Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Solve the following equations : sin x + sin 2x + sin 3x = 0

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as –

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given, 

sin x + sin 2x + sin 3x = 0 

To solve the equation we need to change its form so that we can equate the t-ratios individually. 

For this we will be applying transformation formulae. While applying the Transformation formula we need to select the terms wisely which we want to transform. 

As, 

sin x + sin 2x + sin 3x = 0 

∴ we will use sin x and sin 3x for transformation as after transformation it will give sin 2x term which can be taken common.

{∵ sin A + sin B = 2 sin \((\frac{A+B}2)\) cos \((\frac{A-B}2)\)

⇒ sin 2x + 2 sin \((\frac{3x+x}2)\) cos \((\frac{3x-x}2)\) = 0

⇒ 2sin 2x cos x + sin 2x = 0 

⇒ sin 2x ( 2cos x + 1) = 0 

∴ either, sin 2x = 0 or 2cos x + 1 = 0 

⇒ sin 2x = sin 0 or cos x = - 1/2 = cos (π-\(\frac{π}3\)) = cos \(\frac{2π}3\)

If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

Comparing obtained equation with standard equation, 

we have: 

2x = nπ or x = 2mπ ± \(\frac{2π}3\)

∴ x = \(\frac{nπ}2\) or x = 2mπ  ± \(\frac{2π}3\)where m,n ϵ Z ..ans

2.

Solve the following equations:(i) tan x + tan 2x + tan 3x = 0(ii) tan x + tan 2x = tan 3x(iii) tan 3x + tan x = 2 tan 2x

Answer»

Since, the general solution of any trigonometric equation is given as

sin x = sin y, implies x = nπ + (– 1)y, where n ∈ Z.

cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.

tan x = tan y, implies x = nπ + y, where n ∈ Z.

(i) tan x + tan 2x + tan 3x = 0

Now let us simplify,

tan x + tan 2x + tan 3x = 0

tan x + tan 2x + tan (x + 2x) = 0

On using the formula,

tan (A + B) = [tan A + tan B]/[1 – tan A tan B]

Therefore,

tan x + tan 2x + [[tan x + tan 2x]/[1- tan x tan 2x]] = 0

(tan x + tan 2x) (1 + 1/(1- tan x tan 2x)) = 0

(tan x + tan 2x) ([2 – tan x tan 2x]/[1 – tan x tan 2x]) = 0

Now,

(tan x + tan 2x) = 0 or ([2 – tan x tan 2x]/[1 – tan x tan 2x]) = 0

(tan x + tan 2x) = 0 or [2 – tan x tan 2x] = 0

tan x = tan (-2x) or tan x tan 2x = 2

x = nπ + (-2x) or tax x [2tan x/(1 – tan2 x)] = 2 [Using, tan 2x = 2 tan x/1 - tan2 x]

3x = nπ or 2 tan2 x/(1 - tan2 x) = 2

3x = nπ or 2 tan2 x = 2(1 – tan2 x)

3x = nπ or 2 tan2 x = 2 – 2tan2 x

3x = nπ or 4 tan2 x = 2

x = nπ/3 or tan2 x = 2/4

x = nπ/3 or tan2 x = 1/2

x = nπ/3 or tan x = 1/2

x = nπ/3 or x = tan α [let 1/2 be ‘α’]

x = nπ/3 or x = mπ + α

∴ the general solution is

Thus, x = nπ/3 or mπ + α, where α = tan-11/2, m, n ∈ Z.

(ii) tan x + tan 2x = tan 3x

Now let us simplify,

tan x + tan 2x = tan 3x

tan x + tan 2x – tan 3x = 0

tan x + tan 2x – tan (x + 2x) = 0

On using the formula,

tan (A+B) = [tan A + tan B] / [1 – tan A tan B]

Therefore,

tan x + tan 2x – [[tan x + tan 2x]/[1- tan x tan 2x]] = 0

(tan x + tan 2x) (1 – 1/(1- tan x tan 2x)) = 0

(tan x + tan 2x) ([– tan x tan 2x] / [1 – tan x tan 2x]) = 0

Now,

(tan x + tan 2x) = 0 or ([– tan x tan 2x] / [1 – tan x tan 2x]) = 0

(tan x + tan 2x) = 0 or [– tan x tan 2x] = 0

tan x = tan (-2x) or -tan x tan 2x = 0

tan x = tan (-2x) or 2tan2 x / (1 – tan2 x) = 0 [Using, tan 2x = 2 tan x / 1-tan2 x]

x = nπ + (-2x) or x = mπ + 0

3x = nπ or x = mπ

x = nπ/3 or x = mπ

∴ the general solution is

x = nπ/3 or mπ, where m, n ∈ Z.

