Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

`y^(2)=-8x`

Answer» Given equation `y^(2)=-8x`
Comparing with `y^(2)=-4ax`
`4a=8" "rArr" "a=2`
`:. "Coordinates of focus"-=(-a,0)-=(-2,0)`
Axis of parabola of directrix : `x-a=0" "rArr" "a-2=0`
Length of latus rectum `=4a=4xx2=8`
52.

`x^(2)=-16y`

Answer» Given equation `x^(2)=-16y`
Comparing with `x^(2)=-4ay`,
`4a=16" "rArr" "a=4`
`:. "Coordinates of focus"-=(0,-a)-=(0,-4)`
Axis of parabola : x=0
Equation of directrix : y-a=0
`rArr" "y-4=0`
Length of latus rectum `=4a=4xx4xx=16`
53.

Focus (0,-3), directrix y=3

Answer» Focus `S-=(0,-3)` and P(x,y) be a veriable point on parabola.
`:.` Now, distance of P from focus S
= perpendicular distance from P to the directrix
`rArr" "sqrt((x-0)^(2)+(y+3)^(2)-y-3)`
`rArr" "x^(2)+(y+3)^(2)=(y-3)^(2)`
`rArr=-12y`
54.

`y^(2)=10x`

Answer» Given equation `y^(2)=10x`
Comparing with `y^(2)=4ax`
`4a=10" "rArr" "a=(5)/(2)`
`:. "Coordinates of focus"=(a,0)=((5)/(2),0)`
Axis of parabola : y=0
Equation of directrix : x+a=0
`rArr""x+(5)/(2)=0" "rArr2x+5=0`
Length of latus rectum `=4a=4xx(5)/(2)=10`
55.

Focus (6,0), directrix x=-6

Answer» Focus `S-=(6,0)`
and directrix `x=-6" "rArr" "x+6=0`
Let P(x,y) be a variable point on the parabola.
`:.` Distance of from focus S
= Perpendicular distance from P to the directrix.
`rArrsqrt((x-6)^(2)+(y-0)^(2)=x+6)`
`rArr" "(x-6)^(2)+y^(2)=(x+6)^(2)`
`rArr" "y^(2)=24x`
56.

The eccentricity of the curve `x^(2)-4x+4y^(2)=12` isA. `sqrt(3)`B. `(1)/(sqrt(3))`C. `(2)/(3)`D. None of these.

Answer» Correct Answer - D
57.

The co-ordinates of a focus of an ellipse is (4,0) and its eccentricity is `(4)/(5)` Its equation is :A. `25x^(2)+9y^(2)=225`B. `9x^(2)+25y^(2)=225`C. `16x^(2)+25y^(2)=400`D. `25x^(2)+16y^(2)=400`.

Answer» Correct Answer - B
58.

`x^(2)=-9y`

Answer» Given equation `x^(2)=-9y`
Comparing with `x^(2)=-4ay`,
`4a=9" "rArr" "a=(9)/(4)`
Coordinates of focus `-=(0,-a)-=(0,-(9)/(4))`
Axis of parabola : x=0
Equation of directrix : y-a=0
`rArr" "y-(9)/(4)=0`
`rArr" "4y-9=0`
Length of latus rectum =4a=9
59.

Find the centre and radius of the circle `3x^(2) 3y^(2) - 6x +9y - 8 =0`.

Answer» `3x^(2)+3y^(2)-69y-8=0`
`rArrx^(2)+y^(2)-2x+3y-(8)/(3)=0`
Comparing with the general equation of the circle `x^(2)+y^(2) +2gx +c =0`
`2g=-2,2f=3 and c=-(8)/(3)`
`rArrg=-1,f=(3)/(2)and c=-(8)/(3)`
`:.` Centre of circle `= (-g,-f)`
`= (1,-(3)/(2))`
And radius of circle
`=sqrt(g^(2)+f^(2)-c)=sqrt(1+(9)/(4)-(-(8)/(3)))`
`=sqrt(1+(9)/(4)+(8)/(3))=sqrt((12+27+32)/(12))`
`= sqrt((71)/(12))=(sqrt(71))/(2sqrt(3))` units.
60.

