Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Prove the following trigonometric identities:\(\frac{cos^2θ}{sin θ}-cosec θ+sin θ=0\)

Answer»

\(\frac{cos^2θ}{sin θ}-cosec θ+sin θ \) = \(\frac{cos^2θ} {sin θ}-\frac{1}{sin θ}+sinθ\)

=  \(\frac{cos^2θ-1+sin^2θ} {sin θ}\)  

\(\frac{(cos^2θ+sin^2θ)-1}{sinθ}\) 

\(\frac{1-1}{sin θ}\)  =0

Hence Proved.

52.

Prove the following trigonometric identities:\(\frac{cosθ}{cosecθ+1}+\frac{cosθ}{cosecθ-1}\) = 2 tanθ

Answer»

\(\frac{cosθ}{cosecθ+1}+\frac{cosθ}{cosecθ-1}\)

= \(\frac{cosθ(cosecθ-1)+cosθ(cosecθ+1)}{(cosecθ+1)(cosecθ-1)}\) 

\(\frac{2cotθ}{cot^2θ}\) 

= 2 tanθ

Hence Proved.

53.

Prove the following trigonometric identities:\(\sqrt{\frac{1-cosθ}{1+cosθ}}\) = cosecθ - cotθ

Answer»

 \(\sqrt{\frac{1-cosθ}{1+cosθ}}\) = \(\sqrt{\frac{1-cosθ}{1+cosθ}\times\frac{1-cosθ}{1-cosθ}}\)

\(\sqrt{\frac{(1-cosθ)^2}{1-cos^2θ}}\)

=  \(\sqrt{\frac{(1-cosθ)^2}{sin^2θ}}\)

\(\frac{1-cosθ}{sinθ}\)

\(\frac{1}{sinθ}-\frac{cosθ}{sinθ}\)

= cosecθ-cotθ

Hence Proved.

54.

Prove the following trigonometric identities:sec6 θ = tan6 θ + 3tan2 θsec2 θ + 1

Answer»

Taking RHS 

tan6θ + 3tan2θsec2θ + 1 

= (sec2θ - 1)3 + 3(sec2θ - 1)sec2θ + 1 

[As, tan2θ = sec2θ - 1] 

= (sec6θ - 1 - 3sec4θ + 3sec2θ) + (3sec4θ - 3sec2θ) + 1 

[(a + b)3 = a3 - b3 - 3a2b + 3ab2

= sec6θ= LHS Hence Proved.

55.

Prove the following trigonometric identities:(1-cos2A)cosec2A-1

Answer»

To Prove : (1-cos2A)cosec2A =1

Proof:

1 - cos2A = = sin2 A

Therefore, L.H.S = sin2A .cosec2 A

Now, cosec2A = \(\frac{1}{sin^2A}\)

Therefore, L.H.S = sin2A .   \(\frac{1}{sin^2A}\)= 1

R.H.S = 1

L.H.S = R.H.S

Hence Proved.

56.

Prove the following trigonometric identities:sin2A cos2B - cos2Asin2B = sin2A - sin2B

Answer»

To prove:  sin2A cos2B - cos2Asin2B = sin2A - sin2B

Proof: Take LHS, Use the identity sin2θ+cos2θ=1

sin2A cos2B - cos2A sin2B

= sin2A(1 – sin2B) – (1 – sin2A)sin2

sin2B – sin2B + sin2A sin2B

= sin2A – sin2B

= RHS Hence Proved

57.

Prove the following trigonometric identities:cot2A cosec2B - cot2B cosec2A = cot2A - cot2B

Answer»

cot2A cosec2B - cot2B cosec2

= cot2A(1+ cot2B) - cot2B(1+ cot2A)

= cot2A + cot2A cot2B - cot2B - cot2A cot2B

= cot2A - cot2B

Hence Proved.

58.

Prove the following trigonometric identities:cos2A + \(\frac{1}{1+cot^2A}=1\)

Answer»

 cos2A + \(\frac{1}{1+cot^2A}=cos^2A+\frac{1}{cosec^2A}\)

= cos2A + sin2A

= 1

Hence Proved.

59.

If A and B are acute angles such that sin A = cos B then (A +B) =? (a) 45 (b) 60 (c) 90 (d) 180 

Answer»

The correct option is (c) 90.

60.

If (cosec θ + cot θ) = m and (cosec θ − cot θ) = n, show that mn = 1.

