\) + \(\frac{\pi}{3}\) − \(\frac{\pi}{6}\) or x = \(2nx\) − \(\frac{\pi}{3}\) − \(\frac{\pi}{6}\) ⇒ x = \(2n\pi\) + \(\frac{\pi}{6}\) or x = \(2n\pi\) − \(\frac{\pi}{2}\) |
|
| 38. |
Solve: 3 tan x + cot x = 5 cosec x |
|
Answer» We have: 3 tan x + cot x = 5 cosec x ⇒ \(3(\frac{sinx}{cosx})+(\frac{cosx}{sinx})=\frac{5}{sinx}\) ⇒ \(3\space\frac{sinx}{cosx}=\frac{5-cosx}{sinx}\) ⇒ \(3sin^2x=5cosx-cos^2x\) ⇒\(3 (1-cos^2x)=5cosx-cos^2x\) ⇒ \(3-3cos^2x+cos^2x-5cosx=0\) ⇒ \(2cos^2x+5cosx-3=0\) ⇒ \((2cosx-1)(cosx+3)=0\) ∴ \(cosx+3=0\) or \(cosx+3=0\) ⇒ \(cosx=\frac{1}{2} \) or \(cosx=\frac{-3}{2}\) As range of cos x is [– 1, 1] ⇒ ∴ \(cosx =\frac{1}{2}\) ⇒ \(cosx=cos\frac{\pi}{3}\) ⇒\(x=2n\pi ±\frac{\pi}{3},n∈z\) |
|
| 39. |
Solve: \(\sqrt{2}secθ-tanθ=\sqrt{3}\) |
|
Answer» We have: \(\sqrt{2}secθ-tanθ=\sqrt{3}\) ⇒ \(\frac{\sqrt{2}}{cosθ}-\frac{sinθ}{cosθ}=\sqrt{3}\) ⇒ \(\sqrt{2}-sinθ =\sqrt{3}cosθ\) ⇒ \(\sqrt{3}cosθ+sinθ=\sqrt{2}\) Divide the equation by 2 \(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ=\frac{\sqrt{2}}{2}\) ⇒ \(cos(\frac{\pi}{6})cosθ+sin(\frac{\pi}{6})sinθ=\frac{1}{\sqrt{2}}\) ⇒ \(cos(θ-\frac{\pi}{6})=cos(\frac{\pi}{4})\) ⇒ \(θ-\frac{\pi}{6}=2n\pi ± \frac{\pi}{4}\) ⇒ \(θ=2n\pi ±\frac{\pi}{4}+\frac{\pi}{6}\) ⇒ \(θ=2n\pi +\frac{\pi}{4}+\frac{\pi}{6}\) or \(θ=2n\pi -\frac{\pi}{4}+\frac{\pi}{6}\) ⇒ \(θ=2n\pi +\frac{5\pi}{12}\) or \(θ=2n\pi-\frac{\pi}{12}\) |
|
| 40. |
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = 1/√2. |
|
Answer» According to the question, We have, tan θ = -1 And cos θ =1/√2 . ⇒ θ = – π/4 So, we know that, θ lies in IV quadrant. θ = 2π – π/4 = 7π/4 So, general solution is θ = 7π/4 + 2 n π, n∈ Z |
|
| 41. |
Find the most general value of θ satisfying the equation tanθ = –1 and cosθ = 1/√2 |
|
Answer» We have tan θ = -1 and cos θ =1/√2 . So, θ lies in IV quadrant. θ = 7π/4 So, general solution is θ = 7π/4 + 2 n π, n ∈ Z |
|
| 42. |
Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4cm(use π = 22/7) |
|
Answer» Here l = 37.4 cm, θ = 60° = π/3 rad But r = l/θ = (37.4 x 3)/π = (34.4 x 3 x 7)/22 = 35.7cm |
|
| 43. |
If Tn = sinnx + cosnx, prove that6 T10 – 15 T8 + 10 T6 – 1 = 0 |
|
Answer» Given Tn = sinnx + cosnx LHS = 6T10 – 15 T8 + 10T6 – 1 = 6 (sin10x + cos10x) – 15 (sin8x + cos8x) + 10 (sin6x + cos6x) – 1 = 6 (sin6x + cos6x) (sin4x + cos4x) – cos4x sin4x (sin2x + cos2x) - 15 (sin6x + cos6x) (sin2x + cos2x) – cos2x sin2x (sin4x + cos4x) + 10 (sin2x + cos2x) (sin4x + cos4x – cos2x sin2x) – 1 We know that sin2x + cos2x = 1. = 6 [(1 – 3 sin2x cos2x) (1 – 2 sin2x cos2x) – sin4x cos4x] - 15 [(1 – 3 sin2x cos2x) – sin2x cos2x (1 – 2 sin2x cos 2x)] + 10 (1 – 3 sin2x cos2x) – 1 = 6 (1 – 5 sin2x cos2x + 5 sin4x cos4x) – 15 (1 – 4 sin2x cos2x + 2 sin 4x cos4x) + 10 (1 – 3 sin2x cos2x) – 1 = 6 – 30 sin2x cos2x + 30 sin4x cos4x – 15 + 60 sin2x cos2x - 30 sin4x cos4x + 10 – 30 sin2x cos2x – 1 = 6 – 15 + 10 – 1 = 0 = RHS Hence proved. |