Find the diameter of the circle `2x^(2)+2y^(2)-6x-9=0`.

Answer» Correct Answer - `3sqrt(3)`
61.

Find the equation of a circle whose centre is (2, 3) and radius is 5.

Answer» Here centre `(h,k) = (2,3)`, and radius `a=5`
`:.` Equation of circle
`(x-h)^(2)+(y-k)^(2)=a^(2)`
`rArr (x-2)^(2) + (y-3)^(2)=5^(2)`
`rArr x^(2)-4x+4 y^(2)-6y +9 = 25`
`rArr x^(2)+y^(2)-4x -6y - 12=0`
62.

Find the centre and radius of the circle `(x-2)^(2)+(y+5)^(2)=49`

Answer» `(x-2)^(2)+(y+5)^(2)=49`
`rArr(x-2)^(2)+(y-5)^(2)=7^(2)`
Comparing with the equation of circle
`(x-h)^(2)+(y-k)^(2)-a^(2)`
`h=2,k=-5,a=7`
`:.` Centre of circle `-(h,k)=(2,-5)`
and radius `a=7`.
63.

Find the centre and radius of the circle `(x+2)^(2)+(y+3)^(2)=5`

Answer» `(x+2)^(2)+(y+3)^(2)=5`
`rArr(x+2)^(2)+(y+3)^(2)=(sqrt(5))^(2)`
Comparing with the equation of the circle
`(x-h)^(2)+(y-k)^(2)=a^(2)`
`h=-2,k=-3,a=sqrt(5)`
`:.` Centre of circle `=(h,k) =(-2,-3)`, and radius `a= sqrt(5)`.
64.

Find the equation of the ellipse whose foci are `(pm3,0)` and it passes through the point `(2,sqrt(7))`.

Answer» Correct Answer - `x^(2)+2y^(2)=18`
65.

Find the equation of the ellipse that satisfies the given conditions: Vertices `(pm5,0)`, foci `(pm4,0)`

Answer» Vertices `-=(pm5,0)`, foci `(pm4,0)`
`because` The y-coordinate of each of vertices and foci are zero.
`:.` The major axis of the ellipse will be along x-axis.
Now, a=5 and ae=4
and `b^(2)=a^(2)(1-e^(2))`
`=a^(2)-a^(2)e^(2)`
`=5^(2)-4^(2)=9`
Equation of ellipse
`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 rArr(x^(2))/(25)+(y^(2))/(9)=1`
66.

Find the equation of a circle, the co-ordinates of the ends of whose diameter are `(-1,-3) and (2,5)` Now the equation of circle `(x-x_(1))(x-x_(2))+(y-y_(1))(y-y_(2))=0` `rArr(x+1)(x-2)+(y+3)(y-5)=0` `rArr x^(2)-x-2+ y^(2)-2y-15=0` `rArr x^(2)+y^(2)-x-2y-17=0` We is the required equation.

Answer» Here `(x_(1),y_(1))=(-1,-3) and (x_(2),y_(2))=(2,5)`
Now the equation of circle
`(x-x_(1))(x-x_(2))+(y-y_(1))(y-y_(2))=0`
`rArr(x+1)(x-2)+(y+3)(y-5)=0`
`rArr x^(2)-x-2+ y^(2)-2y-15=0`
`rArr x^(2)+y^(2)-x-2y-17=0`
which is the required equation.
67.

Find the equation of the ellipse that satisfies the given conditions:Foci `(pm3,0),a=4`

Answer» Here, `a=4rArra^(2)=16`
Foci `-=(pm3,0)` are on x-axis
`:.` The major axis will be along x-axis.
Now, ae=3
and `b^(2)=a^(2)(1-e^(2))`
`=a^(2)-a^(2)e^(2)=4^(2)-3^(2)=7`
`:.` Equation of ellipse
`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1rArr(x^(2))/(16)+(y^(2))/(7)=1`
68.

