InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Find the rate of change of the area of a circular disc with respect to its circumference when the radius is 3 cm. |
|
Answer» As we know that area of a circular disc = πr2 and circumference of a circular disc = 2πr Here r = radius of circular disc To find dA/dC here A = area of circular disc and c = circumference of the circular disk. dA/dC = (dA/dr) x (dr/dC) dA/dr = 2πr dC/dr = 2π dA/dC = 2πr/2π = r (dA/dr)at x = 3 = 3cm |
|
| 2. |
Find the derivative of (sec x − 1) (sec x + 1). |
|
Answer» Let, y = (sec x − 1) (sec x + 1) = sec2x − 1 = tan2x ∴ \(\frac{dy}{dy}=\frac{d}{dx}\,(tan^2\,x)\) \(=2\,tan\,x\frac{d}{dx}\,tan\,x\) \(=2\,tan\,x.sec^2\,x.\) |
|
| 3. |
For the curve f(x) = (x2 + 6x − 5)(1 − x), find the slope of the tangent at x = 3. |
|
Answer» Given, f(x) = (x2 + 6x − 5)(1 − x) = x2 + 6x − 5−x3 − 6x2 + 5x = -x3 + 5x2 +11x - 5 \(∴ f'(x)=\frac{d}{dx}(-x^3-5x^2+11x+5)\) = −3x2 − 5.2x + 11.1 − 0 = −3x2 − 10x + 11 ∴ At x = 3, f'(x) = 3.32 − 10.3 + 11 = −27 − 30 + 11 = −57 + 11 = −46 ∴ Slope of the tangent to f(x) at x = 3 is – 46. |
|
| 4. |
Differentiate \(\sqrt\frac{1-cos\,2\,x}{1+cos\,2\,x}\) with respect of x. |
|
Answer» Let, \(f(x)=\sqrt\frac{1-cos\,2x}{1+cos\,2x}\) \(=\sqrt\frac{(1-cos\,2x)(1+cos\,2x)}{(1+cos\,2x)^2}\) \(=\sqrt\frac{(1-cos^2\,2x)}{(1+cos\,2x)^2}\) \(=\sqrt\frac{sin^2\,2x}{(1+cos\,2x)^2}\) \(=\sqrt\frac{sin^2\,2x}{(1+cos\,2x)^2}\) \(=\frac{sin\,2x}{1+cos\,2x}\) \(∴ f'(x)=\frac{d}{dx}\{\frac{sin2x}{1+cos2x}\}\) \(=\frac{(1+cos2x)\frac{d}{dx}(sin2x)-sin2x\frac{d}{dx}(1+cos2x)}{(1+cos2x)^2}\) \(=\frac{(1+cos2x)(2cos2x)-sin2x(-2sin2x)}{(1+cos2x)^2}\) \(=\frac{2cos2x+2cos^22x+2sin^22x}{(1+cos2x)^2}\) \(=\frac{2(1+cos2x)}{(1+cos2x)^2}\) \(=\frac{2}{1+cos2x}\) \(=\frac{2}{2\,cos^2x}\) \(=sec^2x.\) Alternative method. \(f(x)=\sqrt\frac{1-cos\,2x}{1+cos\,2x}\) \(f(x)=\sqrt\frac{2sin^2x}{2cos^2x}\) \(f(x)=tan\,x\) \(f'(x)=\frac{d}{dx}(tan\,x)\) \(=\sec^2x.\) |
|
| 5. |
If, \(y=\sqrt x+\frac{1}{\sqrt x}\) prove that :- \(2x.\frac{dy}{dx}+y=2\sqrt x.\) |
|
Answer» Given, \(y=\sqrt x+\frac{1}{\sqrt{x}}\) ⇒ \(\frac{dy}{dx}=\frac{d}{dx}(\sqrt x+\frac{1}{\sqrt x})\) \(=\frac{1}{2}x^\frac{1}{2}+(-\frac{1}{2})x^\frac{-3}{2}\) \(=\frac{1}{2}.\frac{1}{\sqrt{x}}-\frac{1}{2x\sqrt{x}}\) ∴ L.H.S = \(2x\frac{dy}{dx}+y\) \(=2x(\frac{1}{2x\sqrt x}-\frac{1}{2x\sqrt x})+\sqrt{x}+\frac{1}{\sqrt{x}}\) \(=\sqrt{x}-\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{x}}\) \(=2\sqrt{x}\) = R.H.S |
|
| 6. |
If `d/(dx)((1+x^2+x^4)/(1+x+x^2))=a x+b ,`then the value of a and b are respectively.2 and 1 (b)`2a n d-1`(d) None of theseA. `-1`B. 1C. 2D. 4 |
|
