Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

In an acute angled `triangle ABC`, the minimum value of `tanA tanB tanC` is

Answer» As, `tanA*tanB*tanC= tanA+ tanB + tanC`Since, `A.M ge G.M``(tanA+ tanB + tanC)/3 ge root(3)(tanA*tanB*tanC)``root(2/3)(tanA+ tanB + tanC) ge 3`So, `(tanA + tanB+ tanC) ge 3^(3/2)`Hence,` min(tanA + tanB+ tanC)= 3sqrt3`
2.

Consider the system of linear equations in `x , ya n dz :``""(sin3theta)x-y+z=0(cos2theta)x+4y+3z=0``3x+7y+7z=0`Which of the following can be the value of `theta`for which the system has a non-trivial solution`npi+(-1)^npi/6,AAn in Z``npi+(-1)^npi/3,AAn in Z``npi+(-1)^npi/9,AAn in Z`none of these

Answer» As given equations has a non-trivial solution,
`:. |[sin3theta,-1,1],[cos2theta,4,3],[2,7,7]| = 0`
`=>sin3theta(28-21)-cos2theta(-7-7) +2(-3-4) = 0`
`=>7sin3theta + 14cos2theta -14 =0`
`=>sin3theta +2cos2theta -2 = 0`
`=>3sintheta - 4sin^3theta +2- 4sin^2theta -2 =0`
`=>-sintheta(4sin^2theta + 4sintheta -3) = 0`
`=>sintheta(4sin^2theta + 6sintheta - 2sintheta -3) = 0`
`=>sintheta(2sintheta(2sintheta+3) - 1(2sintheta +3)) = 0`
`=>sintheta(2sintheta- 1)(2sintheta +3) = 0`
`=>sintheta = 0 or sin theta = 1/2 or sin theta = -3/2`
`sin theta` can not be less than `-1`, so `sin theta != -3/2`.
`:. sintheta = 0 or sin theta = 1/2`
`theta = npi or theta = npi+(-1)^n(pi/6).`
3.

In `(0, 4pi)`, the number of solutions of `2sin^(2)theta=cos2theta` areA. `4`B. `2`C. `8`D. `6`

Answer» Correct Answer - C
4.

If `f(theta)=(1-sin2theta+cos2theta)/(2cos2theta)`, then value of `8f(11^0)*f(34^0)`is ____

Answer» `f(theta) = (1-sin2theta+cos2theta)/(2cos2theta)`
`=((cos^2theta+sin^2theta - 2sinthetacostheta) +(cos^2theta-sin^2theta) )/(2(cos^2theta - sin^2theta))`
`= ((costheta - sintheta)^2+(costheta+sintheta)(costheta - sintheta))/(2(costheta+sintheta)(costheta - sintheta))`
`=(costheta-sintheta+costheta+sintheta)/(2(costheta+sintheta))`
`=(2costheta)/(2(costheta+sintheta))`
`=1/(1+tantheta)`
`:. f(theta) = 1/(1+tantheta)`
`:. 8f(11^@)f(34^@) = 8(1/(1+tan11^@))(1/(1+tan34^@))->(1)`
Now, `tan 34^@ = tan(45^@-11^@) = (tan45^@-tan11^@)/(1+tan45^@tan11^@) = (1-tan11^@)/(1+tan11^@)`
`:. 1+tan34^@ = 1+ (1-tan11^@)/(1+tan11^@) = 2/(1+tan11^@)`
Putting value of `1+tan34^@` in (1),
`8f(11^@)f(34^@) = 8(1/(1+tan11^@))*((1+tan11^@)/2)`
`=>8f(11^@)f(34^@) = 4.`
5.

If A = `4 sin theta + cos^(2) theta` , which of the following is not true ?(A) Maximum value of A is 5 .(B) Minimum value of A is `-4`(C) Maximum value of A occurs when `sin theta = 1//2`(D) Minimum value of A occurs when `sin theta = 1`.A. Maximum value of A is 5 .B. Minimum value of A is `-4`C. Maximum value of A occurs when `sin theta = 1//2`D. Minimum value of A occurs when `sin theta = 1`.