Find the equation of the ellipse whose vertices are `(+-13 ,0)`and foci are `(+-5,0)`.

Answer» The vertices and foci of the ellipse are on x-axis, therefore
let the equation of ellipse be `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` where `agtb` Now given that, vertices `=(pma,0)=(pm13,0)`
a=13
and `foci=(pmae,0)=(pm5,0)`
`rArr" "ae=5`
`rArr" "13e=5`
`rArr" "e=(5)/(13)`
Now `b^(2)=a^(2)(1-e^(2))`
`=169(1-(25)/(169))=144`
`:.` Equation of ellipse
`(x^(2))/(169)+(y^(2))/(144)=1`.
69.

Find the equation of the ellipse that satisfies the given conditions:Length of minor axis 16, foci `(0pm6)`.

Answer» Here, foci `-=(0,pm6)` are on y-axis.
`:.` Major axis is along y-axis.
Now be = 6
Given, minor axis 2b = 16
`rArr" "b=8" "rArr" "b^(2)=64`
and `a^(2)=b^(2)(1-e^(2))`
`rArr" "a^(2)=b^(2)-b^(2)e^(2)`
`rArr" "a^(2)=64-(6)^(2)=28`
Now, equation of ellipse
`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1rArr(x^(2))/(28)+(y^(2))/(64)=1`
70.

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse : `(x^(2))/(16)+(y^(2))/(9)=1`

Answer» `(x^(2))/(16)+(y^(2))/(9)=1`
`:.` Comparing with `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
`:.a^(2)=16" "rArr" "a=4`
`b^(2)=9" "rArr" "b=3`
`:." "agtb`.
The major aixs of the ellipse will be along x-axis.
Vertices `-=(pma,0)-=(pm4,0)`
Major axis = ab = 2(3) = 6
Eccentricity `e=sqrt(1-(b^(2))/(a^(2)))=sqrt(1-(1)/(16))=(sqrt(7))/(4)`
coordinates of foci `-=(pmae,0)-=(pmsqrt(7),0)`
Latus rectum `=(2b^(2))/(a)=(2xx9)/(4)=(9)/(2)`
71.

Find th equation of the hyperbola eccentricity is 2 and the distance between foci 16.

Answer» Here e 2
Distance between foci =2ae=16
`rArr" "2a(2)=16`
`rArr" "a=4`
and `b^(2)=a^(2)(e^(2)-1)`
`=16(4-1)=48`
`:.` Equation of hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`
`rArr" "(x^(2))/(16)-(y^(2))/(48)=1`
`rArr" "3x^(2)-y^(2)=48`.
72.

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse `(x^(2))/(4)+(y^(2))/(25)=1`

Answer» `(x^(2))/(4)+(y^(2))/(25)=1`
Comparing with `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
`:.a^(2)=4andb^(2)=25" "rArr" "a=2andb=5`
Here, `altb`.
`:.` The major axis of the ellipse will be along y-axis
Vertices `-=(0,pmb)-=(0,pm5)`
Eccentricity `e=sqrt(1-(a^(2))/(b^(2)))`
`=sqrt(1-(4)/(25))=sqrt((21)/(25))=(sqrt(21))/(5)`
Coordinates of foci `-=(0,pmbe)`
`-=(0,pmxx(sqrt(21))/(5))-=(0,pmsqrt(21))`
Major axis `=2b=2xx5=10`
Minor axis `=2a=2xx2=4`
Length of latus rectum `=(2a^(2))/(b)=(2xx4)/(5)=(8)/(5)`.
73.

Find the equation of the hyperbola where foci are `(0,+-12)`and the length of the latus rectum is 36.