Answer» Correct Answer - A Given `(d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))` `=(d)/(dx)[(1+x+x^(2)+x^(4)-x)/(1+x+x^(2))]` `=(d)/(dx)[1+(x^(4)-x)/(x^(2)+x+1)]` `=(d)/(dx)[1+(x(x^(3)-1))/(x^(2)+x+1)]` `=(d)/(dx)[1+x(x-1)]` `=(d)/(dx)[1+x^(2)-x]-2x - 1" "...(i)` Now comparing equation (i) with AX + B, we get A = 2 and B = -1. |
|
| 7. |
Find the derivative of sin 2x by first principle. |
|
Answer» Let f(x) = sin 2x ∴ By first principle \(f'(x)= \lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \(= \lim\limits_{h \to 0}\frac{sin2(x+h)-sin2x}{h}\) \(= \lim\limits_{h \to 0}\frac{2cos\frac{2(x+h)+2x}{2}sin\frac{2(x+h)-2x}{2}}{h}\) = \( \lim\limits_{h \to 0}\frac{2cos(h+2x)sinh}{h}\) = 2\(\lim\limits_{h \to0 }cos(h+2x)\lim\limits_{h \to 0}(\frac{sinh}{h})\) = 2∙ cos 2x ∙1 = 2 cos 2x.. |
|
| 8. |
Find the derivative of f(x) = x cos x. |
|
Answer» Given, f(x) = x cos x \(f(x)=\frac{d}{dx}(xcosx)\) \(=cosx\frac{d}{dx}x +x\frac{d}{dx}cosx\) = cos x∙ 1 + x ∙(− sin x) = cos x − x sin x |
|
| 9. |
Differentiate with respect to x : exsin x + xncos x |
|
Answer» f(x) = ex sin x +xn cos x ∴ f'(x) = \(\frac{d}{dx}\){ex sin x + xn cos x} = \(\frac{d}{dx}\)(exsin x)+\(\frac{d}{dx}\)(xncos x) = sinx\(\frac{d}{dx}\)ex + ex\(\frac{d}{dx}\)sinx + cosx\(\frac{d}{dx}\)xn + xn\(\frac{d}{dx}\)cosx = sin.ex + ex . cos x + cos x ∙ nxn−1 + xn . (− sin x) = ex (sin x + cos x) + xn−1 [ncos x − xsin x] |
|
| 10. |
Differentiate 3x+ x3 + 4x − 5 with respect to x. |
|
Answer» Let, f(x) = 3x + x3 + 4x − 5 ∴ \(\frac{d}{dx}f(x)=\frac{d}{dx}f(x)\) ⟹ \(f'(x)=\frac{d}{dx}(3^x+x^3+4x-5)\) = 3x loge 3 + 3x2 + 4 ∙1 − 0 = 3x loge 3 + 3x2 + 4. |
|
| 11. |
Differentiate `tan^(-1)((sqrt(1+x^2-1))/x)`withrespect to `tan^(-1)x ,`when `x!=0.` |
|
Answer» Correct Answer - B Let `y = tan^(-1)[(sqrt(1+x^(2))-1)/(x)]and u = tan^(-1)x` Put `x = tan theta rArr theta = tan^(-1)x` Then, `y = tan^(-1)[(sqrt(1+tan^(2)theta)-1)/(tan theta)]` `=tan^(-1)[(sqrt(sec^(2)theta)-1)/(tan theta)]` `=tan^(-1)[(sec theta-1)/(tan theta)]=tan^(-1)[((1)/(cos theta)-1)/((sin theta)/(cos theta))]` `=tan^(-1)[(1-cos theta)/(sin theta)]=tan^(-1)[("2 sin"^(2)(theta)/(2))/("2 sin"(theta)/(2),"cos"(theta)/(2))]" "({:(because 1-cos theta = "2 sin"^(2)(theta)/(2)and),(" "sin x = "2 sin"(x)/(2)."cos"(x)/(2)):})` `=tan^(-1)["tan"(theta)/(2)]` `rArr y = (theta)/(2) rArr y = (tan^(-1)x)/(2)" "[because theta = tan^(-1)x]` `rArr y = (u)/(2)` `(dy)/(du)=(1)/(2)` `therefore` Option (b) is correct. |
|
| 12. |
If`y=(cosx)^(cosx)^(cosx)^^((((oo)))),p rov et h a t(dy)/(dx)=-(y^2tanx)/((1-ylogcosx)dot`A. `-(y^(2)tanx)/(1-y" In "(cosx))`B. `(y^(2)tanx)/(1+y" In "(cosx))`C. `(y^(2)tanx)/(1-y" In "(sinx))`D. `(y^(2)sinx)/(1+y" In "(sinx))` |
| Answer» Correct Answer - A | |
| 13. |
The derivative of `ln(x+sinx)` with respect to `(x+cosx)` isA. `(1+cosx)/((x+sinx)(1-sinx))`B. `(1-cosx)/((x+sinx)(1+sinx))`C. `(1-cosx)/((x-sinx)(1+cosx))`D. `(1+cosx)/((x-sinx)(1-cosx))` |