|
| 44. |
Evaluate: (\(1+cos\frac{\pi}{8}\)) (\(1+cos\frac{3\pi}{8}\)) (\(1+cos\frac{5\pi}{8}\)) (\(1+cos\frac{7\pi}{8}\)) |
|
Answer» We have, (\(1+cos \frac{\pi}{8}\) ) (\(1+cos\frac{3\pi}{8}\) ) (\(1+cos\frac{5\pi}{8}\) ) (\(1+cos\frac{7\pi}{8}\) ) = (\(1+cos\frac{\pi}{8}\)) (\(1+sin(\frac{\pi}{2}-\frac{3\pi}{8})\)) (\(1+sin(\frac{\pi}{2}-\frac{5\pi}{8})\)) (\(1+cos(\pi -\frac{\pi}{8})\)) = (\(1+cos\frac{\pi}{8}\)) (\(1+sin\frac{\pi}{8}\)) . (\(1-sin\frac{\pi}{8}\)) (\(1-cos\frac{\pi}{8}\) ) = (\(1-cos^2\frac{\pi}{8}\) ) (\(1-sin^2\frac{\pi}{8}\) ) = \(sin^2\frac{\pi}{8}cos^2\frac{\pi}{8}\) = \(\frac{1}{4}(2sin\frac{\pi}{8}cos\frac{\pi}{8})^2\) =\(\frac{1}{4}sin^2(\frac{2\pi}{8})\) = \(\frac{1}{4}sin^2(\frac{2\pi}{8})\) =\(\frac{1}{4}(\frac{1}{\sqrt{2}})^2\) = \(\frac{1}{4}\times \frac{1}{2}\)= \(\frac{1}{8}\) |
|
| 45. |
Prove that: cos 10° + cos 110° + cos 130° = 0. |
|
Answer» L.H.S = cos 10° + cos 110° + cos 130° = (cos 10° + cos 110°) cos 130° = 2 cos (\(\frac{110+10°}{2}\)) cos ( \(\frac{110-10°}{2}\) ) + cos 130° [∵ cosC + cosD = 2 cos ( \(\frac{C+D}{2}\) ) cos ( \(\frac{C-D}{2}\))] = 2 cos 60° cos 50° + cos 130° = 2 × \(\frac{1}{2}\) cos 50° + cos (180° − 50) = cos 50° - cos 50° = 0 = R. H.S Hence Proved |
|
| 46. |
State whether the statement is True or False? Also give justification.sin 10° is greater than cos 10°. |
|
Answer» False Explanation: Let, sin 10° > cos 10° ⇒ sin 10° > cos (90° - 80°) ⇒ sin 10° > sin80° Which is not possible since value of sin increases with increase in θ. Hence, statement is false. |
|
| 47. |
State whether the statement is True or False? Also give justification.The equality sin A + sin 2A + sin 3A = 3 holds for some real value of A. |
|
Answer» False Explanation: We know that, maximum value of sin A is 1. Given that, sin A + sin 2A + sin 3A = 3 It is possible when sin A = sin 2A = sin 3A=1 But sin2A and sin3A is not equal to 1. Hence, statement is false. |
|
| 48. |
The equality sin A + sin 2A + sin 3A = 3 holds for some real value of A. |
|
Answer» Answer is False |
|
| 49. |
Prove that: tan13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x |
|
Answer» We have 13x = 9x + 4x ⇒ tan 13x = tan(9x + 4x) We know that tan(A + B) = \(\frac{tanA+tanB}{1-tanAtanB}\) ⇒ tan 13x = \(\frac{tan9x+tan4x}{1-tan9x\,tan4x}\) ⇒ tan 13x(1 – tan 9x tan 4x) = tan 9x + tan 4x ⇒ tan 13x – tan 13x tan 9x tan 4x = tan 9x + tan 4x ∴ tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x Hence proved. |
|
| 50. |
The value of cos 1° cos 2° cos 3°… cos 179° isA. 1/√2B. 0C. 1D. –1 |
|
Answer» B. 0 Explanation: According to the question, Since cos90° =0 We get, ⇒ cos 1° cos 2° cos 3°… cos90°… cos 179° = 0 Thus, option (B) 0 is the correct answer. |
|