Answer» The focus of the hyperbola lies on y-axis, terefore, let the equation of the hyperbola is
`(y^(2))/(b^(2))-(x^(2))/(a^(2))=1`
Co-ordinates of foci `=(0,pmbe)`
be=12
and latus rectum `(2a^(2))/(b)=36`
`rArr" "a^(2)=18b`
`rArr" "b^(2)(e^(2)-1)=18b`
`rArr" "144-b^(2)=18b`
`rArr""b^(2)+18b-144=0`
`rArr" "(b+24)(b-6)=0`
`rArr" "b=-24orb=6`
b=-24
(which is not possible) `:.` b=6
Therefore, equation of hyerbola
`(y^(2))/(36)-(x^(2))/(108)=1`
`rArr" "3y^(2)-x^(2)=108`.
74.

`(x^(2))/(36)+(y^(2))/(16)=1`

Answer» Equation of ellipse : `(x^(2))/(36)+(y^(2))/(16)=1`
Comparing with `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
`:." "a^(2)=36andb_(2)=16`
`rArr" "a=6andb=4`
`"Here",agtb`.
`:.` Major axis of the ellipse will along x-axis.
Vertices `-=(pma,0)-=(pm6,0)`
Eccentricity `e=sqrt(1-(b^(2))/(a^(2)))=sqrt(1-(16)/(36))=sqrt((20)/(36))`
`rArr" "e=(sqrt(5))/(3)`
coordinates of foci `-=(pmae,0)`
`-=(pm6xx(sqrt(5))/(3),0)-=(pm2sqrt(5,)0)`
Major axis `=2a2xx6=12`
Minor axis `=2b=2xx4=8`
Length of latus rectum `=(2b^(2))/(a)=(2xx16)/(6)=(16)/(3)`
75.

Vertex (0,0), passing through (5,2) and symmetric with respect to y-axis

Answer» Let vertex `-=(0,0)` and equation of parabola symmetric to y-axis be `x^(2)=4ay`
It passes through the point (5,2).
`:." "25=4a(2)`
`rArr" "4a=(25)/(2)`
Therefore, equation of parabola is `x^(2)=(25)/(2)y`.
76.

Vertex (0, 0) passing through (2,3) and axis is along x-axis.

Answer» Vertex = (0,0) and axis is along x-axis.
`:.` Let equation of parabola is `y^(2)=4ax`.
Point (2,3) lies on the parabola.
`:." "(3)^(2)=4a(2)`
`rArr" "4a=(9)/(2)`
Now, equation of parabola is
`y^(2)=(9x)/(2)" "rArr" "2y^(2)=9x`
77.

Find the equation of circumcircle of the triangle whose sides are `2x +y = 4,x + y = 6 and x +2y=5`.

Answer» First we will find the co-ordinates of the vertices of a triangle
`:.` On solving two-two equations, we get the vertices as `(-2,8),(7,-1) and (1,2)`
Let the equation of circle be
`x^(2)+y^(2)+2gx+2fy+c=0`....(1)
This circle passes through the point `(-2,8)`
`4+64 -4g +16f + c=0`
`rArr -4g +16f +c = -68` .....(2)
This circle passes through the point `(7,-1)`
`49 +1 +14g-2f +c=0`
`rArr 14g - 2f +c = -50` ....(3)
This circle passes through the point (1, 2)
`1+4+2g+4f +c=0`
`rArr2g+4f+c=-5`....(4)
From eqs. (2),(3) and (4)
`g=-(17)/(2),f=-(19)/(2),c=50`
From eq. (1), equation of circle
`x^(2)+y^(2)-17x-19y+50=0`.
78.

Find the equation of ellipse whose vertices are `(0,pm13)` and foci `(0,pm5)`.

Answer» The vertices and foci of ellipse are on y-axis.
`:." "bgta`
Now co-ordinates of the vertices = `0,pmb)` and co-ordinates of foci `=(0,pmbe)`
`:.` b=13 and be=5
`:." "e=(5)/(13)`
and `a^(2)=b^(2)(1-e^(2))`
`=169(1-(25)/(169))=144`
`:.` Therefore, the equation of ellipse
`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
`rArr" "(x^(2))/(144)+(y^(2))/(169)=1`.
79.