|
Answer» Correct Answer - A In(x + sin x) = y `(dy)/(dx)=(1)/((x + sin x))(1 + cos x)` `=((1 + cos x))/((x + sin x))` `x + cos x = z`(say) `(dz)/(dx)=(1-sin x)` derivative of In (x + sin x) w.r.t (x + cos x) is `(dy)/(dz)=((1+cos x))/((x + sin x)(1-sin x))` |
|
| 14. |
If `x=logt and y=t^(2)-1`, then what is `(d^(2)y)/(dx^(2))` at t = 1 equal to?A. 2B. 3C. `-4`D. 4 |
|
Answer» Correct Answer - D Let `x=log t and y=t^(2)-1` `x=logt` `rArr 2x=2log t` `rArr 2x=log t^(2)` `rArr 2x=log (y+1)rArr e^(2x)=y+1` On differentiating w.r.t. x, twice, we get `e^(2x)2=(dy)/(dx) rArr 4e^(2x)=(d^(2)y)/(dx^(2))` At t = 1, x = 0 `(d^(2)y)/(dx^(2))=4e^(2(0))=4" "(because e^(0)=1)` |
|
| 15. |
If `y=sin^(-1)((4x)/(1+4x^(2)))`, then what is `(dy)/(dx)` equal to?A. `(1)/(1+4x^(2))`B. `-(1)/(1+4x^(2))`C. `(4)/(1+4x^(2))`D. `(4x)/(1+4x^(2))` |
|
Answer» Correct Answer - C Let` y=sin^(-1)((4x)/(1+4x^(2)))=sin^(-1)((2.2x)/(1+(2x)^(2)))` Put `2x=tan theta rArr theta =tan^(-1)2x` `therefore y=sin^(-1)((2tan theta)/(1+tan^(2)theta))` `=sin^(-1)(sin2 theta)=2 theta(because sin 2 theta=(2tan theta)/(1+tan^(2)theta))` `=2tan^(-1)2x` On differentiating w.r.t. x, we get `(dy)/(dx)=(2)/(1+(2x)^(2)).2=(4)/(1+4x^(2))` ALTERNATESOLUTION `y=sin^(-1)((4x)/(1+4x^(2)))` `(dy)/(dx)=(1)/(sqrt(1-((4x)/(1+4x^(2)))^(2)))xx((1+4x^(2))4-4x(8x))/((1+4x^(2))^(2))` `=(4-16x^(2))/((1+4x^(2))sqrt(1-8x^(2)+16x^(4)))` `=(4-16x^(2))/((1+4x^(2))(1-4x^(2)))` `=((2)^(2)-(4x)^(2))/((1+4x^(2))(1-2x)(1+2x))=((2+4x)2)/((1+4x^(2))(1+2x))=(4)/(1+4x^(2))` |
|
| 16. |
If `x+y=t-(1)/(t),x^(2)+y^(2)=t^(2)+(1)/(t^(2))`, what is `(dy)/(dx)` equal to?A. `(1)/(x)`B. `-(1)/(x)`C. `(1)/(x^(2))`D. `-(1)/(x^(2))` |
|
Answer» Correct Answer - C Given that `x+y=t-(1)/(t) and x^(2)+y^(2)=t^(2)+(1)/(t^(2))` `therefore" "(x+y)^(2)=x^(2)+y^(2)+2xy` `rArr" "(t-(1)/(t))^(2)=(t^(2)+(1)/(t^(2)))+2xy` `-2=2xyrArrxy=-1` `(x-y)^(2)=(x+y)^(2)-4xy` `=(t-(1)/(t))^(2)-4xx-1=t^(2)+(1)/(t^(2))-2+4=(t+(1)/(t))^(2)` `x-y=t+(1)/(t)` `rArr" "x=t, u=-(1)/(t)` `xy=-1` `rArr" "x(dy)/(dx)+y=0` `rArr" "(dy)/(dx)=-(y)/(x)=(1)/(t^(2))=(1)/(x^(2))` |
|
| 17. |
`xsqrt(1+y)+ysqrt(1+x)=0` then `(dy)/(dx)=`A. `-(1)/(1+x)`B. `-(1)/((1+x)^(2))`C. `(1)/((1+x)^(2))`D. `(sqrtx)/(sqrt(1+x))` |
|
Answer» Correct Answer - B Given equation `xsqrt(1+y)+ysqrt(1+x)=0` Can be written as : `xsqrt(1+y)=-ysqrt(1+x)` Squaring both sides, we get `x^(2)(1+y)=y^(2)(1+x)` `rArr" "x^(2)+x^(2)y=y^(2)+y^(2)x" "rArr" "x^(2)-y^(2)=y^(2)x-x^(2)y` `rArr" "(x-y)(x+y)=-xy(x-y)` `rArr" "x+y=-xy" "rArr" "y(1+x)=-x` `y=(-x)/(1+x)` which is in explicit form. Differentiating w.r.t. x, we get `(dy)/(dx)=((1+x)(-1)+x(1))/((1+x)^(2))=(-1)/((1+x)^(2))` |
|
| 18. |
If `y=f(x),p=(dy)/(dx) and q=(d^(2)y)/(dx^(2)),` then what is `(d^(2)x)/(dy^(2))` equal to ?A. `-(q)/(p^(2))`B. `-(q)/(p^(3))`C. `(1)/(q)`D. `(q)/(p^(2))` |