(iii) tan 3x + tan x = 2 tan 2x

Now let us simplify,

tan 3x + tan x = 2 tan 2x

tan 3x + tan x = tan 2x + tan 2x

Then, upon rearranging we get,

tan 3x – tan 2x = tan 2x – tan x

On using the formula,

tan (A - B) = [tan A – tan B]/[1 + tan A tan B]

Therefore,

[(tan 3x – tan 2x) (1 + tan 3x tan 2x)]/[1 + tan 3x tan 2x] = [(tan 2x - tan x) (1 + tan x tan 2x)]/[1 + tan 2x tan x]

tan (3x – 2x) (1 + tan 3x tan 2x) = tan (2x – x) (1 + tan x tan 2x)

tan x [1 + tan 3x tan 2x – 1 – tan 2x tan x] = 0

tan x tan 2x (tan 3x – tan x) = 0

Therefore,

tan x = 0 or tan 2x = 0 or (tan 3x – tan x) = 0

tan x = 0 or tan 2x = 0 or tan 3x = tan x

x = nπ or 2x = mπ or 3x = kπ + x

x = nπ or x = mπ/2 or 2x = kπ

x = nπ or x = mπ/2 or x = kπ/2

∴ the general solution is

Thus, x = nπ or mπ/2 or kπ/2, where, m, n, k ∈ Z.

3.

If 4 sin2 x = 1, then the values of x areA. 2nπ ± \(\frac{π}3\),n ∈ Z.B.  nπ ± \(\frac{π}3\),n ∈ Z.C.  nπ ± \(\frac{π}6\),n ∈ Z.D. 2nπ ± \(\frac{π}6\),n ∈ Z.

Answer»

sin = \(\frac{1}2\) or \(\frac{-1}2\)

sin x = sin a 

Here a = 30° or - 30° 

X = nπ +(-1)n

So, the values of x are 

nπ ± \(\frac{π}6\),n ∈ Z.

Option C

4.

If cos x + √3 sin x = 2, then x = A. \(\frac{π}3\)B. \(\frac{2π}3\)C. \(\frac{4π}3\)D.\(\frac{5π}3\)

Answer»

cos2x = (2 - √3 sin x)2 

1-sin2x = 4+3 sin2x - 4√3 sin x 

4 sin 2x - 4√3 sin x+3 = 0 

sin x = \(\frac{\sqrt3}2\) 

x = \(\frac{π}3\)

Option A

5.

Write the general solution of tan2 2x = 1.

Answer»

\(\frac{sin^22x}{cos^22x}\) = 1

sin22x = cos22x 

sin22x = 1- Sin22x 

2 sin22x = 1 

sin2x = \(\frac{1}{\sqrt2}\)

sin 2x = sin45 

So

2x = nπ = \(\frac{π}4\)

x = \(\frac{nπ}2+\frac{π}8\)

6.

If and 0 < x < 2 π, then the solution areA. x = \(\frac{π}3\),\(\frac{4π}3\)B.  x = \(\frac{2π}3\),\(\frac{4π}3\)C.  x = \(\frac{2π}3\),\(\frac{7π}6\)D. x = \(\frac{2π}3\),\(\frac{5π}3\)

Answer»

We know if cos x = cos a 

Then 

x = 2nπ ± a 

here cos x = cos\((\frac{2π}3)\)

when n = 0, 

x = \(\frac{2π}3\)

when n = 1,

x = 2π - \(\frac{2π}3\) = \(\frac{4π}3\)

x =   \(\frac{2π}3\)\(\frac{4π}3\)

Option B

7.

The solution of the equation cos2 x + sin x + 1 = 0 lies in the interval A. (- \(\frac{π}4\),\(\frac{π}4\) ) B. (- \(\frac{π}3\), \(\frac{π}4\)) C. (\(\frac{3π}4\), \(\frac{5π}4\)) D. (\(\frac{5π}4\), \(\frac{7π}4\))

Answer»

1 - sin2x + sin x+1 = 0 

sin2x - sin x - 2 = 0 

sin x = -1 

so, x= \(\frac{3π}2\)

and it lies between (\(\frac{5π}4\), \(\frac{7π}4\)

Option D

8.

Write the number of solutions of the equation 4 sin x – 3 cos x = 7.

Answer»

4sin x – 3cos x = 7 

4sin x – 7 = 3cos x 

Squaring both sides 

16(sin x)2 + 49 – 56sin x = 9(cos x)2 

16(sin x)2 + 49 – 56sin x = 9((sin x)2-1) 

16(sin x)- 9(sin x)- 56sin x + 49 + 9 = 0 

7(sin x)- 56sin x + 58 = 0 

Solving the quadratic equation 

Sin x = 6.7774 or 1.2225 

But we know that sinθ lies between [-1,1] 

So there are no solutions for this given equation

9.

Write the set of values of a for which the equation √3 sin x – cos x = a has no solution.

Answer»

\(\frac{\sqrt3}2\) sin x - \(\frac{cosx}2\) = a

cos30°sin x – sin30°cos x = a 

sin (x - 30) = a 

As the range of sin function is from [-1,1] 

So the value of a can be R-[-1,1] 

i.e. a ∈ (-∞, -2) ∪ (2, ∞)

10.

If cos x = k has exactly one solution in [0, 2 π], then write the value(s) of k.

Answer»

As cos x = cos θ 

Then x = 2nπ ± θ 

And it is said that it has exactly one solution. 