Find the equation of the ellipse that satisfies the given conditions:Length of major axis 26, foci `(pm5,0)`

Answer» Here, foci `-=(pm5,0)`, which lie on x-axis.
`:.` Given, major axis 2a=26
`rArr" "a=13" "a^(2)=169`
and `b^(2)=a^(2)(1-e^(2))`
`=a^(2)-a^(2)e^(2)`
`=169-(5)^(2)=144`
Now, equation of ellipse
`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1rArr(x^(2))/(169)+(y^(2))/(144)=1`
80.

Find the equation of the ellipse that satisfies the given conditions: Vertices `(0,pm13)`, foci `(0,pm5)`

Answer» The foci and vertices of ellipse are on y-axis.
`:. bgta`
Coordinates of the vertices of ellipse `=(0,pmb)` and coordinates of foci `=(0,pmbe)` shows that b=13 and be = 5.
`:." "e=(5)/(13)`
`and" "a^(2)=b^(2)(1-e^(2))`
`=169(1-(25)/(169))=144`
`:.` Equation of ellipse
`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1rArr(x^(2))/(144)+(y^(2))/(169)=1`
81.

(i) Find the point at which the circle `x^(2)+y^(2)-5x+2y+6=0`, meets the X-axis.

Answer» Correct Answer - (2,0) , (3,0)
82.

If `t` is the parameter for one end of a focal chord of the parabola `y^2 =4ax,` then its length is :A. `a(t+(1)/(t))`B. `a(t-(1)/(t))`C. `a(t+(1)/(t))^(2)`D. `a(t-(1)/(t))^(2)`

Answer» Correct Answer - C
83.

`x^(2)=6y`

Answer» Given equation : `x^(2)=6y`
Comparing with `x^(2)=4ay`
`4a=6rArra=(3)/(2)`
`:. "Coordinates of focus" -=(0,a)-=(0,(3)/(2))`
Axis of parabola : : x=0
Equation of directrix :y+a=0
`rArry+(3)/(2)=0" "rArr" "2y+3=0`
Length of latus rectum, 4a
`=4xx(3)/(2)=6`
84.

Prove that the circle `x^(2)+y^(2)+2x+2y+1=0` and circle `x^(2)+y^(2)-4x-6y-3=0` touch each other.

Answer» For first circle `x^(2)+y^(2)+2x+2y+1=0`
`2g_(1)=2,2f_(1)=2,c_(1)=1`
`rArrg_(1)=1,f_(1)=1,c_(1)=1`
`:.` Centre `= P_(1)(-g_(1),-f_(1))=P_(1)(-1,-1)`
and radius `=r_(1)=sqrt(g_(1)^(2)+f_(1)^(2)-c_(1))`
`=sqrt(1+1-1)=1` units
For second circle `x^(2)+y^(2)-4x-6y-3=0`
`2g_(2)=-4,2f_(2)=-6,c_(2)=-3`
`rArrg_(2)=-2,f_(2)=-3,c_(2)=-3`
`:.` Centre `= P_(2)(-g_(2),-f_(2))=P_(2)(2,3)`
and radius `r_(2)=sqrt(g_(2)^(2)+f_(2)^(2)-c_(2))`
`=sqrt(4+9+3)=4` units
Now the distance between the centre of circles
`P_(1)P_(2)=sqrt((2+1)^(2)+(3+1)^(2))`
`=sqrt(9+16)=sqrt(25)=5`
`=r_(1)+r_(2)`
Therefore, two circles touch each other.
85.

(i) Find the equation of a circle concentric with the circle `x^(2)+y^(2)-8x+6y-10=0` and passes through the point (-2,3). (ii) Find the equation of circle concentric with the circle `x^(2)+y^(2)-4x-8x-6=0` and whose radius is three times the radius of this circle.

Answer» Correct Answer - (i) `x^(2)+y^(2)-8x+6y-47=0` , (ii) `x^(2)+y^(2)-4x-8y-214=0`
86.

Find the equation of the hyperbola whose foci are `(0,pm4) and latus rectum is 12.

Answer» Correct Answer - `3y^(2)-x^(2)=12`
87.

