InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
Prove the following trigonometric identities:\(\frac{cos^2θ}{sin θ}-cosec θ+sin θ=0\) |
|
Answer» \(\frac{cos^2θ}{sin θ}-cosec θ+sin θ \) = \(\frac{cos^2θ} {sin θ}-\frac{1}{sin θ}+sinθ\) = \(\frac{cos^2θ-1+sin^2θ} {sin θ}\) = \(\frac{(cos^2θ+sin^2θ)-1}{sinθ}\) = \(\frac{1-1}{sin θ}\) =0 Hence Proved. |
|
| 52. |
Prove the following trigonometric identities:\(\frac{cosθ}{cosecθ+1}+\frac{cosθ}{cosecθ-1}\) = 2 tanθ |
|
Answer» \(\frac{cosθ}{cosecθ+1}+\frac{cosθ}{cosecθ-1}\) = \(\frac{cosθ(cosecθ-1)+cosθ(cosecθ+1)}{(cosecθ+1)(cosecθ-1)}\) = \(\frac{2cotθ}{cot^2θ}\) = 2 tanθ Hence Proved. |
|
| 53. |
Prove the following trigonometric identities:\(\sqrt{\frac{1-cosθ}{1+cosθ}}\) = cosecθ - cotθ |
|
Answer» \(\sqrt{\frac{1-cosθ}{1+cosθ}}\) = \(\sqrt{\frac{1-cosθ}{1+cosθ}\times\frac{1-cosθ}{1-cosθ}}\) = \(\sqrt{\frac{(1-cosθ)^2}{1-cos^2θ}}\) = \(\sqrt{\frac{(1-cosθ)^2}{sin^2θ}}\) = \(\frac{1-cosθ}{sinθ}\) = \(\frac{1}{sinθ}-\frac{cosθ}{sinθ}\) = cosecθ-cotθ Hence Proved. |
|
| 54. |
Prove the following trigonometric identities:sec6 θ = tan6 θ + 3tan2 θsec2 θ + 1 |
|
Answer» Taking RHS tan6θ + 3tan2θsec2θ + 1 = (sec2θ - 1)3 + 3(sec2θ - 1)sec2θ + 1 [As, tan2θ = sec2θ - 1] = (sec6θ - 1 - 3sec4θ + 3sec2θ) + (3sec4θ - 3sec2θ) + 1 [(a + b)3 = a3 - b3 - 3a2b + 3ab2] = sec6θ= LHS Hence Proved. |
|
| 55. |
Prove the following trigonometric identities:(1-cos2A)cosec2A-1 |
|
Answer» To Prove : (1-cos2A)cosec2A =1 Proof: 1 - cos2A = = sin2 A Therefore, L.H.S = sin2A .cosec2 A Now, cosec2A = \(\frac{1}{sin^2A}\) Therefore, L.H.S = sin2A . \(\frac{1}{sin^2A}\)= 1 R.H.S = 1 L.H.S = R.H.S Hence Proved. |
|
| 56. |
Prove the following trigonometric identities:sin2A cos2B - cos2Asin2B = sin2A - sin2B |
|
Answer» To prove: sin2A cos2B - cos2Asin2B = sin2A - sin2B Proof: Take LHS, Use the identity sin2θ+cos2θ=1 sin2A cos2B - cos2A sin2B = sin2A(1 – sin2B) – (1 – sin2A)sin2B sin2B – sin2B + sin2A sin2B = sin2A – sin2B = RHS Hence Proved |
|
| 57. |
Prove the following trigonometric identities:cot2A cosec2B - cot2B cosec2A = cot2A - cot2B |
|
Answer» cot2A cosec2B - cot2B cosec2A = cot2A(1+ cot2B) - cot2B(1+ cot2A) = cot2A + cot2A cot2B - cot2B - cot2A cot2B = cot2A - cot2B Hence Proved. |
|
| 58. |
Prove the following trigonometric identities:cos2A + \(\frac{1}{1+cot^2A}=1\) |
|
Answer» cos2A + \(\frac{1}{1+cot^2A}=cos^2A+\frac{1}{cosec^2A}\) = cos2A + sin2A = 1 Hence Proved. |
|
| 59. |
If A and B are acute angles such that sin A = cos B then (A +B) =? (a) 45 (b) 60 (c) 90 (d) 180 |
|
Answer» The correct option is (c) 90. |
|
| 60. |
If (cosec θ + cot θ) = m and (cosec θ − cot θ) = n, show that mn = 1. |
|