|
Answer» Correct Answer - B As given, `y=f(x), p=(dy)/(dx) and q=(d^(2)y)/(dx^(2))` `(dx)/(dy)=(1)/(p)rArr(d^(2)x)/(dy^(2))=(-1)/(p^(2)).(dp)/(dy)` `(dp)/(dx)=(d)/(dx)((dy)/(dx))=(d^(2)y)/(dx^(2))=q` `(dp)/(dy)=(dp)/(dx).(dx)/(dy)=q.(1)/(p)=(q)/(p)` `(d^(2)x)/(dy^(2))rArr-(1)/(p^(2))xx(q)/(p)=(-q)/(p^(3))` |
|
| 19. |
If `y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0.`Find `(dy)/(dx)dot` |
| Answer» Correct Answer - A | |
| 20. |
If `y=cos^(-1)((2x)/(1+x^(2)))`, then `(dy)/(dx)` is equal toA. `-(2)/(1+x^(2))" for all " |x|lt1`B. `-(2)/(1+x^(2))" for all "|x|gt1`C. `(2)/(1+x^(2))" for all " |x|lt1`D. None of these |
| Answer» Correct Answer - A | |
| 21. |
Difference \(e\sqrt {tan\,x}\) by first principle. |
|
Answer» Let, \(f(x)=e\sqrt{tanx}\) \(=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \(=\lim\limits_{h \to 0}\frac{e^\sqrt{tan(x+h)}-e^\sqrt{tanx}}{h}\) \(=\lim\limits_{h \to 0}e^\sqrt{tan(x+h)}\{\frac{e^\sqrt{tan(x+h)-tanx}-1}{h}\}\)\(e^\sqrt{tan(x+h)}\lim\limits_{h \to 0}\frac{e^\sqrt{tan(x+h)-tanx}-1}{\sqrt{tan(x+h)}-\sqrt{tanx}}\).\(\lim\limits_{h \to 0}\frac{e^\sqrt{tan(x+h)}-\sqrt{tanx}}{h}\) \(=e^\sqrt{tanx}.1.\lim\limits_{h \to 0}\frac{tan(x+h)-tanx}{h}\times\) \(\frac{1}{\sqrt{tan(x+h)}+\sqrt{tanx}}\) \(=e^\sqrt{tanx}.1.\lim\limits_{h \to 0}\frac{sin\,h}{h\,cos\,x(x+h)cos\,x}\times\)\(\frac{1}{\sqrt{tan(x+h)}+\sqrt{tanx}}\) \(=\frac{e^\sqrt{tanx}}{2\sqrt{tan\,x}}.\frac{1}{cos^2x}\) \(=\frac{sec^2\,x}{2}.\frac{e^{tan\,x}}{\sqrt{tan\,x}}\) |
|
| 22. |
Difference with respect to 'x' from first principle: cos(2x2- 3). |
|
Answer» Let, f(x) = cos(2x2 − 3) \(∴ f'(x)= \lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \(= \lim\limits_{h \to 0}\frac{cos\{2(x+h)^2-3\}-cos\{2x^2-3\}}{h}\) \(= \lim\limits_{h \to 0}\frac{-2sin(\frac{2(x+h)^2-3+2x^2-3}{2})\,sin(\frac{2(x+h)^2-3-2x^2+3}{2})}{h}\) \(=-2 \lim\limits_{h \to 0}\frac{-2sin\frac{2x^2+4xh+2x^2-6}{2}\,sin\frac{2x^2+4xh+2h^2-2x^2}{2}}{h}\) \(= -2\lim\limits_{h \to 0}\frac{sin(2x^2+h^2+2xh-3)\,sin(h^2+2xh)}{h}\) \(= -2\lim\limits_{h \to 0}(h+2x)\frac{sin(h^2+2xh)}{h^2+2xh}\,\lim\limits_{h \to 0}sin(2x^2+h^2+2xh-3)\) \(= -2\lim\limits_{h \to 0}(h+2x)\lim\limits_{h \to 0}\frac{sin\,(h^2+2x+h)}{h^2+2xh}sin(2x^2-3)\) \(= -2.2x.1.sin(2x^2-3)\) \(= -4x\,sin(2x^2-3)\) |
|
| 23. |
Find the derivative of logx from first principle. |
|
Answer» Let f(x) = log x ∴ \(f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \(=\lim\limits_{h \to 0}\frac{log(x+h)-logx}{h}\) \(=\lim\limits_{h \to 0}\frac{log(\frac{x+h}{x})}{h}\) \(=\lim\limits_{h \to 0}\frac{log(1+\frac{h}{x})}{h}\) \(=\lim\limits_{h \to 0}\frac{log(1+\frac{h}{x})}{\frac{h}{x}}\times\frac{1}{x}\) \(=1\times\frac{1}{x}\) = \(\frac{1}{x}\) |
|
| 24. |