So θ = 0 and 

x = \(\frac{2nπ}2\)

=nπ 

In the given interval taking n = 1,x = π {n = 0 is not possible as cos 0 = 1 not -1 but cos π is -1}

11.

Write the number of points of intersection of the curves 2y = 1 and y = cos x, 0 ≤ x ≤ 2π.

Answer»

2y = 1 

i.e. y = \(\frac{1}2\)

and y = cos x 

so, to get the intersection points we must equate both the equations 

i.e. cos x = \(\frac{1}2\)

so, cos x = cos 60° 

and we know if cos x = cos a 

then x = 2nπ ± a where a ϵ [0, π] 

so here 

x = 2nπ ± \(\frac{π}3\)

So the possible values which belong [0,2π] are \(\frac{π}3\)and \(\frac{5π}3\)

There are a total of 2 points of intersection.

12.

Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π]

Answer»

\(\frac{sinx}{cosx}+\frac{1}{cosx}\) = 2 x cos x

sin x + 1 = 2 × (cos x)2 

sin x + 1 = 2 × (1 - (sin x)2

sin x + 1 = 2 – 2(sin x)2 

2(sin x)2 + sin x - 1 = 0 

Consider a=sin x 

So, the equation will be 

2a2+a -1 = 0 

From the equation a=0.5 or -1 

Which implies 

Sin x=0.5 or sin x=(-1) 

Therefore x=30° or 270° 

But for x=270° our equation will not be defined as cos (270° )=0

So, the solution for x = 30° 

According to trigonometric equations 

If sin x=sin a 

Then x = nπ – na 

Here sin x = sin30 

So, x = nπ + (-1)n × 30 

For n = 0, x = 30 and n =1,x = 150° and for n = 2,x = 390 

Hence between 0 to 2π there are only 2 possible solutions.

13.

Write the number of points of intersection of the curves 2y = - 1 and y = cosec x.

Answer»

Y = cosec x and y = - \(\frac{1}2\)

So

\(\frac{1}{sinx}\) = \(\frac{-1}2\)

Sin x = -2 

Which is not possible 

So 

There are 0 points of intersection.

14.

Solve the following equations:(i) sin2 x – cos x = 1/4(ii) 2 cos2 x – 5 cos x + 2 = 0(iii) 2 sin2 x + √3 cos x + 1 = 0

Answer»

Since, the general solution of any trigonometric equation is given as

sin x = sin y, implies x = nπ + (– 1)y, where n ∈ Z.

cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.

tan x = tan y, implies x = nπ + y, where n ∈ Z.

(i) Given as sin2 x – cos x = 1/4

Now let us simplify,

sin2 x – cos x = 1/4

1 – cos2 x – cos x = 1/4 [since, sin2 x = 1 – cos2 x]

4 – 4 cos2 x – 4 cos x = 1

4cos2 x + 4cos x – 3 = 0

Suppose cos x be ‘k’

Therefore,

4k2 + 4k – 3 = 0

4k2 – 2k + 6k – 3 = 0

2k(2k – 1) + 3(2k – 1) = 0

(2k – 1) + (2k + 3) = 0

(2k – 1) = 0 or (2k + 3) = 0

k = 1/2 or k = -3/2

cos x = 1/2 or cos x = -3/2

Then, we shall consider only cos x = 1/2. cos x = -3/2 is not possible.

Therefore,

cos x = cos 60° = cos π/3

x = 2nπ ± π/3

∴ the general solution is

Thus, x = 2nπ ± π/3, where n ϵ Z.

(ii) 2 cos2 x – 5 cos x + 2 = 0

Now let us simplify,

2 cos2 x – 5 cos x + 2 = 0

Suppose cos x be ‘k’

2k2 – 5k + 2 = 0

2k2 – 4k – k +2 = 0

2k(k – 2) - 1(k - 2) = 0

(k – 2) (2k – 1) = 0

k = 2 or k = 1/2

cos x = 2 or cos x = 1/2

Then, we shall consider only cos x = 1/2. cos x = 2 is not possible.

Therefore,

cos x = cos 60° = cos π/3

x = 2nπ ± π/3

∴ the general solution is

x = 2nπ ± π/3, where n ϵ Z.

(iii) Given as 2 sin2 x + √3 cos x + 1 = 0

Now let us simplify,

2 sin2 x + √3 cos x + 1 = 0

2 (1 – cos2 x) + √3 cos x + 1 = 0 [since, sin2 x = 1 – cos2 x]

2 – 2 cos2 x + √3 cos x + 1 = 0

2 cos2 x – √3 cos x – 3 = 0

Suppose cos x be ‘k’

2k2 – √3 k – 3 = 0

2k2 - 2√3 k + √3 k – 3 = 0

2k(k – √3) + √3(k – √3) = 0

(2k + √3) (k – √3) = 0

k = √3 or k = -√3/2

cos x = √3 or cos x = -√3/2

Then, we shall consider only cos x = -√3/2. cos x = √3 is not possible.

Therefore,

cos x = -√3/2

cos x = cos 150° = cos 5π/6

Thus, x = 2nπ ± 5π/6, where n ϵ Z.