Answer» (cosec θ + cot θ) = m …(1) and (cosec θ − cot θ) = n …(2) Multiply (1) and (2) (cosec2 θ – cot2 θ) = mn (Because cosec2 θ – cot2 θ = 1) 1 = mn Or mn = 1 Hence Proved |
|
| 61. |
If √3tanθ = 3sinθ, find the value of sin2θ - cos2θ |
|
Answer» √3tanθ = 3sinθ √3\(\frac{sinθ}{cosθ}\) = √3 x √3sinθ \(\frac{1}{cosθ}\) = √3 cosθ = \(\frac{1}{\sqrt{3}}\) Now, sin2θ - cos2θ = 1 - cos2θ - cos2θ = 1 - 2 cos2θ = 1 - 2 x \(\Big(\frac{1}{\sqrt{3}}\Big)^2\) = 1 - 2 x \(\frac{1}{3}=\frac{1}{3}\) |
|
| 62. |
Prove the following trigonometric identities:\(\frac{(1+tan^2θ)cotθ}{cosec^2θ}\) = tanθ |
|
Answer» \(\frac{(1+tan^2θ)cotθ}{cosec^2θ}\) = \(\frac{sec^2\times θcotθ}{cosec^2θ}\) = \(\frac{sin^2θ}{cos^2θ}\times cotθ\) = tan2θ x cotθ = tan2θ x \(\frac{1}{tanθ}\) = tanθ Hence Proved. |
|
| 63. |
If sec2θ (1 + sin θ) (1 − sin θ) = k, then find the value of k. |
|
Answer» Given: sec2θ (1 + sin θ) (1 − sin θ) = k To find: k Consider sec2θ (1 + sin θ) (1 − sin θ) ∵ (a – b) (a + b) = a2 – b2 ∴ sec2θ (1 + sin θ) (1 − sin θ) = sec2θ(1 – sin2θ) Now, as sin2θ + cos2θ = 1 ⇒ cos2θ = 1 – sin2θ ⇒ sec2θ(1 + sin θ)(1 − sin θ) = sec2θ(1 – sin2θ) = sec2θ cos2θ Now, ∵ secθ = \(\frac{1}{cosθ}\) ⇒ sec2θ = \(\frac{1}{cos^2θ}\) ⇒ sec2θ(1 + sin θ)(1 − sin θ) = sec2θ(1 – sin2θ) = sec2θ cos2θ = \(\frac{1}{cos^2θ }\)cos2θ = 1 ⇒ k = 1 |
|
| 64. |
If sin2θcos2θ(1 + tan2θ)(1 + cot2θ) = λ, then find the value of λ. |
|
Answer» Given: sin2θ cos2θ (1 + tan2θ)(1 + cot2θ) = λ To find: λ We know that 1 + tan2θ = sec2θ And 1 + cot2θ = cosec2θ ⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = sin2θ cos2θ sec2θ cosec2θ Now, ∵ cosecθ = \(\frac{1}{sinθ}\) ⇒ cosec2θ = \(\frac{1}{sin^2θ}\) And ∵ secθ = \(\frac{1}{cosθ}\) ⇒ sec2θ = \(\frac{1}{cos^2θ}\) ⇒ sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = sin2θ cos2θ sec2θ cosec2θ = sin2θ cos2θ \(\frac{1}{cos^2θ}\)\(\frac{1}{sin^2θ}\)= 1 ⇒ λ = 1 |
|
| 65. |
If cosθ = \(\frac{3}{4}\), then find the value of 9tan2θ + 9. |
|
Answer» Given: cosθ = \(\frac{3}{4}\) To find: 9 tan2θ + 9 ∵ secθ = \(\frac{1}{cosθ}\) = \(\frac{4}{3}\) ∴ sec2θ = \(\Big(\frac{4}{3}\Big)^2\)= \(\frac{16}{9}\) Also, we know that 1 + tan2θ = sec2θ ⇒ tan2θ = sec2θ - 1 =\(\frac{16}{9}\) - 1 = \(\frac{16-9}{9}\) = \(\frac{7}{9}\) ⇒ 9tan2θ + 9 = 9\(\Big(\frac{7}{9}\Big)\) + 9 = 7 + 9 = 16 |
|
| 66. |
if sinθ = \(\frac{1}{3}\) , then find the value of 2 cot2θ + 2. |
|
Answer» Given: sinθ = \(\frac{1}{3}\) To find: The value of 2cot2θ + 2. Solution: \(\)sinθ = \(\frac{1}{3}\) ∵ cosecθ = \(\frac{1}{sinθ}\) = \(\frac{1}{1/3}\) = 3 ⇒ cosec2θ = 32 = 9 Also, 1 + cot2θ = cosec2θ ⇒ cot2θ = cosec2θ – 1 = 9 – 1 = 8 ⇒ 2 cot2θ + 2 = 2 (8) + 2 = 16 + 2 = 18 Hence, the value of 2cot2θ + 2 is 18. |
|
| 67. |