Answer»

(cosec θ + cot θ) = m …(1) and

(cosec θ − cot θ) = n …(2)

Multiply (1) and (2)

(cosec2 θ – cot2 θ) = mn

(Because cosec2 θ – cot2 θ = 1)

1 = mn

Or mn = 1

Hence Proved

61.

If √3tanθ = 3sinθ, find the value of sin2θ - cos2θ

Answer»

√3tanθ = 3sinθ

√3\(\frac{sinθ}{cosθ}\) = 3 x 3sinθ

\(\frac{1}{cosθ}\) = √3

cosθ = \(\frac{1}{\sqrt{3}}\) 

Now, sin2θ - cos2θ = 1 - cos2θ - cos2θ

= 1 - 2 cos2θ

= 1 - 2 x \(\Big(\frac{1}{\sqrt{3}}\Big)^2\) 

= 1 - 2 x \(\frac{1}{3}=\frac{1}{3}\)

62.

Prove the following trigonometric identities:\(\frac{(1+tan^2θ)cotθ}{cosec^2θ}\) = tanθ

Answer»

\(\frac{(1+tan^2θ)cotθ}{cosec^2θ}\)   =   \(\frac{sec^2\times θcotθ}{cosec^2θ}\)

=  \(\frac{sin^2θ}{cos^2θ}\times cotθ\)

 = tan2θ x cotθ

 = tan2θ x \(\frac{1}{tanθ}\)

 = tanθ 

Hence Proved.

63.

If sec2θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.

Answer»

Given: sec2θ (1 + sin θ) (1 − sin θ) = k 

To find:

Consider sec2θ (1 + sin θ) (1 − sin θ) 

∵ (a – b) (a + b) = a2 – b

∴ sec2θ (1 + sin θ) (1 − sin θ) = sec2θ(1 – sin2θ) 

Now, as sin2θ + cos2θ = 1 

⇒ cos2θ = 1 – sin2θ 

⇒ sec2θ(1 + sin θ)(1 − sin θ) = sec2θ(1 – sin2θ) 

= sec2θ cos2θ 

Now, 

∵  secθ = \(\frac{1}{cosθ}\)

⇒ sec2θ = \(\frac{1}{cos^2θ}\)

⇒ sec2θ(1 + sin θ)(1 − sin θ) = sec2θ(1 – sin2θ) 

= sec2θ cos2θ 

\(\frac{1}{cos^2θ }\)cos2θ = 1

⇒ k = 1

64.

If sin2θcos2θ(1 + tan2θ)(1 + cot2θ) = λ, then find the value of λ.

Answer»

Given: sin2θ cos2θ (1 + tan2θ)(1 + cot2θ) = λ 

To find: λ 

We know that 1 + tan2θ = sec2θ 

And 1 + cot2θ = cosec2θ 

⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) 

= sin2θ cos2θ sec2θ cosec2θ

Now,

∵ cosecθ = \(\frac{1}{sinθ}\)

⇒ cosec2θ = \(\frac{1}{sin^2θ}\)

And ∵ secθ = \(\frac{1}{cosθ}\)

⇒ sec2θ = \(\frac{1}{cos^2θ}\)

⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ)

= sin2θ cos2θ sec2θ cosec2θ

= sin2θ cos2θ \(\frac{1}{cos^2θ}\)\(\frac{1}{sin^2θ}\)= 1

⇒ λ = 1

65.

If cosθ = \(\frac{3}{4}\), then find the value of 9tan2θ + 9.

Answer»

Given: cosθ = \(\frac{3}{4}\)

To find: 9 tan2θ + 9 

∵ secθ = \(\frac{1}{cosθ}\) = \(\frac{4}{3}\)

∴ sec2θ = \(\Big(\frac{4}{3}\Big)^2\)\(\frac{16}{9}\)

Also, we know that 1 + tan2θ = sec2θ

⇒ tan2θ = sec2θ - 1

=\(\frac{16}{9}\) - 1 = \(\frac{16-9}{9}\) = \(\frac{7}{9}\)

⇒ 9tan2θ + 9 = 9\(\Big(\frac{7}{9}\Big)\) + 9 = 7 + 9 = 16

66.

if sinθ = \(\frac{1}{3}\) , then find the value of 2 cot2θ + 2.

Answer»

Given: sinθ = \(\frac{1}{3}\)

To find: The value of 2cot2θ + 2. 