If `y=sin(m sin^(-1)x)`, what is the value of `d^(2)y//dx^(2)` at x = 0?A. mB. `m^(2)`C. `m^(2)+2`D. None of these |
|
Answer» Correct Answer - D `y=sin(m sin^(-1)x)` Then, `(dy)/(dx)=cos(m sin^(-1)x)(m)/(sqrt(1-x^(2)))` `therefore(d^(2)y)/(dx^(2))=cos(m sin^(-1)x)m{(-1)/(2).((-2x))/((1-x^(2))^(3//2))}+(m)/(sqrt(1-x^(2))).{-sin(m sin^(-1)x)}.(m)/(sqrt(1-x^(2)))` `=(m)/(sqrt(1-x^(2)))[(x)/((1-x^(2)))cos(m sin^(-1)x)]` `-(m)/(sqrt(1-x^(2)))sin(m sin^(-1)x)]` Now, `(d^(2)y)/(dx^(2))" at "x=0" is "m[0-0]=0" "(because sin^(-1)0=0)` |
|
| 25. |
Find the derivative of x cos x from first principle. |
|
Answer» Let f(x) = x cos x ∴ \(f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \(=\lim\limits_{h \to 0}\frac{(x+h)cos(x+h)-xcosx}{h}\) \(=\lim\limits_{h \to 0}\frac{(x+h)[cos\,x\,cosh\,h-sinx.sinh]-xcosx}{h}\) \(=\lim\limits_{h \to 0}\frac{xcosh.cosx-x\,sinx.sinh+h\,cosx.cosh-h\,sinx.sinh-x\,cosx}{h}\) \(=\lim\limits_{h \to 0}\frac{xcos\,x.(cos\,h-1)+h[cos\,x.cos\,h-sin\,x.sin\,h-x\,sin\,x.sin\,h}{h}\) \(=\lim\limits_{h \to 0}\frac{xcos\,x(cos\,h-1)}{h}+\)\(\lim\limits_{h \to 0}(-xsin\,x)(\frac{sin\,h}{h})+\) \(\lim\limits_{h \to 0}cos(x+h)\) \(=-x\,cos\,x\lim\limits_{h \to 0}\frac{1-cos\,h}{h}-xsinx\lim\limits_{h \to 0}(\frac{sin\,h}{h})\) +\(+\lim\limits_{h \to 0}cos(x+h)\) \(= -x\,cos\,x.\lim\limits_{h \to 0}\frac{2sin^2\frac{h}{2}}{h\times\frac{h}{4}}\times\frac{h}{4}\)\(-xsinx.1+cosx\) \(=-x\,cos\,x.\frac{2}{4}.\lim\limits_{h \to 0}\) \((\frac{sin\frac{h}{2}}{\frac{h}{2}})^2\) \(h-x\,sin\,x+cos\,x\) \(=-x\,cos\,x.\frac{1}{2}.1.0-xsinx+cosx\) = \(cos\,x - x\,sin\,x\) |
|
| 26. |
If `x=sin t-t cos t and y = t sin t +cos t,` then what is `(dy)/(dx)` at point `t=(pi)/(2)?` |
|
Answer» Correct Answer - A As given: `x=sint-t cos t and y=t sin t+cost` On differentiating w.r.t. t, we get `(dx)/(dt)=cost-{cost+t(-sint)}` `rArr(dx)/(dt)=cost-cost+t sin t=t sint` and, `(dy)/(dt)=t cost+sint-sint=t cost` Hence, `(dy)/(dx)=(dy//dt)/(dx//dt)=(t cos t)/(t sin t)=cot t` `rArr((dy)/(dx))_(t=(pi)/(2))=cot.(pi)/(2)=0` |
|
| 27. |
If `y=(1)/(log_(10)x)`, then what is `(dy)/(dx)` equal to?A. xB. `x log_(e)10`C. `-((log_(x)10)^(2)(log_(10)e))/(x)`D. `xlog_(10)e` |
|
Answer» Correct Answer - C Differentiating the given function, `y=(1)/(log_(10)x)` We get, `(dy)/(dx)=-(1)/((log_(10)x)^(2)).(1)/(x)log_(10)e` `rArr(dy)/(dx)=-((log_(x)10)^(2).log_(10)e)/(x)` |
|
| 28. |
If `y=log_(10)x+log_(x)10+log_(x)x+log_(10)10` then what is `((dy)/(dx))_(x=10)` equal to?A. 10B. 2C. 1D. 0 |
|
Answer» Correct Answer - D `y = log_(10) x + log_(x) x + log_(10)10` `y=log_(10)x+log_(x)10 + 1 + 1` Differentiating equation w.r.t. x `(dy)/(dx)=(1)/(xlog_(e)10)-(1)/((log_(10)x)^(2)).(1)/((x log 10))` `=(1)/(xlog_(e)10)[1-(1)/((log_(10)x)^(2))]` `((dy)/(dx))_(x=10) =(1)/(10 log_(e)10)[1-1]=0` `[{:("Note:" log_(x)10=(log_(10)10)/(log_(10)x)=(1)/(log_(10)x)),((d)/(dx)[(1)/(log_(1)x)]=-(l0g_(10)x)^(-2)xx(1)/(x log_(e)10)),(" "=-(1)/((log_(10)x)^(2)xlog_(e)10)):}]` |