Answer» (a) , ( c) , (d)
`f(theta) = 4 sin theta cos^(2) theta = 4 sin theta + 1 - sin^(2) theta`
`= 5 -(4-4sin theta + sin^(2) theta) = 5 - (sin theta -2)^(2)`
Now maximum value of f`(theta)` occurs when `(sin theta -2)^(2)` is minimum .
Minimum value of `(sin theta -2)^(2)` occurs when `sin theta =1` , then maximum value of `f(theta)" is " 5-(-1-2)^2=4`.
Also minimum value of `f(theta)` occurs when `(sintheta-2)^2` is maximum.
Mximum value of `(sintheta-2)^2` occurs when `sintheta=-1`, then minimum value of `f(theta)" is " 5-(-1-2)^2=-4`.
6.

Show that the equation `sintheta=x+1/x`is not possible if `x`is real.

Answer» `x+1/x = (sqrtx)^2+(1/sqrtx)^2`
`=(sqrtx-1/sqrtx)^2 +2*sqrtx*1/sqrtx`
`=>x+1/x = (sqrtx-1/sqrtx)^2 +2`
`:. x+1/x ge 2.`
But, `-1 le sin theta le 1` , so `sin theta` can not be greater than `1`.
Thus, `sintheta = x+1/x` is not possible if `x` is real.
7.

In `(0, 2pi)`, the number of solutions of `cos2theta=sintheta` areA. `1`B. `2`C. `3`D. `4`

Answer» Correct Answer - C
8.

Find the values of x for which `3costheta=x^2-8x+19` holds good.

Answer» `3cos theta=x^2-8x+19`
`rArr3costheta=(x-4)^2+3`
Now, `L.H.S. =3costhetale3`
or L.H.S. has greatest value 3
But `R.H.S.(x-4)^2+3ge3`
or R.H.S.has least value 3
Hence, L.H.S.=R.H.S. when `3costheta=(x-4)^2+3=3`
`rArr costheta=1" and "x-4=0`
`rArr theta=2n pi " and " x=4," where "in Z`.
9.

Find the number of solution of `theta in [0,2pi]`satisfying the equation `((log)_(sqrt(3))tantheta(sqrt((log)_(tantheta)3+(log)_(sqrt(3))3sqrt(3))=-1`

Answer» `log_(sqrt3)tantheta[sqrt(log_tantheta 3+log_sqrt3 3sqrt3)]=-1`
`log_(sqrt3) tantheta[sqrt(2/log_sqrt3 tantheta)+3)]=-1`
`ysqrt(2/y+3)=-1`
`y^2(2/y+3)=1`
`2y+3y^2=1`
`3y^2+2y-1=0`
`3y(y+1)-1(y+1)=0`
`(y+1)(3y-1)=0`
`y=-1`
`log_sqrt3 tantheta=-1`
`tantheta=(sqrt3)^(-1)`
`tantheta=1/sqrt3`
`theta=pi/6,7/6pi`
`y=1/3`
`log_sqrt3 tantheta=1/3`
`tantheta=(sqrt3)^(1/3)`.
10.

If `sin alpha + sin beta = a and cos alpha + cos beta =b`, show that `sin(alpha+beta)=(2ab)/(alpha^2+beta^2)`

Answer» `Sin(alpha) + Sin(beta)=a``Cos(alpha) + cos(beta)=b``2Sin((alpha +beta)/2)Cos((alpha-beta)/2)=a``2cos((alpha+beta)/2)cos((alpha-beta)/2)=b`then, `tan((alpha+beta)/2)= a/b`
By using angles of triangle,
`Sin((alpha+beta)/2)=a/sqrt(a^2+b^2)`
`cos((alpha+beta)/2)= b/sqrt(a^2+b^2)`
Hence, `Sin(alpha+beta)=2Sin((alpha+beta)/2)cos((alpha+beta)/2)``= (2ab)/(a^2+b^2)`
11.

The total number of solution of `sin{x}=cos{x}`(where `{}`denotes the fractional part) in `[0,2pi]`is equal to5 (b)6 (c) 8(d) none of theseA. 5B. 6C. 8D. None of these

Answer» Correct Answer - option 2
12.

Show that the equation `sintheta=x+1/x` is not possible if x is real.

Answer» Given, `sintheta=x+1/x`
`:. Sin^2theta=x^2+1/x^2+2=(x-1/x)^2+4ge4`
Which is not possible since `sintheta^2le1`.
13.

if `sin^2theta=(x^2+y^2+1)/(2x)` then `x` must beA. -3B. -2C. 1D. None of these

Answer» Correct Answer - C
`sin^2thetale1`
`rArr (x^2+y^2+1)/(2x)le1`
`orx^2+y^2-2x+1le0 (asxgt0)`
`or (x-1)^2+y^2le0`
It is possible if x - 1 = 0 and y = 0.
14.