Solution: \(\)​sinθ = \(\frac{1}{3}\)

∵ cosecθ = \(\frac{1}{sinθ}\) = \(\frac{1}{1/3}\) = 3

⇒ cosec2θ = 32 = 9

Also, 1 + cot2θ = cosec2θ 

⇒ cot2θ = cosec2θ – 1 = 9 – 1 = 8 

⇒ 2 cot2θ + 2 = 2 (8) + 2 = 16 + 2 = 18

Hence, 

the value of 2cot2θ + 2 is 18.

67.

What is the value of 6tan2θ - \(\frac{6}{cos^2θ}\) ?

Answer»

To find: 6tan2θ - \(\frac{6}{cos^2θ}\) 

∵ secθ = \(\frac{1}{cosθ}\) 

⇒ sec2θ = \(\frac{1}{cos^2θ}\)

⇒6tan2θ - \(\frac{6}{cos^2θ}\) = 6tan2θ -6sec2θ = 6(tan2θ - sec2θ)

Now, as 1 + tan2θ = sec2θ 

⇒ tan2θ – sec2θ = – 1

⇒ 6tan2θ - \(\frac{6}{cos^2θ}\) = 6(tan2θ - sec2θ) = 6(-1) = - 6

68.

What is the value of 9 cot2θ − 9 cosec2θ?

Answer»

To find: 9 cot2θ – 9 cosec2θ

Consider 9 cot2θ – 9 cosec2θ = 9 (cot2θ – cosec2θ) 

Now 

1 + cot2 θ = cosec2θ 

⇒ cot2θ – cosec2  = – 1 

⇒ 9 cot2θ – 9 cosec2θ = 9 (cot2θ – cosec2θ) 

= 9 ( – 1) = – 9

69.

What is the value of (1 + tan2θ) (1 − sinθ) (1 + sinθ)?

Answer»

To find: (1 + tan2θ) (1 − sin θ) (1 + sin θ) 

∵ (a – b) (a + b) = a2 – b2 

∴ (1 + tan2θ) (1 − sin θ) (1 + sin θ) 

= (1 + tan2θ) (1 – sin2θ) 

Now, as sin2θ + cos2θ = 1 

⇒ 1 – sin2θ = cos2θ………(i)

Also, we know that 1 + tan2θ = sec2θ ……(ii) 

Using (i) and (ii), we have 

(1 + tan2θ) (1 − sinθ) (1 + sinθ) 

= (1 + tan2θ) (1 – sin2θ) 

= sec2θ cos2θ

∵secθ = \(\frac{1}{cosθ}\) 

sec2θ = \(\frac{1}{cos^2θ}\) 

⇒ (1 + tan2θ) (1 − sinθ) (1 + sinθ)

= sec2θ cos2θ

\(\frac{1}{cos^2θ}{cos^2θ}= 1\)

70.

Prove: sin θ(1 + tan θ) + cos θ(1 + cot θ) = (sec θ + cosec θ).

Answer»

L.H.S. = sin θ (1 + tan θ) + cos θ (1+ cot θ)

= sin θ (1 + sin θ/cos θ) + cos θ (1+ cos θ/sinθ)

= sin θ{(cosθ +sinθ )/cos θ} + cos θ{(sinθ+cosθ )/sinθ}

=(cos θ + sin θ) (sinθ/cos θ + cos θ/sinθ)

= (cos θ + sin θ)/cos θ sin θ

= cosec θ + sec θ

= R.H.S.

71.

What is the value of \(\frac{tan^2θ - sec^2θ}{cot^2θ - cosec^2θ}\) ?

Answer»

To find:  \(\frac{tan^2θ - sec^2θ}{cot^2θ - cosec^2θ}\)

We know that 1 + tan2θ = sec2θ 

And 1 + cot2θ = cosec2θ 

⇒ tan2θ – sec2θ = – 1 

And cot2θ – cosec2θ = – 1

⇒ \(\frac{tan^2θ - sec^2θ}{cot^2θ - cosec^2θ}\) = \(\frac{-1}{-1}\) = 1

72.

Write the value of 4tan2θ – 4/cos2θ

Answer»

4tan2θ – 4/cos2θ 

= 4 x sin2θ/cos2θ – 4/cos2θ

= (4(sin2θ – 1))/cos2θ

= 4 (-cos2θ) / cos2θ

= -4

73.

Write the value of (tan2θ – sec2θ) / (cot2θ – cose2θ)

Answer»

(tan2θ – sec2θ) / (cot2θ – cose2θ) 

= -1/-1

= 1

(Using 1 + cot2θ = cose2θ and 1 + tan2θ = sec2θ)

74.