|
| 29. |
If `sqrt(1-x^(2))+sqrt(1-y^(2))=a`, then what is `(dy)/(dx)` equal to?A. `sqrt((1-x^(2))(1-y^(2)))`B. `sqrt((1-y^(2))/(1-x^(2)))`C. `sqrt((1-x^(2))/(1-y^(2)))`D. None of these |
|
Answer» Correct Answer - D Let `sqrt(1-x^(2))+sqrt(1-y6(2))=a` On differentiating w.r.t. x, we get `(1)/(2sqrt(1-x^(2)))(-2x)+(1(-2y))/(2sqrt(1-y^(2)))(dy)/(dx)=0` `rArr (-x)/(sqrt(1-x^(2)))-(y)/(sqrt(1-y6(2)))(dy)/(dx)=0` `rArr (-x)/(sqrt(1-x^(2)))=(y)/(sqrt(1-y^(2)))(dy)/(dx)` `rArr (dy)/(dx)=-(x)/(y)sqrt((1-y^(2))/(1-x^(2)))` |
|
| 30. |
Evaluate:`int_(pi//4)^(pi//2)sqrt(1-sin2x)dx`A. `cos x +sinx`B. `-(cosx+sinx)`C. `pm(cosx+sinx)`D. None of these |
| Answer» Correct Answer - A | |
| 31. |
If x = t2, y = t3, then \(\frac{d^2y}{dx^2}=\)A. \(\frac{3}{4}\)B. \(\frac{3}{4t}\)C. \(\frac{3}{2t}\)D.\(\frac{3t}{2}\) |
|
Answer» Correct Answer is (A) \(\frac{3}{4}\) \(x=t^2;y=t^3\) \(\frac{dy}{dt}=3t^2;\frac{dx}{dt}=2t\) \(\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\)\(=\frac{3t}{2}\) \(\frac{d^2y}{dx^2}=\frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}\)\(=\frac{\frac{3t}{2}}{2t}\) \(=\frac{3}{4}\) |
|
| 32. |
Find the derivative or f(x)= ax2 + bx + c, where a,b,c are non-zero constant, by first principle. |
|
Answer» Given, f(x) = ax2 + bx + c ∴ f'(x) = \(\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) = \(\lim\limits_{h \to 0}\frac{[{a(x+h)^2+b(x+h)+c}]\, -\,[{ax^2+bx+c}]}{h}\) = \(\lim\limits_{h \to 0}\frac{a(x^2+2xh+h^2)+bx+bh-ax^2-bx}{h}\) = \(\lim\limits_{h \to 0}\frac{2axh+ah^2+bh}{h}\) = 2ax + a∙0 + b = 2ax + b |
|
| 33. |
Differentiate \(\frac{x}{sinx}\) with respect to x. |
|
Answer» Let f(x) = \(\frac{x}{sinx}\) ∴ f(x) = \(\frac{d}{dx}(\frac{x}{sinx})\) = \(\frac{sinx\frac{d}{dx}x-x\frac{d}{dx}sinx}{(sinx)^2}\) = \(\frac{sinx.1-x.cosx}{sin^2x}\) = \(cosec\,x-x\,cot\,x\,cosec\,x\) = \((1-x\,cot\,x).cosec\,x\) |
|
| 34. |
Find f'(x), if f(x) = (x − 2)2 (2x − 3). |
|
Answer» Given, f(x) = (x−2)2 (2x−3) = (x2−4x+4)(2x−3) = 2x3 − 8x2 + 8x − 3x2 + 12x − 12 = 2x3 − 11x2 + 20x − 12. f'(x) = \(\frac{d}{dx}\){2x3−11x2+20x−12} \(=2\frac{d}{dx}x^3-11\frac{d}{dx}x^2+20\frac{d}{dx}x-\frac{d}{dx}12\) \(=2.3x^2-11.2x+20.1-0\) \(=6x^2-22x+20\) |
|
| 35. |
Find the derivative of 2x4+x. |
|
Answer» Let y = 2x4 + x ∴ \(\frac{dy}{dx}=\frac{d}{dx}(2x^4+x)\) \(=\frac{d}{dx}2x^4+\frac{d}{dx}x\) \(=2\frac{d}{dx}2x^4+1\) = 2∙4∙x3 + 1 = 8x3 + 1. |
|
| 36. |
Find the derivative of function y = 1 + x + x2 + …. + x50 at x = 1. |
|
Answer» Given, \(y=1+x+x^2+...+x^{50}.\) ∴ \(\frac{dy}{dx}=\frac{d}{dx}[1+x+x^2+...+x^{50}]\) \(=\frac{d}{dx}1+\frac{d}{dx}x+\frac{d}{dx}x^2+...+\frac{d}{dx}x^{50}\) ⇒ \(\frac{dy}{dx}\)= 1+2x+3x2+....+50x49 ∴ At x = 1, \(\frac{dy}{dx}\)= 1+2+3+....+50 = \(\frac{50(50+1)}{2}\) = 25 × 51 = 1275. |