If `alpha, beta` are different values of `theta` satisfying the equation `5 cos theta-12 sin theta=11`. If the value of `sin (alpha + beta) =-(5k)/(169)` , then find the value of k.

Answer» given that, `5cos theta - 12sintheta= 11`
`(5/13)sin theta - (12/13)sin theta = 11/13`
`sin (phi- theta) = 11/13`
let `sin x = sin a`
we can say that `x=a or pi - a`
`phi- theta = alpha- phi or pi-(alpha- phi) `
`pi - (alpha- theta) = (beta- phi)`
`pi- alpha+ phi= beta - phi`
`pi+ phi + phi = alpha + beta`
`sin(pi + 2phi) = sin(alpha+ beta)`
`sin (alpha+beta) = - sin 2 phi = -2sinphicos phi`
`= -2*5/13* 12/13`
`sin (alpha+ beta)= -120/169`
`(-5k)/cancel(169) = -120/cancel(169)`
we get, `:. k = 24`
15.

If : `(csc alpha - cot alpha)(csc beta -cot beta)(csc gamma-cot gamma)=(csc alpha +cot alpha)(csc beta + cot beta)(csc gamma + cot gamma),` then the value of each side isA. 1B. 2C. 3D. none of these

Answer» Correct Answer - A
16.

Given that:`(1 + cos alpha) (1 + cos beta) (1 + cos gamma) = (1 - cos alpha) (1 - cos beta) (1 - cos gamma),` Show that one of the values of each member of this equality is `sin alpha sin beta sin gamma.`A. `cos alpha* cos beta* cos gamma`B. `sin alpha* sin beta* sin gamma`C. `sec alpha* sec beta* sec gamma`D. `tan alpha* tan beta* tan gamma`

Answer» Correct Answer - B
17.

If `sin^2theta_1+sin^2theta_2+sin^2theta_3=0,`then which of the following is not the possible value of `costheta_1+costheta_2+costheta_3?`3 (b) `-3`(c) `-1`(d) `-2`A. 3B. -3C. -1D. -2

Answer» `sin^2theta_1+sin^2theta_2+sin^2theta_3=0`
`rArr sin^2theta_1=sin^2theta_2=sin^2theta_3=0`
`rArr cos^2theta_1,cos^2theta_2,cos^2theta_3=1`
`rArr costheta_1,costheta_2,costheta_3=pm1`
`cos^2theta_1+cos^2theta_2+cos^2theta_3"can be-3 (when all are -I)"`
or 3 (when all are +I)
or -1 (when any two are -1 and one is +1)
or 1 (when any two are +11 and one is -1)
but-2 is not a possible value.
18.

If `sin^2theta_1+sin^2theta_2+...+sin^2theta_n=0`, then find the minimum value of `costheta_1+costheta_2+...+costheta_n`.

Answer» Correct Answer - `-n`
`sin^2theta_1+sin^2theta_2+...+sin^2theta_n=0`
`rArr sintheta_1=sintheta_2=...sintheta_n=0`
`rArr costheta_1,costheta_2...,costheta_n=pm1`
Therefore, the minimum value of `costheta_1+costheta_2+…+costheta_n`
`=(-1)+(-1)+(-1)+…n" times "=-n`
19.

`sec^2 x=(4xy)/(x+y)^2` is true if and only ifA. `x+yne0`B. `x=y,xne0`C. `x=y`D. `xne0,yne0`

Answer» Correct Answer - B
Given, `sec^2theta=(4xy)/((x+y)^2ge1`
Now `sec^2thetage1rArr(4xy)/((x+y)^2ge1`
`or (x+y)^2le4xy`
`or (x+y)^2-4xyle0`
`or (x-y)^2le0`
But for real values of x and y,
`(x-y)^2ge0or(x-y)^2=0`
`:. x=y`
Also `x+yne0rArrxne0.yne0`
20.