Find the equation of Hyperbola satisfying the following conditions:Foci `(pm3sqrt(5),0)` the latus rectum is of length 8.

Answer» Here, `ae=3sqrt(5)`
and `(2b^(2))/(a)=8`
`rArrb^(2)=4a`
`rArra^(2)(e^(2)-1)=4a`
`rArra^(2)e^(2)-1a^(2)=4a`
`rArr45-a^(2)=4a`
`rArra^(2)+4a-45=0`
`rArr(a+9)(a-5)=0`
`rArra=-9anda=5`
But `a!=-9`
`:." "a=5`
`and" "b^(2)=4a=4xx5=20`
Therefore, equation of hyperbola
`(x^(2))/(25)-(y^(2))/(20)=1rArr4x^(2)-5y^(2)=100`
88.

Find the equation of Hyperbola satisfying the following conditions: Foci `(pm4,0)`, the latus rectum is of length 12.

Answer» Foci `(pm4,0)`, lie on x-axis.
`:." "ae=4rArra^(2)e^(2)=16` . . . (1)
and latus rectum `=(2b^(2))/(a)=12`
`rArr" "b^(2)=6a` . . .(2)
`rArra^(2)(e^(2)-1)=6a`
`rArra^(2)e^(2)-a^(2)=6a`
`rArr" "16-a^(2)=6a` [From equation (1)]
`rArr" "a^(2)+6a-16=0`
`rArr" "(a+8)(a-2)=0`
`rArr" "a=-8ora=2`
But a cannot be negative.
`:.a=2rArra^(2)=4`
From equation (2)
`b^(2)=6xx2=12`
Now, equation of hyperbola
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=1rArr(x^(2))/(4)-(y^(2))/(12)=1`
89.

Find the equations of the hyperbola satisfying the given conditions :Foci `(0,+-13)`, the conjugate axis is of length 24.

Answer» Here, foci `(0,pm13)` lie on y-axis
`:." "be=13rArrb^(2)e^(2)=169`
and conjugate axis 2a=24
`:." "a=12rArra^(2)=144`
Now, `a^(2)=b^(2)(e^(2)-1)`
`rArr" "a^(2)=b^(2)e^(2)-b^(2)`
`rArr" "144=169-b^(2)`
`rArr" "b^(2)=25`
`:.` Equation of hyperbola
`(y^(2))/(b^(2))-(x^(2))/(a^(2))=1rArr(y^(2))/(25)-(x^(2))/(144)=1`
90.

Find the equation of Hyperbola satisfying the following conditions: Foci `(0,pmsqrt(10))`, passing through (2,3).

Answer» Let equation of hyperbola is
`(y^(2))/(b^(2))-(x^(2))/(a^(2))=1` . . . (1) `(because` foci lie on y-axis)
Coordinates of foci `=(0,pmsqrt(10))`
`rArr" "be=sqrt(10)`
`rArr" "b^(2)e^(2)=10`
`rArra^(2)+b^(2)=10` . . .(2)
Hyperbola passes through the point (2,3).
Therefore from equation (1)
`(9)/(b^(2))-(4)/(a^(2))=1`
`(9)/(b^(2))-(4)/(10-b^(2))=1` [From equation (2)]
`rArr(90-9b^(2)-ab^(2))/(b^(2)(10-b^(2)))`
`rArr""90-13b^(2)=10b^(2)-b^(4)`
`rArr""b^(4)-23b^(2)+90=0`
`(b^(2)-5)(b^(2)-18)=0`
`rArr""b^(2)=5orb^(2)=18`
From equation (2)
`b^(2)=5rArra^(2)=5`
`b^(2)=18rArra^(2)=-8` which is not possible
`:." "b^(2)=a^(2)=5`
and equation of hyperbola
`(y^(2))/(5)-(x^(2))/(5)=1rArry^(2)-x^(2)=5`
91.

Find the equation of the ellipse whose foci are `(0,pm1)` and eccentricity is `(1)/(2)`.

Answer» Correct Answer - `(x^(2))/(3)+(y^(2))/(4)=1`