If a cos θ + b sin θ and a sin θ − b cos θ = 3, then a2 + b2 = A. 7 B. 12 C. 25 D. None of these

Answer»

Given: a cosθ + b sinθ = 4

Squaring both sides, we get 

(a cosθ + b sinθ)2 = 42 

⇒ a2 cos2θ + b2 sin2θ + 2ab sin θ cos θ = 16 …(i) 

and a sinθ – b cosθ = 3 

Squaring both sides, we get 

(a sinθ – b cosθ)2 = 32 

⇒ a2 sin2θ + b2 cos2θ – 2ab sinθ cosθ = 9 …(ii) 

To find: a2 + b2 

Adding (i) and (ii), we get 

a2 cos2θ + b2 sin2θ + 2ab sinθ cosθ + a2 sin2θ + b2cos2θ – 2ab sinθ cosθ = 16 + 9

 ⇒ a2 (sin2θ + cos2θ) + b2 (sin2 θ + cos2θ) = 25 

⇒ a2 + b2 = 25 [∵ sin2θ + cos2θ = 1]

75.

If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p2− q2 = A. a2− b2 B. b2− a2 C. a2 + b2 D. b − a

Answer»

Given: a cot θ + b cosec θ = p 

Squaring both sides, we get 

(a cot θ + b cosec θ)2 = p2

⇒ a2 cot2θ + b2 cosec2θ + 2ab cotθ cosecθ = p2 ……(i) 

and b cotθ + a cosecθ = q 

Squaring both sides, we get 

(b cot θ + a cosec θ)2 = q2 

⇒ b2 cot2θ + a2 cosec2θ + 2ab cotθ cosecθ = q2 ……(ii) 

To find: p2 – q

Subtracting (ii) from (i), we get 

a2 cot2θ + b2 cosec2θ + 2ab cotθ cosecθ – b2 cot2θ – a2 cosec2θ – 2ab cotθ cosecθ = p2 – q2 

⇒ P2 – q2 = a2 (cot2θ – cosec2θ) + b2 (cosec2θ – cot2θ) 

= a2 ( – 1) + b2 (1) [∵1 = cosec2θ – cot2θ] 

= b2 – a2

76.

The value of sin2 29° + sin2 61° is A. 1 B. 0 C. 2 sin2 29° D. 2 cos2 61

Answer»

To find: sin2 29° + sin261° 

Consider sin2 29° + sin261° 

∵ 29 = 90 – 61 

∴ sin2 29° + sin261° = sin2 (90° – 61°) + sin2 61° 

Now, as sin (90° – θ) = cos θ 

⇒ sin2 29° + sin261° = sin2 (90° – 61°) + sin2 61° 

= cos2 61° + sin2 61° 

= 1 [sin2θ + cos2θ = 1]

77.

Prove the following trigonometric identities:(1 + cot2 A)sin2 A = 1

Answer»

Consider, 

(1+cot2A)sin2

As we know 1+cot2A = cosec2

Putting the values we get, 

(cosec2A)sin2

As we know,cosec A = 1/sinA 

So,

\(\frac{1}{sin^2A}\times\,sin^2A\) = 1

hence proved

78.

Prove the following trigonometric identities:sin2 A cot2A + cos2A tan2A =1

Answer»

Given : sin2 A cot2A + cos2A tan2A =1

To prove : Above equality holds. Proof: Consider LHS, we know,

cot θ =  \(\frac{cosθ}{sinθ}\)   and  tanθ = \(\frac{sinθ}{cosθ}\)

using these  

sin2A cot2A + cos2A tan2A

= sin2A x \(\frac{cos^2A}{sin^2A}\)  + cos2\(\frac{sin^2A}{cos^2A}\)  

= cos2A sin2A

= 1

Which is equal to RHS. 

Hence Proved

79.

If sec θ + tan θ = x, then tan θ =A. \(\frac{X^2+1}{X}\) B. \(\frac{X^2-1}{X}\) C. \(\frac{X^2+1}{2X}\) D. \(\frac{X^2-1}{2X}\)

Answer»

Given: sec θ + tan θ = x ...…(i) 

To find: tan θ 

We know that 1 + tan2θ = sec2θ 

⇒ sec2θ – tan2θ = 1 

∵ a2 – b2 = (a – b) (a + b) 

∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1 

⇒ From (i), we have 

⇒ (secθ – tanθ) x = 1 

⇒ secθ – tanθ = \(\frac{1}{X}\)………(ii) 

Subtracting (ii) from (i), we get

tanθ + tanθ = \(X-\frac{1}{X}\) 

2tanθ = \(\frac{X^2-1}{X}\) 

tanθ = \(\frac{X^2-1}{2X}\)

80.