If `x+y+z=pi/2,`then prove that`|[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0`

Answer» `L.H.S. = |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3y,cos^3z]|`
By expending the determinant along `R_3`,
`=sum cos^3x[sinycosz - cosysinz]`
`=sum cos^3xsin(y-z)`
As, `x+y+z = pi/2`, so the determinant becomes,
`=sum cos^3(pi/2-(y+z))sin(y-z)`
`=sum sin^3(y+z)sin(y-z)`
`=sum sin^2(y+z) sin(y+z)sin(y-z)`
`=sum sin^2(pi/2-x) (sin^2y-sin^2z)`
`=sum cos^2x (sin^2y-sin^2z)`
`=sum (1-sin^2x)(sin^2y-sin^2z)`
Let `sin^2x = a, sin^2y = b, sin^2z = c`, then, our determinant becomes,
`=sum(1-a)(b-c)`
`=(1-a)(b-c)+(1-b)(c-a)+(1-c)(a-b)`
`=(b-c+c-a+a-b)-ab+ac-bc+ab-ac+bc`
`=0 = R.H.S.`
21.

If `sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3` is equal toA. 3B. 2C. 1D. 0

Answer» Correct Answer - D
The given relation is satisfied only when
`sintheta_1=sintheta_2=sintheta_3=1`
`rArrcostheta_1=costheta_2=costheta_3=0`
`rArrcostheta_1+costheta_2+costheta_3=0`
22.

The minimum value of the expression `sin alpha + sin beta+ sin gamma`, where `alpha,beta,gamma` are real numbers satisfying `alpha+beta+gamma=pi` isA. positiveB. zeroC. negativeD. -3

Answer» Correct Answer - C
For `alpha=-pi//2,beta=pi//2andgamma=2pi`
`sinalpha+sinbeta=singamma=-2`
Hence, the minimum value of the expression is negative.
23.

If `sinx+siny+sinz+sinw=-4" then the value of "sin^400x+sin^300y+sin^200z+sin^100w` isA. `sin^400x.sin^300y.sin^200z.sin^100w`B. `sinx.siny.sinz.sinw`C. 4D. 3

Answer» Correct Answer - C
`sinx+siny+sinz+sinw=-4`
`rArrsinx=siny=sinz=sinw`
So,`sin^400x+sin^300y+sin^200x+sin^100w`
`=-(-1)^400+(-1)^300+(-1)^200+(-)^100=4`
24.

Prove that:`(cos e c(90^0+theta)+cot(450^0+theta))/(cos e c(90^0-theta)+t a n(180^0-theta))+(t a n(180^0+theta)+s e c(180^0-theta))/(t a n(360^0+theta)-s e c(-theta))`=2

Answer» `L.H.S. = (cosec(90^@+theta)+cot(450^@+theta))/(cosec(90^@-theta)+tan(180^@-theta))+(tan(180^@+theta)+sec(180^@-theta))/(tan(360^@+theta)-sec(-theta)`
`=(cosec(90^@+theta)+cot(360^@+90^@+theta))/(cosec(90^@-theta)+tan(180^@-theta))+(tan(180^@+theta)+sec(180^@-theta))/(tan(360^@+theta)-sec(theta)`
`=(cosec(90^@+theta)+cot(90^@+theta))/(cosec(90^@-theta)+tan(180^@-theta))+(tan(180^@+theta)+sec(180^@-theta))/(tan(360^@+theta)-sec(theta)`
`=(sec(theta)-tan(theta))/(sec(theta)-tan(theta))+(tan(theta)-sec(theta))/(tan(theta)-sec(theta)`
`1+1 = 2= R.H.S.`
25.

If : `sin^(2)theta+sin^(4)theta=1, "then": cot^(2)theta+cot^(4)theta=`A. -1B. 1C. 2D. 4

Answer» Correct Answer - B
26.

If : `tan theta+cot theta=2, "then" : tan^(2)theta-tan^(3)theta=`A. `cot^(3)theta-cot^(2)theta`B. 1C. `cot^(2)theta+cot^(3)theta`D. 2

Answer» Correct Answer - A
27.

Prove that`(cos(90^0+theta)sec(-theta)"tan"(180^0-theta))/(sec(360^0-theta)sin(180^0+theta)cot(90^0-theta))=-1`

Answer» `L.H.S.=(cos(90^@+theta)sec(-theta)tan(180^@-theta))/(sec(360^@-theta)sin(180^@+theta)cot(90^@-theta))`
`=((-sintheta)(sectheta)(-tantheta))/((sectheta)(-sintheta)(tantheta))=-1=R.H.S.`
28.