15.

A value of x satisfying isA. \(\frac{5π}3\)B. \(\frac{4π}3\)C. \(\frac{2π}3\)D.\(\frac{π}3\)

Answer»

\(\frac{1}2\) cox + \(\frac{\sqrt3}2\) sinx = 1

cos 60 cos x + sin 60 sin x = 1 

cos (60 - x) = 1 

cos (60 - x) = cos 0° 

x = 60° 

Option D

16.

3sin2 x – 5 sin x cos x + 8 cos2 x = 2

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as –

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given, 

3sin2 x – 5 sin x cos x + 8 cos2 x = 2 

⇒ 3sin2 x + 3 cos2 x – 5sin x cos x + 5 cos2 x = 2 

⇒ 3 - 5sin x cos x + 5 cos2 x = 2 {∵ sin2 x + cos2x = 1} 

⇒ 5cos2 x + 1 = 5sin x cos x 

Squaring both sides: 

⇒ (5cos2 x + 1)2 = (5sin x cos x)2 

⇒ 25cos4 x + 10cos2 x + 1 = 25 sin2 x cos2

⇒ 25cos4 x + 10cos2 x + 1 = 25 (1 - cos2 x) cos2

⇒ 50cos4 x – 15 cos2 x + 1 = 0 

⇒ 50cos4 x – 10 cos2 x – 5cos2 x + 1 = 0 

⇒ 10cos2 x ( 5cos2 x – 1) – (5cos2 x – 1) = 0 

⇒ (10cos2 x - 1)(5cos2 x – 1) = 0 

∴ cos2 x = 1/10 or cos2 x = 1/5 

Hence, when cos2 x = 1/10

We have, cos x = ± \(\frac{1}{\sqrt{10}}\)

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

let cos α = 1/√10 

∴ cos (π – α) = -1/√10 

∴ x = 2nπ ± α or x = 2nπ ± (π – α)

∴ when,  cos x = ± \(\frac{1}{\sqrt{10}}\)

x = 2nπ ± α or x = 2nπ ± (π – α) where n ∈ Z.  and cos α = \(\frac{1}{\sqrt{10}}\)

When cos2 x = 1/5

We have, cos x = ± \(\frac{1}{\sqrt{5}}\).

If cos x = cos y, implies x = 2mπ ± y, where n ∈ Z. 

let cos β = 1/√5 

∴ cos (π – β) = -1/√5 

∴ x = 2mπ ± β or x = 2mπ ± (π – β)

∴ when,  cos x = ± \(\frac{1}{\sqrt{5}}\).

x = 2mπ ± β or x = 2mπ ± (π – β)  where n ∈ Z.  and cos β = \(\frac{1}{\sqrt{5}}\)...ans

17.

The general value of x satisfying the equation \(\sqrt3\)sinx + cosx = \(\sqrt3\) is given byA. x = nπ + (-1)n \(\frac{π}4\) + \(\frac{π}3\),n ∈ Z.B. x = nπ + (-1)n \(\frac{π}3\) + \(\frac{π}6\),n ∈ Z.C. x = nπ ± \(\frac{π}6\),n ∈ Z.D. x = nπ ± \(\frac{π}3\),n ∈ Z.

Answer»

Cos2x = (√3 -√3sin x)2 

1 - sin2x = 3 + 3sin2x - 6sin x 

4sin2x - 6sin x+2 = 0 

2sin2x - 3sin x+1 = 0 

sin x = 1 or 0.5 

We know, 

x = nπ + (-1)nθ

x = nπ + (-1)\((\frac{π}2)\) or x =  nπ + (-1)\((\frac{π}6)\)

Therefore, the values of x are

\(\frac{π}6\),\(\frac{π}2\),\(\frac{5π}6\),π,\(\frac{13π}6\)

So, these values are obtained for different value of n from the equation

x =  nπ + (-1)\(\frac{π}2\) - \(\frac{π}6\),n ∈ Z.

So, Option B

18.

The smallest value of x satisfying the equation √3 (cot x + tan x) = 4 is A. \(\frac{2π}3\)B. \(\frac{π}3\)C. \(\frac{π}6\)D. \(\frac{π}{12}\)

Answer»

\(\sqrt3(\frac{1}{tanx}+tanx)\) = 4

\(\sqrt3(\frac{1+tan^2x}{tanx})\) = 4

√3+√3 tan2x = 4 tan x 

√3 tan2x - 4 tan x+√3 = 0 

Therefore

tan = √3 or tanx = \(\frac{1}{\sqrt3}\)

Therefore x = \(\frac{π}3\) or \(\frac{π}6\)

But here the smallest angle is \(\frac{π}6\)

Option C

19.

A solution of the equation cos2 x + sin x + 1 = 0, lies in the interval A. (- \(\frac{π}4\), \(\frac{π}4\)) B. (\(\frac{π}4\), \(\frac{3π}4\)) C. (\(\frac{3π}4\), \(\frac{5π}4\)) D. (\(\frac{5π}4\), \(\frac{7π}4\))

Answer»

1 - sin2x + sin x +1 = 0 

sin2x - sin x - 2 = 0 

sin x = - 1 

x = \(\frac{3π}2\)

Option D

20.