If sec θ + tan θ = x, then sec θ =A. \(\frac{X^2+1}{X}\) B. \(\frac{X^2+1}{2X}\) C. \(\frac{X^2-1}{2X}\) D. \(\frac{X^2-1}{X}\)

Answer»

Given: secθ + tanθ = x …(i) 

To find: secθ 

We know that 1 + tan2θ = sec2θ 

⇒ sec2θ – tan2θ = 1 

∵ a2 – b2 = (a – b) (a + b) 

∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1

 ⇒ From (i), we have 

⇒ (secθ – tanθ) x = 1 

⇒ secθ – tanθ = \(\frac{1}{x}\) ...…(ii) 

Adding (i) and (ii), we get

secθ + secθ = \(X+\frac{1}{X}\) 

⇒ secθ =  \(\frac{X^2+1}{2X}\) 

⇒ secθ = \(\frac{X^2+1}{2X}\)

81.

If cosecθ = 2x and cotθ = \(\frac{2}{x}\) , find the value of 2 \(\Big(x^2-\frac{1}{x^2}\Big)\)

Answer»

Given: cosecθ = 2x 

⇒ x = \(\frac{ cosec θ}{2}\) 

⇒ x2 = \(\frac{ cosec^2θ}{4}\)  .........(1)

And cotθ = \(\frac{2}{x}\) 

⇒ x =  \(\frac{2}{cotθ}\) 

⇒ x=  \(\frac{4}{cot^2θ}\) 

⇒ \(\frac{1}{x^2}\)\(\frac{cot^2θ}{4}\) .....(ii)

To find: \(2\Big(x^2-\frac{1}{x^2}\Big)\) 

Consider \(2\Big(x^2-\frac{1}{x^2}\Big)\) = \(2\Big(\frac{cosec^2 θ}{4}-\frac{1}{x^2}\Big)\) [Using (i)]

\(2\Big(\frac{cosec^2 θ}{4}-\frac{cot^2 θ}{4}\Big)\) [Using (ii)]

= \(2\Big(\frac{cosec^2 θ-cot^2 θ}{4}\Big)\) = \(\frac{1}{2}\) (cosec2θ – cot2θ)

Now, as 1 + cot2θ = cosec2θ 

⇒ 1 = cosec2 θ – cot2 θ

⇒ \(2\Big(x^2-\frac{1}{x^2}\Big)\) = \(\frac{1}{2}\) (cosec2θ – cot2θ) = \(\frac{1}{2}\)

82.

If cosecθ + cotθ = m and cosecθ - cotθ = n, prove that mn =1.

Answer»

cosecθ + cotθ = m

cosecθ + cotθ = n

mn = (cosecθ + cotθ)(cosecθ - cotθ)

mn = (cosec2θ + cot2θ)

mn = 1

Hence Proved.

83.

If sinθ + cos θ = √2cos(90° - θ), find cotθ.

Answer»

sinθ + cos θ = √2cos(90° - θ)

cos θ = √2sinθ - sinθ

cos θ = (√2-1)sinθ

\(\frac{cosθ}{sinθ}\) = √2-1

84.

Prove the following trigonometric identities:\(\frac{cosecA}{cosecA-1}+\frac{cosecA}{cosecA+1}\) =2sec2A

Answer»

\(\frac{cosecA}{cosecA-1}+\frac{cosecA}{cosecA+1}\) 

\(\frac{cosecA(cosecA+1)+cosecA(cosecA-1)}{cosec^2A-1}\) 

\(\frac{cosec^2A+cosecA+cosec^2A-cosecA}{cosec^2A-1}\) 

= \(\frac{2cosec^2A}{cot^2A}\) = \(\frac{2}{sin^2A}\times \frac{sin^2A}{cos^2A}\) = 2sec2A

Hence Proved.

85.

Prove the following trigonometric identities:\(\frac{1+sec θ}{sec θ}=\frac{sin^2 θ}{1-cos θ}\)

Answer»

\(\frac{1+sec θ}{sec θ}\)  = \(1+\frac{1}{\frac{cos θ}{\frac{1}{cos θ}}}\)

\(\frac{1+cos θ}{1}\)  

\( \frac{(1+cos θ)(1-cos θ)}{(1-cos θ)}\)  

\( \frac{1-cos^2 θ}{(1-cos θ)}\) 

\(\frac{sin^2 θ}{1-cos θ}\) 

Hence Proved.