If : `sectheta+costheta=2 "then" : sec^(2)theta-sec^(4)theta=`A. 1B. `cos^(2)theta+cos^(4)theta`C. -1D. `cos^(4)theta-cos^(2)theta`

Answer» Correct Answer - D
29.

Show that `tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x`.A. `-x`B. `x`C. `(pi)/(4)-x`D. `(pi)/(4)+x`

Answer» Correct Answer - D
30.

Prove that:`(sin(180^0+theta)cos(90^0+theta)t a n(270^0-theta)cot(360^0-theta))/(sin(360^0-theta)cos(360^0+theta)cos e c(-theta)"sin"(270^0+theta))=1`

Answer» `L.H.S. = (sin(180^@+theta)cos(90^@+theta)tan(270^@-theta)cot(360^@-theta))/(sin(360^@-theta)cos(360^@+theta)cosec(-theta)sin(270^@+theta))`
`= (sin(theta)(-sin(theta))cot(theta)(-cot(theta)))/((-sin(theta))(cos(theta)(-cosec(theta)(-cos(theta))`
`=(sin^2thetacot^2theta)/(sinthetacosecthetacos^2theta)`
`=(sin^2theta(cos^2theta/sin^2theta))/(sintheta(1/sintheta)cos^2theta)`
`=cos^2theta/cos^2theta`
`=1 = R.H.S.`
31.

Solve the equation `(sqrt(3))/2sinx-cosx=cos^2x`

Answer» `sqrt3/2sinx=cos^2x+cosx`
`sqrt3sinx=2(cos^2x+cosx)`
`3sin^2x=4(cos^2x+cosx)^2`
`3(1-cos^2x)=4(cos^4x+2cos^3x+cos^2x)`
`4cos^4x+8cos^3x+7cos^2x-3=0`
`(cosx+1)(2cosx-1)(2cos^2x+3cosx+3)=0`
`cosx=-1,1/2`
`x=(2n+1)pi,2npi+pi/3`.
32.

If `cos(theta - alpha) , costheta , cos(theta + alpha)` are in H.P. then `costheta.sec(alpha)/2 = `

Answer» If three numbers `a,b and c` are in H.P., then,
`b = (2ac)/(a+c)`
As, `cos(theta-alpha),costheta,cos(theta+alpha)` are in H.P.,
`:. costheta = (2cos(theta-alpha)cos(theta+alpha))/(cos(theta-alpha)+cos(theta+alpha))`
`=>costheta = (2(cos^2thetacos^2alpha - sin^2thetasin^2alpha))/(2costhetacosalpha)`
`=>costheta = (cos^2thetacos^2alpha - sin^2thetasin^2alpha)/(costhetacosalpha)`
`=>costheta = (cos^2thetacos^2alpha - (1-cos^2theta)sin^2alpha)/(costhetacosalpha)`
`=>costheta = (cos^2thetacos^2alpha - sin^2alpha+sin^2alphacos^2theta)/(costhetacosalpha)`
`=>costheta = (cos^2theta(cos^2alpha + sin^2alpha)-sin^2alpha)/(costhetacosalpha)`
`=>cos^2thetacosalpha = cos^2theta-sin^2alpha`
`=>sin^2alpha = cos^2theta(1-cosalpha)`
`=>(2sin(alpha/2)cos(alpha/2))^2 = cos^2theta(2sin^2(alpha/2))`
`=>4sin^2(alpha/2)cos^2(alpha/2) = 2cos^2thetasin^2(alpha/2)`
`=>2cos^2(alpha/2) = cos^2theta`
`=>2 = cos^2thetasec^2(alpha/2)`
`=>costhetasec(alpha/2) = sqrt2`
33.

If `cosx = -sqrt15/4` and `pi/2 < x < pi`, find the value of `sinx`

Answer» `sin^x+cos^2x=1`
`sin^2x=1-cos^2x`
`=1-(sqrt15/4)^2`
`=1-15/16=1/16`
`sinx=pm1/4`
`sinx=1/4`.
34.

Prove that:`("cos"(2pi+theta)"c o s e c"(2pi+theta)"tan"(pi//2+theta))/("sec"(pi//2+theta)costheta"cot"(pi+theta))=1`

Answer» `L.H.S. = (cos(2pi+theta)cosec(2pi+theta)tan(pi/2+theta))/(sec(pi/2+theta)costhetacot(pi+theta))`
`= (cos(theta)cosec(theta)(-cottheta))/((-cosectheta)costhetacot(theta))`
`= (-costhetacosecthetacottheta)/(-costhetacosecthetacottheta)`
`=1 = R.H.S.`
35.