Solve the following equations:(i) 4 sin2 x – 8 cos x + 1 = 0(ii) tan2 x + (1 – √3)tan x – √3 = 0(iii) 3 cos2 x – 2√3 sin x cos x – 3 sin2 x = 0(iv) cos 4x = cos 2x

Answer»

Since, the general solution of any trigonometric equation is given as

sin x = sin y, implies x = nπ + (– 1)y, where n ∈ Z.

cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.

tan x = tan y, implies x = nπ + y, where n ∈ Z.

(i) Given as 4 sin2 x – 8 cos x + 1 = 0

Now let us simplify,

4 sin2 x – 8 cos x + 1 = 0

4(1 – cos2 x) – 8 cos x + 1 = 0 [since, sin2 x = 1 – cos2 x]

4 – 4 cos2 x – 8 cos x + 1 = 0

4 cos2 x + 8 cos x – 5 = 0

Suppose cos x be ‘k’

4k2 + 8k – 5 = 0

4k2 - 2k + 10k – 5 = 0

2k(2k – 1) + 5(2k – 1) = 0

(2k + 5) (2k – 1) = 0

k = -5/2 = -2.5 or k = 1/2

cos x = -2.5 or cos x = 1/2

Now, we shall consider only cos x = 1/2. cos x = -2.5 is not possible.

Therefore,

cos x = cos 60° = cos π/3

x = 2nπ ± π/3

∴ the general solution is

Thus, x = 2nπ ± π/3, where n ϵ Z.

(ii) tan2 x + (1 – √3) tan x – √3 = 0

Now let us simplify,

tan2 x + (1 – √3) tan x – √3 = 0

tan2 x + tan x – √3 tan x – √3 = 0

tan x (tan x + 1) – √3 (tan x + 1) = 0

(tan x + 1) ( tan x – √3) = 0

tan x = -1 or tan x = √3

As, tan x ϵ (-∞ , ∞) therefore both values are valid and acceptable.

tan x = tan (-π/4) or tan x = tan (π/3)

x = mπ – π/4 or x = nπ + π/3

∴ the general solution is

x = mπ – π/4 or nπ + π/3, where m, n ϵ Z.

(iii) 3 cos2 x – 2√3 sin x cos x – 3 sin2 x = 0

Now let us simplify,

3 cos2 x – 2√3 sin x cos x – 3 sin2 x = 0

3 cos2 x – 3√3 sin x cos x + √3 sin x cos x – 3 sin2 x = 0

3 cos x (cos x – √3sin x) + √3 sin x (cos x – √3 sin x) = 0

√3 (cos x – √3 sin x) (√3 cos x + sin x) = 0

cos x – √3 sin x = 0 or sin x + √3 cos x = 0

cos x = √3 sin x or sin x = -√3 cos x

tan x = 1/√3 or tan x = -√3

As, tan x ϵ (-∞ , ∞) therefore both values are valid and acceptable.

tan x = tan (π/6) or tan x = tan (-π/3)

x = mπ + π/6 or x = nπ – π/3

∴ the general solution is

x = mπ + π/6 or nπ – π/3, where m, n ϵ Z.

(iv) Given as cos 4x = cos 2x

Now let us simplify,

cos 4x = cos 2x

4x = 2nπ ± 2x

Therefore,

4x = 2nπ + 2x [or] 4x = 2nπ – 2x

2x = 2nπ [or] 6x = 2nπ

x = nπ [or] x = nπ/3

∴ the general solution is

Thus, x = nπ [or] nπ/3, where n ϵ Z.

21.

If 2 sin2 x = 3 cos x, where 0 ≤ x ≤ 2 π, then find the value of x.

Answer»

2sin2x = 3cos x 

2 - 2cos2x = 3cos x 

Solving the quadratic equation, we get 

cos x = \(\frac{1}2\)

Therefore x = 60° and 300° 

i.e.

θ  = \(\frac{π}3\) and \(\frac{5π}3\)

22.

Solve the following equations:(i) cos x + cos 2x + cos 3x = 0(ii) cos x + cos 3x – cos 2x = 0(iii) sin x + sin 5x = sin 3x(iv) cos x cos 2x cos 3x = 1/4

Answer»

Since, the general solution of any trigonometric equation is given as

sin x = sin y, implies x = nπ + (– 1)y, where n ∈ Z.

cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.

tan x = tan y, implies x = nπ + y, where n ∈ Z.

(i) Given as cos x + cos 2x + cos 3x = 0

Now let us simplify,

cos x + cos 2x + cos 3x = 0

Then, we shall rearrange and use transformation formula

cos 2x + (cos x + cos 3x) = 0

On using the formula, cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2

cos 2x + 2 cos (3x + x)/2 cos (3x - x)/2 = 0

cos 2x + 2cos 2x cos x = 0

cos 2x (1 + 2 cos x) = 0

cos 2x = 0 or 1 + 2cos x = 0

cos 2x = cos 0 or cos x = -1/2

cos 2x = cos π/2 or cos x = cos (π – π/3)

cos 2x = cos π/2 or cos x = cos (2π/3)

2x = (2n + 1) π/2 or x = 2mπ ± 2π/3

x = (2n + 1) π/4 or x = 2mπ ± 2π/3

∴ the general solution is

x = (2n + 1) π/4 or 2mπ ± 2π/3, where m, n ϵ Z.