What is the value of 6tan2θ - \(\frac{6}{cos^2θ}\) ? |
|
Answer» To find: 6tan2θ - \(\frac{6}{cos^2θ}\) ∵ secθ = \(\frac{1}{cosθ}\) ⇒ sec2θ = \(\frac{1}{cos^2θ}\) ⇒6tan2θ - \(\frac{6}{cos^2θ}\) = 6tan2θ -6sec2θ = 6(tan2θ - sec2θ) Now, as 1 + tan2θ = sec2θ ⇒ tan2θ – sec2θ = – 1 ⇒ 6tan2θ - \(\frac{6}{cos^2θ}\) = 6(tan2θ - sec2θ) = 6(-1) = - 6 |
|
| 68. |
What is the value of 9 cot2θ − 9 cosec2θ? |
|
Answer» To find: 9 cot2θ – 9 cosec2θ Consider 9 cot2θ – 9 cosec2θ = 9 (cot2θ – cosec2θ) Now 1 + cot2 θ = cosec2θ ⇒ cot2θ – cosec2 = – 1 ⇒ 9 cot2θ – 9 cosec2θ = 9 (cot2θ – cosec2θ) = 9 ( – 1) = – 9 |
|
| 69. |
What is the value of (1 + tan2θ) (1 − sinθ) (1 + sinθ)? |
|
Answer» To find: (1 + tan2θ) (1 − sin θ) (1 + sin θ) ∵ (a – b) (a + b) = a2 – b2 ∴ (1 + tan2θ) (1 − sin θ) (1 + sin θ) = (1 + tan2θ) (1 – sin2θ) Now, as sin2θ + cos2θ = 1 ⇒ 1 – sin2θ = cos2θ………(i) Also, we know that 1 + tan2θ = sec2θ ……(ii) Using (i) and (ii), we have (1 + tan2θ) (1 − sinθ) (1 + sinθ) = (1 + tan2θ) (1 – sin2θ) = sec2θ cos2θ ∵secθ = \(\frac{1}{cosθ}\) sec2θ = \(\frac{1}{cos^2θ}\) ⇒ (1 + tan2θ) (1 − sinθ) (1 + sinθ) = sec2θ cos2θ = \(\frac{1}{cos^2θ}{cos^2θ}= 1\) |
|
| 70. |
Prove: sin θ(1 + tan θ) + cos θ(1 + cot θ) = (sec θ + cosec θ). |
|
Answer» L.H.S. = sin θ (1 + tan θ) + cos θ (1+ cot θ) = sin θ (1 + sin θ/cos θ) + cos θ (1+ cos θ/sinθ) = sin θ{(cosθ +sinθ )/cos θ} + cos θ{(sinθ+cosθ )/sinθ} =(cos θ + sin θ) (sinθ/cos θ + cos θ/sinθ) = (cos θ + sin θ)/cos θ sin θ = cosec θ + sec θ = R.H.S. |
|
| 71. |
What is the value of \(\frac{tan^2θ - sec^2θ}{cot^2θ - cosec^2θ}\) ? |
|
Answer» To find: \(\frac{tan^2θ - sec^2θ}{cot^2θ - cosec^2θ}\) We know that 1 + tan2θ = sec2θ And 1 + cot2θ = cosec2θ ⇒ tan2θ – sec2θ = – 1 And cot2θ – cosec2θ = – 1 ⇒ \(\frac{tan^2θ - sec^2θ}{cot^2θ - cosec^2θ}\) = \(\frac{-1}{-1}\) = 1 |
|
| 72. |
Write the value of 4tan2θ – 4/cos2θ |
|
Answer» 4tan2θ – 4/cos2θ = 4 x sin2θ/cos2θ – 4/cos2θ = (4(sin2θ – 1))/cos2θ = 4 (-cos2θ) / cos2θ = -4 |
|
| 73. |
Write the value of (tan2θ – sec2θ) / (cot2θ – cose2θ) |
|
Answer» (tan2θ – sec2θ) / (cot2θ – cose2θ) = -1/-1 = 1 (Using 1 + cot2θ = cose2θ and 1 + tan2θ = sec2θ) |
|
| 74. |
If a cos θ + b sin θ and a sin θ − b cos θ = 3, then a2 + b2 = A. 7 B. 12 C. 25 D. None of these |
|
Answer» Given: a cosθ + b sinθ = 4 Squaring both sides, we get (a cosθ + b sinθ)2 = 42 ⇒ a2 cos2θ + b2 sin2θ + 2ab sin θ cos θ = 16 …(i) and a sinθ – b cosθ = 3 Squaring both sides, we get (a sinθ – b cosθ)2 = 32 ⇒ a2 sin2θ + b2 cos2θ – 2ab sinθ cosθ = 9 …(ii) To find: a2 + b2 Adding (i) and (ii), we get a2 cos2θ + b2 sin2θ + 2ab sinθ cosθ + a2 sin2θ + b2cos2θ – 2ab sinθ cosθ = 16 + 9 ⇒ a2 (sin2θ + cos2θ) + b2 (sin2 θ + cos2θ) = 25 ⇒ a2 + b2 = 25 [∵ sin2θ + cos2θ = 1] |