If `xsina+ysin2a+zsin3a=sin4a``xsinb+ysin2b+zsin3b=sin4b`,`xsinc+ysin2c+zsin3c=sin4c`,then the roots of the equation `t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi,`are(a)`sina ,sinb ,sinc`(b) `cosa ,cosb ,cosc`(b)`sin2a ,sin2b ,sin2c`(d) `cos2a ,cos2bcos2c`

Answer» `xsina+ysin2a+2sin3a=sin4a`
`xsina+y(2sinacosa)+2(3sina-4sin3a)=2sin2acos2a`
`xsina+2ysinacosa+sina2(3-4sin^2a)=4sinacosacos2a`
`a+2ycosa+2(3-4sin^2a)=4cosacos2a`
`8cos^3a-4zcos^2a-(2y+4)cosa+(z-x)=0`
`cos^3a-(z/2)cos^a-((y+2)/4)cosa+((z-x)/8)=0`
`t=cosa`
`t^3-(z/2)t^2-((y+z)/4)t+((z-x)/8)=0`
Cosa is a root.
cosb and cosc are roots.
36.

Prove that: `sin^2pi/(18)+sin^2pi/9+sin^2(7pi)/(18)+sin^2(4pi)/9=2`

Answer» `L.H.S. = sin^2(pi/18)+sin^2((pi)/9)+sin^2((7pi)/18)+sin^2((4pi)/9)`
`=sin^2 10^@+ sin^2 20^@+ sin^2 70^@+sin^2 80^@`
`=sin^2 10^@+ sin^2 80^@+ sin^2 70^@+sin^2 20^@`
`=sin^2 10^@+ sin^2 (90-10)^@+ sin^2 (90-20)^@+sin^2 20^@`
`=(sin^2 10^@+ cos^2 10^@)+ (cos^2 20^@+sin^2 20^@)`
`=1+1= 2 = R.H.S.`
37.

`cos 55^(@) + cos 65^(@) + cos 175^(@)=`A)0B)1C)`sin 18^(@)`D)`cos 36 ^(@)`

Answer» Correct Answer - A
38.

The equation `tan^4x-2sec^2x+a=0`will have at least one solution if

Answer» `tan^4x-2sec^2x +a = 0`
`=>tan^4x-2(1+tan^2x) +a = 0`
`=>tan^4x-2tan^2x -2 +a = 0`
`=>tan^4x-2tan^2x +1-3 +a = 0`
`=>(tan^2x - 1)^2 = 3-a`
To have at least one solution for this equation,
`3-a ge 0`
`=>a le 3`
So, option `c` is the correct option.
39.

Which of the following is the least?sin 3      (b)  sin 2       (c) sin 1            (d) sin 7

Answer» `r` radian
`r*180/pi` deegree
`3->3*180/pi=171.96^@`
`2->2*180/pi=114.64^@`
`1->57.33^@`
`7->401.27^@`
`sin3=sin(171.96^@)=0.139`
`sin2=sin(114.64^@)=0.9089`
`sin1=sin(57.32^@)=0.8416`
`sin7=sin(401.27^@)=0.6592`
Sin3 is least.
40.

If `("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma))/c``(a+b)/(a-b)s in^2(alpha-beta)+(b+c)/(b-c)s in^2(beta-gamma)+(c+a)/(c-a)s in^2(gamma-alpha)=0`

Answer» `x/y=(tan(theta+alpha))/(tan(theta+beta))`
`(x+y)/(x-y)=(tan(theta+alpha)+tan(theta+beta))/(tan(theta+alpha)-tan(theta+beta))`
`(x+y)/(x-y)=(sin(2theta+alpha+beta))/(sin(alpha-beta))`
`(x+y)/(x-y)sin^2(alpha-beta)=sin(2theta+alpha+beta)sin(alpha-beta)-(1)`
`=1/2(cos2(theta+beta)-cos2(theta+alpha))`
`(y+z)/(y-z)sin^2(beta-gamma)=1/2[cos2(theta+gamma)-cos2(theta+beta))-(2)`
`(z+x)/(z-x)sin^2(gamma-alpha)=1/2[cos2(theta+alpha)-cos2(theta+gamma)]-(3)`
adding equation 1,2and3
`sum(x+y)/(x-y)sin^2(alpha-beta)=0`.
41.