(ii) cos x + cos 3x – cos 2x = 0

Now let us simplify,

cos x + cos 3x – cos 2x = 0

Then, we shall rearrange and use transformation formula

cos x – cos 2x + cos 3x = 0

– cos 2x + (cos x + cos 3x) = 0

On using the formula, cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2

– cos 2x + 2 cos (3x + x)/2 cos (3x - x)/2 = 0

– cos 2x + 2cos 2x cos x = 0

cos 2x (-1 + 2 cos x) = 0

cos 2x = 0 or -1 + 2cos x = 0

cos 2x = cos 0 or cos x = 1/2

cos 2x = cos π/2 or cos x = cos (π/3)

2x = (2n + 1) π/2 or x = 2mπ ± π/3

x = (2n + 1) π/4 or x = 2mπ ± π/3

∴ the general solution is

x = (2n + 1) π/4 or 2mπ ± π/3, where m, n ϵ Z.

(iii) sin x + sin 5x = sin 3x

Now let us simplify,

sin x + sin 5x = sin 3x

sin x + sin 5x – sin 3x = 0

Then, we shall rearrange and use transformation formula

– sin 3x + sin x + sin 5x = 0

– sin 3x + (sin 5x + sin x) = 0

On using the formula, sin A + sin B = 2 sin (A + B)/2 cos (A - B)/2

– sin 3x + 2 sin (5x + x)/2 cos (5x - x)/2 = 0

2sin 3x cos 2x – sin 3x = 0

sin 3x ( 2cos 2x – 1) = 0

sin 3x = 0 or 2cos 2x – 1 = 0

sin 3x = sin 0 or cos 2x = 1/2

sin 3x = sin 0 or cos 2x = cos π/3

3x = nπ or 2x = 2mπ ± π/3

x = nπ/3 or x = mπ ± π/6

∴ the general solution is

x = nπ/3 or mπ ± π/6, where m, n ϵ Z.

(iv) Given as cos x cos 2x cos 3x = 1/4

Now let us simplify,

cos x cos 2x cos 3x = 1/4

4 cos x cos 2x cos 3x – 1 = 0

On using the formula,

2 cos A cos B = cos (A + B) + cos (A – B)

2(2cos x cos 3x) cos 2x – 1 = 0

2(cos 4x + cos 2x) cos2x – 1 = 0

2(2cos2 2x – 1 + cos 2x) cos 2x – 1 = 0 [using cos 2A = 2cos2A – 1]

4cos3 2x – 2cos 2x + 2cos2 2x – 1 = 0

2cos2 2x (2cos 2x + 1) -1(2cos 2x + 1) = 0

(2cos2 2x – 1) (2 cos 2x + 1) = 0

Therefore,
2cos 2x + 1 = 0 or (2cos2 2x – 1) = 0

cos 2x = -1/2 or cos 4x = 0 [using cos 2θ = 2cos2θ – 1]

cos 2x = cos (π – π/3) or cos 4x = cos π/2

cos 2x = cos 2π/3 or cos 4x = cos π/2

2x = 2mπ ± 2π/3 or 4x = (2n + 1) π/2

x = mπ ± π/3 or x = (2n + 1) π/8

∴ the general solution is

Thus, x = mπ ± π/3 or (2n + 1) π/8, where m, n ϵ Z.

23.

Solve the following equations :sec x cos 5x + 1 = 0, 0 < x < \(\frac{π}2\)

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as –

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

given, 

sec x cos 5x + 1 = 0, 0 < x < \(\frac{π}2\)

⇒ sec x cos 5x = -1 

⇒ cos 5x = - cos x 

∵ - cos x = cos (π – x) 

∴ cos 5x = cos (π – x) 

If cos x = cos y, implies 2nπ ± y, where n ∈ Z. 

∴ 5x = 2nπ ± (π – x) 

⇒ 5x = 2nπ + (π – x) or 5x = 2nπ – (π – x) 

⇒ 6x = (2n+1)π or 4x = (2n-1)π

∴ x = (2n + 1) \(\frac{π}6\) or x = (2n - 1) \(\frac{π}4\)where n ∈ Z. 

But, 0 < x < \(\frac{π}2\)

∴ x = \(\frac{π}6\)and x = \(\frac{π}4\)....ans

24.

Find the general solutions of the following equations:(i) sin 2x = √3/2(ii) cos 3x = 1/2(iii) sin 9x = sin x(iv) sin 2x = cos 3x(v) tan x + cot 2x = 0(vi) tan 3x = cot x

Answer»

Since, the general solution of any trigonometric equation is given as

sin x = sin y, implies x = nπ + (– 1)y, where n ∈ Z.

cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.

tan x = tan y, implies x = nπ + y, where n ∈ Z.