|
| 37. |
If `y=x^(x)`, what is `(dy)/(dx)` at x = 1 equal to? |
|
Answer» Correct Answer - B Let `y = x^(x)` Take log on both the sides `rArr lny = x . Lny` `rArr (1)/(y).(dy)/(dx)=1 + ln x rArr (1)/(y).(dy)/(dx) = lne + lnx` `rArr (dy)/(dx)=y^(lnex=)=(x^(x))lnex` `(dy)/(dx)|_(x=1)=1. lne = 1` |
|
| 38. |
If x = a cos nt – b sin nt, then \(\frac{d^2x}{dt^2}\) is A. n2x B. –n2x C. –nx D. nx |
|
Answer» Correct Answer is (B) - n2 x Given: x=a cos nt-b sin nt \(\frac{dx}{dt}\)\(\)= -an sin nt - bn cos nt \(\frac{d^2x}{dt^2}\)= -an2 cos nt + bn2 sin nt = -n2 (a cos nt-b sin nt ) = - n2 x |
|
| 39. |
If `s=sqrt(t^(2)+1)`, then `(d^(2)s)/(dt^(2))` is equal toA. `(1)/(s)`B. `(1)/(s^(2))`C. `(1)/(s^(3))`D. `(1)/(s^(4))` |
|
Answer» Correct Answer - C `s=sqrt(t^(2)+1)` `rArr (ds)/(dt)=(t)/(sqrt(t^(2)+1))` `rArr (d^(2)s)/(dt^(2))=(1)/(sqrt((t^(2)+1)^(3)))` `rArr (d^(2)s)/(dt^(2))=(1)/(s^(3))` |
|
| 40. |
`int(dx)/(1+e^(-x))` is equal toA. `1+e^(x)+c`B. `ln(1+e^(-x))+c`C. `ln(1+e^(x))+c`D. `2 ln (1+e^(-x))+c` |
|
Answer» Correct Answer - C `int(dx)/(1+e^(-x))` `rArr int (e^(x))/(e^(x)+1)dx` Let `e^(x)+1=t` ` e^(x) dx = dt` `= int(dt)/(t)` `rArr log t + c rArr log(e^(x)+1)+c` |
|
| 41. |
If y = x + ex , find \(\frac{d^2x}{dy^2}.\) |
|
Answer» Given: \(y=x+e^x\) \(\frac{d^2x}{d^2y}=\frac{1}{\frac{d^2y}{dx^2}}\) \(\frac{dy}{dx}=1+e^x\) \(\frac{d^2y}{dx^2}=e^x\) \(\frac{d^2x}{d^2y}=\frac{1}{e^x}\) =e-x |
|
| 42. |
If y = |x – x2|, then find \(\frac{d^2y}{dx^2}.\) |
|
Answer» Given: y = |x - x2| y = \(\begin{cases}x-x^2;&x\geq0\\x^2-x;&x\leq0\end{cases}\) \(\frac{dy}{dx}=\begin{cases}1-2x;&x\geq0\\2x-1;&x\leq0\end{cases}\) \(\frac{d^2y}{dx^2}=\begin{cases}-2;&x\geq0\\2;&x\leq0\end{cases}\) |
|
| 43. |
If y = |logex|, find \(\frac{d^2y}{dx^2}\). |
|
Answer» Given: y = |loge x| \(\forall x>0\) y = loge x \(\frac{dy}{dx}=\frac{1}{x}=x^{-1}\) \(\frac{d^2y}{dx^2}=(-1)x^{-2}\) |
|
| 44. |
If `e^y+xy=e` then the value of `(d^2y)/(dx^2)` for `x=0` isA. `e^(-1)`B. `e^(-2)`C. eD. 1 |
|
Answer» Correct Answer - B Given `e^(y)+xy=e` On differentiating w.r.t. x, we get `e^(y)(dy)/(dx)+y+x(dy)/(dx)=0" …(i)"` At x = 0 we get `e^(y)+0.y=e rArr e^(y)=e rArr y=1` `therefore` By putting y = 1 in equation (i) we get `e(dy)/(dx)+1+0=0` `rArr(dy)/(dx)=-(1)/(e)` Again differentiating Eq. (i), we get `e^(y)(d^(2)y)/(dx^(2))+e^(y)((dy)/(dx))^(2)+(dy)/(dx)+x(d^(2)y)/(dx^(2))+(dy)/(dx)=0` `rArr(d^(2)y)/(dx^(2))(e^(y)+x)+e^(y)((dy)/(dx))^(2)+(2dy)/(dx)=0` Now, At x = 0, y = 1 `(d^(2)y)/(dx^(2))(e+0)+e(-(1)/(e))^(2)+2(-(1)/(e))=0` `rArr e(d^(2)y)/(dx^(2))-(1)/(e)=0` `rArr (d^(2)y)/(dx^(2))=(1)/(e^(2))=e^(-2)` |
|
| 45. |