The general solution of the equation `sinx-3sin2x+sin3x=cosx-3cos2x+cos3x`is `(n in Z)``npi+pi/8`(b) `(npi)/2+pi/8``(-1)^n(npi)/2+pi/8`(d) `2npi+cos^(-1)2/3`

Answer» `(sinx+sin3x) - 3sin2x = (cosx+cos3x) - 3cos2x`
`=>(2sin2xcosx) - 3sin2x = (2cos2xcosx) - 3cos2x`
`=>sin2x(2cosx-3) = cosx(2cosx-3)`
`=>sin2x = cos2x`
`=>tan2x = 1`
`=>2x = npi+pi/4`
`=>x = (npi)/2+pi/8`
So, option - `(b)` is the correct option.
42.

The value of `sin50^(@)-sin70^(@)+sin10^(@)` isA. 1B. 0C. `(1)/(2)`D. 2

Answer» Correct Answer - B
Given expression, `sin50^(@)-sin70^(@)+sin10^(@)`
`" "=2cos((50^(@)+70^(@))/(2))*sin((50^(@)-70^(@))/(2))+sin10^(@)`
`" "=-2cos60^(@)sin10^(@)+sin10^(@)`
`" "=-2*(1)/(2)sin10^(@)+sin10^(@)=0`
43.

If H is the orthocentre of `Delta ABC,` then : `cos(angle AHB)=`A. `- cos A`B. `- cos B`C. `- cos C`D. `-cos D`

Answer» Correct Answer - C
44.

If : `(1+sintheta)/(1+costheta)+(1-sintheta)/(1-costheta)=2u.(csctheta-costheta),"then" : u =`A. `sintheta`B. `costheta`C. `sectheta`D. `csctheta`

Answer» Correct Answer - D
45.

The minimum of ` 3cosx +4sin x+8` isA. 5B. 9C. 7D. 3

Answer» Correct Answer - D
Given expression, `3cosx+4sinx+8 `
Let `" "` ` y=3cosx+4sinx+8`
`rArr" "y-8=3cosx+4sinx`
`therefore" "` Minimum value of `y-8=-sqrt(9+16)`
`rArr" "y-8=-5rArry=-5+8`
`therefore" "y=3`
Hence, the minimum value of `3cosx+4sinx+8` is 3.
46.

`tan^(3)x-3tanx=0`A. `npi, npipm(2pi)/(3), ninZ`B. `2npi, 2npipm(2pi)/(3), ninZ`C. `npi, npipm(pi)/(3), ninZ`D. `npi, 2npipm(pi)/(3), ninZ`

Answer» Correct Answer - C
47.

The principal solutions of `2sin^(2)x=3cosx` areA. `(pi)/(3), (5pi)/(3)`B. `(pi)/(3), (2pi)/(3)`C. `(2pi)/(3), (4pi)/(3)`D. `(4pi)/(3), (5pi)/(3)`

Answer» Correct Answer - A
48.

In ` A B C ,a , ca n dA`are given and `b_1,b_2`are two values of the third side `b`such that `b_2=2b_1dot`Then prove that `sinA=sqrt((9a^2-c^2)/(8c^2))`

Answer» `cosA=(b^2+c^2-a^2)/(2bc)`
`b^2-2bc*cosA+(c^2-a^2)=0`
`b_1+b_2=2cosA`
`b_1b_2=c^2-a^2`
`3b_1=2cosa,2b_1^2=c^2-a_2`
`2(2/3c cosA)^2=c^2-a^2`
`8c^2(1-sin^2A)=9c^2-9a^2`
`sinA=sqrt((9a^2-c^2)/(8c^2))`.
49.

If `A,B,C` are in A.P then `(sinA-sinC)/(cosC-cosA)=`A. tan AB. cot AC. tan BD. cot B

Answer» Correct Answer - D
50.

Let ABC be an acute angled triangle whose orthocentre is at H. Ifaltitude from A is produced to meet the circumcircle of triangle ABC at `D`, then prove `H D=4RcosBcosC`

Answer» `/_BHN` and `/_BDN` are congurent
`HN=ND=2RcosBcosC`
`HD=2HN`
`2*2RcosBcosC`
`4RcosBcosC`.