(i) Given as sin 2x = √3/2

Now, let us simplify,

sin 2x = √3/2

= sin(π/3)

∴ the general solution is

2x = nπ + (-1)n π/3, where n ϵ Z.

Thus, x = nπ/2 + (-1)n π/6, where n ϵ Z.

(ii) cos 3x = 1/2

Now, let us simplify,

cos 3x = 1/2

= cos (π/3)

∴ the general solution is

3x = 2nπ ± π/3, where n ϵ Z.

x = 2nπ/3 ± π/9, where n ϵ Z.

(iii) sin 9x = sin x

Now, let us simplify,

Sin 9x – sin x = 0

By using transformation formula,

Sin A – sin B = 2 cos(A + B)/2 sin(A - B)/2

Therefore,

= 2 cos(9x + x)/2 sin(9x - x)/2

=> cos 5x sin 4x = 0

Cos 5x = 0 or sin 4x = 0

Then, let us verify both the expressions,

Cos 5x = 0

Cos 5x = cos π/2

5x = (2n + 1)π/2

x = (2n + 1)π/10, where n ϵ Z.

sin 4x = 0

sin 4x = sin 0

4x = nπ

x = nπ/4, where n ϵ Z.

∴ the general solution is

x = (2n + 1)π/10 or nπ/4, where n ϵ Z.

(iv) sin 2x = cos 3x

Now, let us simplify,

sin 2x = cos 3x

cos (π/2 – 2x) = cos 3x [since, sin A = cos (π/2 – A)]

π/2 – 2x = 2nπ ± 3x

π/2 – 2x = 2nπ + 3x [or] π/2 – 2x = 2nπ – 3x

5x = π/2 + 2nπ [or] x = 2nπ – π/2

5x = π/2 (1 + 4n) [or] x = π/2 (4n – 1)

x = π/10 (1 + 4n) [or] x = π/2 (4n – 1)

∴ the general solution is

x = π/10 (4n + 1) [or] x = π/2 (4n – 1), where n ϵ Z.

(v) tan x + cot 2x = 0

Now, let us simplify,

tan x = – cot 2x

tan x = – tan (π/2 – 2x) [since, cot A = tan (π/2 – A)]

tan x = tan (2x – π/2) [since, – tan A = tan -A]

x = nπ + 2x – π/2

x = nπ – π/2

∴ the general solution is

x = nπ – π/2, where n ϵ Z.

(vi) tan 3x = cot x

Now, let us simplify,

tan 3x = cot x

tan 3x = tan(π/2 – x) [since, cot A = tan(π/2 – A)]

3x = nπ + π/2 – x

4x = nπ + π/2

x = nπ/4 + π/8

∴ the general solution is

Thus, x = nπ/4 + π/8, where n ϵ Z.

25.

Find the general solutions of the following equations : sin x = tan x

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given,

sin x = tan x

⇒ sin x = \(\frac{sin\,x}{cos\,x}\)

⇒ sin x cos x = sin x

⇒ sin x (cos x - 1) = 0

either, 

sin x = 0 or cos x = 1 

⇒ sin x = sin 0 or cos x = cos 0 

We know that, 

If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z 

∵ sin x = sin 0 

∴ y = 0 

And hence,

x = nπ where n ∈ Z

Also, 

If cos x = cos y, implies x = 2mπ ±y, where m∈ Z 

∵ cos x = cos 0 

∴ y = 0 

Hence, x is given by

x = 2mπ where m ϵ Z 

∴ x = nπ or 2mπ ,where m,n ϵ Z …ans

26.

Find the general solutions of the following equations :tan x = - \(\frac{1}{\sqrt3}\)

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given,

tan x = - \(\frac{1}{\sqrt3}\)

We know that tan x and cot x have negative values in the 2nd and 4th quadrant. 

While giving solution, we always try to take the least value of y. 

The fourth quadrant will give the least magnitude of y as we are taking an angle in a clockwise sense (i.e. negative angle)

tan x = tan \((-\frac{π}6)\)

If tan x = tan y then x = nπ + y, where n ∈ Z. 

For above equation y = \(-\frac{π}6\)

∴ x = nπ +\((-\frac{π}6)\) ,where n ϵ Z 

Or x = nπ \(-\frac{π}6\) ,where n ϵ Z 

Thus, 

x gives the required general solution for the given trigonometric equation.

27.

Find the general solutions of the following equations :cosec x = - \(\sqrt2\)

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given,

cosec x= -\(\sqrt2\)

We know that sin x, and cosec x have negative values in the 3rd and 4th quadrant. 

While giving a solution, we always try to take the least value of y 

The fourth quadrant will give the least magnitude of y as we are taking an angle in a clockwise sense (i.e., negative angle) 

- √2 = -cosec \((\frac{π}4)\) = cosec \((-\frac{π}4)\) { ∵ sin - θ = - sin θ}

∴ cosec x = cosec\((-\frac{π}4)\)

⇒ sim x = sin \((\frac{-π}4)\)

If sin x = sin y ,then x = nπ + (– 1)ny , where n ∈ Z. 