If `3^(x)+3^(y)=3^(x+y)` then what is `(dy)/(dx)` equal to?A. `(3^(x+y)-3^(x))/(3^(y))`B. `(3^(x-y)(3^(y)-1))/(1-3^(x))`C. `(3^(x)+3^(y))/(3^(x)-3^(y))`D. `(3^(x)+3^(y))/(1+e^(x+y)` |
|
Answer» Correct Answer - B `3^(x)+3^(y)=3^(x+y)` On differentiating w.r.t., we get `3^(x)log 3+3^(y)log3(dy)/(dx)=3^(x+y)log3(1+(dy)/(dx))` `rArr" "log3[3^(x)+3^(y)(dy)/(dx)]=log3.3^(x+y)(1+(dy)/(dx))` `rArr" "(dy)/(dx)(-3^(x+y)+3^(y))=3^(x+y)-3^(x)` `=3^(x).3^(y)-3^(x)=3^(x)(3^(y)-1)` `rArr" "(dy)/(dx)=(3^(x)(3^(y)-1))/(3^(y)(1-3^(x)))=(3^(x-y)(3^(y)-1))/((1-3^(x)))` |
|
| 46. |
If `x^(y)=e^(x-y)`, then `dy//dx` is equal to which one of the following ?A. `((x-y))/((1+logx)^(2))`B. `(y)/((1+logx))`C. `((x+y))/((1+logx))`D. `((logx)/(1+logx)^(2))` |
|
Answer» Correct Answer - D `x^(y)=e^(x-y)` Taking log both sides, we get `rArr y.log x=x-y` `rArry=(x)/(1+logx)` `rArr(dy)/(dx)=((1+logx)-x(0+(1)/(x)))/((1+logx)^(2))` `=((1+logx)-1)/((1+logx)^(2))=(logx)/((1+logx)^(2))` |
|
| 47. |
If`(dy)/(dx) = 1 +x +y +xy` and `y(-1)= 0` , then function `y` is :A. `e^(((1+x)^(2))/(2))-1`B. `e^(((1-x)^(2))/(2))`C. `log(1+x)-1`D. `log(1-x)` |
|
Answer» Correct Answer - A Let `(dy)/(dx)=1+x+y+xy` `rArr (dy)/(dx)=(1+x)(1+y)` `rArr (dy)/(1+y)=dx(1+x)` `rArrint(1)/(1+y)dy=int(1+x)dx` `rArr log(1_y)=x+(x^(2))/(2)+c` Given At `x=-1, y=0` `rArr log 1=-1+(1)/(2)+c` `rArr c=(1)/(2)` `therefore" "log(1+y)=x+(x^(2))/(2)+(1)/(2)=((1+x)^(2))/(2)` `rArr" "1+y=e^(((1+x)^(2))/(2))` `rArr" "y=e^(((1+x)^(2))/(2))-1` |
|
| 48. |
In a sphere the rate of change of surface area isA. 8π times the rate of change of diameterB. 2π times the rate of change of diameterC. 2π times the rate of change of radiusD. 8π times the rate of change of radius |
|
Answer» Correct answer is D. The surface area of a sphere, with radius r, is defined as A(r) = 4πr2 – (1) Differentiating (1) with respect to t, we get \(\frac{dA}{dt}=8\pi r\frac{dr}{dt}\) = 8π×(current radius)×(rate of change of radius) |
|
| 49. |
Find the rate of change of the total surface area of a cylinder of radius r and height h, when the radius varies. |
|
Answer» Total Surface Area of Cylinder = 2πr2 + 2πrh Given: Radius of the Cylinder varies. Therefore, We need to find \(\frac{ds}{dr}\) where S = Surface Area of Cylinder and r = radius of Cylinder. \(\frac{ds}{dr}=4\pi r + 2\pi h\) Hence, Rate of change of total surface area of the cylinder when the radius is varying is given by (4πr + 2πh). |
|
| 50. |
Find the rate of change of the volume of a sphere with respect to its diameter. |
|
Answer» The volume of a Sphere \(=\frac{1}{6}\pi D^3\) Where D = diameter of the Sphere We need to find, \(\frac{dV}{dD}\) where V = Volume of the sphere and D = Diameter of the Sphere. \(\frac{dV}{dD}=\frac{\pi D^2}{2}\) Hence, Rate of change of Volume of Sphere with respect to the diameter of the Sphere is given by \(\frac{\pi D^2}{2}.\) |
|