For above equation y = \(-\frac{π}4\)

∴ x = nπ + (-1)\((-\frac{π}4)\) ,where n ϵ Z

Or x = nπ + (-1)n+1 \((\frac{π}4)\),where n ϵ Z 

Thus, 

x gives the required general solution for given trigonometric equation.

28.

Find the general solution of the following equation: 4sin x cos x + 2sin x + 2cos x + 1 = 0

Answer»

To Find: General solution. 

Given: 4sin x cos x + 2sin x + 2cos x + 1 = 0 

⇒ 2sin x (2cos x + 1) + 2cos x + 1 = 0 

So (2cos x + 1) (2sin x + 1) = 0

cos x -1/2 = cos(2π)3 or x = -1/2 = sin 7π/6

Formula used: cos θ = cos α

θ = 2nπ ± α or sin θ = sin α

⇒ θ = mπ + (-1)m α where n, m ∈ l

x = 2nπ ± 2π/3 or x = mπ + (-1)m. 7π/6 where n, m ∈ l

So the general solution is x = 2nπ ± 2π/3 or x = mπ + (-1)m. 7π/6 where n, m ∈ l

29.

Solve the following equations : 2 cos2 x – 5 cos x + 2 = 0

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.

• tan x = tan y, implies x = nπ + y, where n ∈ Z.

given,

2 cos2 x – 5 cos x + 2 =0 

As the equation is of 2nd degree, so we need to solve a quadratic equation. 

First we will substitute trigonometric ratio with some variable k and we will solve for k 

Let, cos x = k 

∴ 2k2 – 5k + 2 = 0 

⇒ 2k2 – 4k – k +2 = 0 

⇒ 2k(k – 2) -1(k -2) = 0 

⇒ (k – 2)(2k - 1) = 0 

∴ k = 2 or k = 1/2

⇒ cos x = 2 {which is not possible} or cos x = 1/2 (acceptable) 

∴ cos x = 1/2 

⇒ cos x = cos 60° = cos π/3 

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

On comparing our equation with standard form, we have 

y = \(\fracπ{3}\)

∴ x = 2nπ ± \(\fracπ{3}\)where n ϵ Z ..ans

30.

Solve the following equations : cos x + cos 2x + cos 3x = 0

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given, 

cos x + cos 2x + cos 3x = 0 

To solve the equation we need to change its form so that we can equate the t-ratios individually. 

For this we will be applying transformation formulae. While applying the Transformation formula we need to select the terms wisely which we want to transform. 

As, 

cos x + cos 2x + cos 3x = 0 

∴ we will use cos x and cos 2x for transformation as after transformation it will give cos 2x term which can be taken common. 

∴ cos x + cos 2x + cos 3x = 0 

⇒ cos 2x + (cos x + cos 3x) = 0

{∵ cos A + cos B = 2 cos \((\frac{A+B}2)\) cos \((\frac{A-B}2)\)]

⇒ cos 2x + 2 cos \((\frac{3x+x}2)\) cos \(\frac{3x-x}2\) = 0

⇒ cos 2x + 2cos 2x cos x = 0 

⇒ cos 2x ( 1 + 2 cos x) = 0 

∴ cos 2x = 0 or 1 + 2cos x = 0 

⇒ cos 2x = cos π/2 or cos x = -1/2 

⇒ cos 2x = cos π/2 or cos x = cos (π - π/3) = cos (2π /3) 

If cos x = cos y implies x = 2nπ ± y, where n ∈ Z. 

From above expression and on comparison with standard equation we have: 

y = \(\frac{π}2\) or y = \(\frac{2π}3\)

∴ 2x = 2nπ ± \(\frac{π}2\) or x = 2mπ ± \(\frac{2π}3\)

∴ x = nπ ± \(\frac{π}4\) or x = 2mπ ± \(\frac{2π}3\) where m, n ϵ Z

31.

Solve the following equations : cos 4x = cos 2x

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given,

cos 4x = cos 2x

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

From above expression and on comparison with standard equation we have: 

y = 2x

∴ 4x = 2nπ ± 2x

Hence,

4x = 2nπ + 2x or 4x = 2mπ - 2x

∴ 2x = 2nπ or 6x = 2mπ

⇒ x = nπ or x = \(\frac{2mπ}6\) = \(\frac{mπ}3\)

∴ x = nπ or \(\frac{mπ}3\)where m, n ϵ Z ..ans

32.

Find the general solution of the following equation: tan3 x – 3tan x = 0

Answer»

To Find: General solution.

Given: tan3x - 3tanx = 0

⇒ tan x (tan2 x - 3) = 0

⇒ tan x = 0 or tan x = ± √3

⇒ tan x = 0 or tan x = (π/3) or tan x = tan (2π/3)

Formula used: tan θ = 0 

⇒ θ = nπ, n ∈ l, tan θ = tan α

⇒ θ = kπ ± α, k ∈ l

So x = nπ or x = kπ + π/3 or x pπ + 2π/3 where n, k, p ∈ l

So general solution is x = nπ or x = kπ + π/3 or x = pπ + 2π/3 where n, k, p ∈ l