|
| 75. |
If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p2− q2 = A. a2− b2 B. b2− a2 C. a2 + b2 D. b − a |
|
Answer» Given: a cot θ + b cosec θ = p Squaring both sides, we get (a cot θ + b cosec θ)2 = p2 ⇒ a2 cot2θ + b2 cosec2θ + 2ab cotθ cosecθ = p2 ……(i) and b cotθ + a cosecθ = q Squaring both sides, we get (b cot θ + a cosec θ)2 = q2 ⇒ b2 cot2θ + a2 cosec2θ + 2ab cotθ cosecθ = q2 ……(ii) To find: p2 – q2 Subtracting (ii) from (i), we get a2 cot2θ + b2 cosec2θ + 2ab cotθ cosecθ – b2 cot2θ – a2 cosec2θ – 2ab cotθ cosecθ = p2 – q2 ⇒ P2 – q2 = a2 (cot2θ – cosec2θ) + b2 (cosec2θ – cot2θ) = a2 ( – 1) + b2 (1) [∵1 = cosec2θ – cot2θ] = b2 – a2 |
|
| 76. |
The value of sin2 29° + sin2 61° is A. 1 B. 0 C. 2 sin2 29° D. 2 cos2 61 |
|
Answer» To find: sin2 29° + sin261° Consider sin2 29° + sin261° ∵ 29 = 90 – 61 ∴ sin2 29° + sin261° = sin2 (90° – 61°) + sin2 61° Now, as sin (90° – θ) = cos θ ⇒ sin2 29° + sin261° = sin2 (90° – 61°) + sin2 61° = cos2 61° + sin2 61° = 1 [sin2θ + cos2θ = 1] |
|
| 77. |
Prove the following trigonometric identities:(1 + cot2 A)sin2 A = 1 |
|
Answer» Consider, (1+cot2A)sin2A As we know 1+cot2A = cosec2A Putting the values we get, (cosec2A)sin2A As we know,cosec A = 1/sinA So, \(\frac{1}{sin^2A}\times\,sin^2A\) = 1 hence proved |
|
| 78. |
Prove the following trigonometric identities:sin2 A cot2A + cos2A tan2A =1 |
|
Answer» Given : sin2 A cot2A + cos2A tan2A =1 To prove : Above equality holds. Proof: Consider LHS, we know, cot θ = \(\frac{cosθ}{sinθ}\) and tanθ = \(\frac{sinθ}{cosθ}\) using these sin2A cot2A + cos2A tan2A = sin2A x \(\frac{cos^2A}{sin^2A}\) + cos2x \(\frac{sin^2A}{cos^2A}\) = cos2A sin2A = 1 Which is equal to RHS. Hence Proved |
|
| 79. |
If sec θ + tan θ = x, then tan θ =A. \(\frac{X^2+1}{X}\) B. \(\frac{X^2-1}{X}\) C. \(\frac{X^2+1}{2X}\) D. \(\frac{X^2-1}{2X}\) |
|
Answer» Given: sec θ + tan θ = x ...…(i) To find: tan θ We know that 1 + tan2θ = sec2θ ⇒ sec2θ – tan2θ = 1 ∵ a2 – b2 = (a – b) (a + b) ∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1 ⇒ From (i), we have ⇒ (secθ – tanθ) x = 1 ⇒ secθ – tanθ = \(\frac{1}{X}\)………(ii) Subtracting (ii) from (i), we get tanθ + tanθ = \(X-\frac{1}{X}\) 2tanθ = \(\frac{X^2-1}{X}\) tanθ = \(\frac{X^2-1}{2X}\) |
|
| 80. |
If sec θ + tan θ = x, then sec θ =A. \(\frac{X^2+1}{X}\) B. \(\frac{X^2+1}{2X}\) C. \(\frac{X^2-1}{2X}\) D. \(\frac{X^2-1}{X}\) |
|
Answer» Given: secθ + tanθ = x …(i) To find: secθ We know that 1 + tan2θ = sec2θ ⇒ sec2θ – tan2θ = 1 ∵ a2 – b2 = (a – b) (a + b) ∴ sec2θ – tan2θ = (secθ – tanθ) (secθ + tanθ) = 1 ⇒ From (i), we have ⇒ (secθ – tanθ) x = 1 ⇒ secθ – tanθ = \(\frac{1}{x}\) ...…(ii) Adding (i) and (ii), we get secθ + secθ = \(X+\frac{1}{X}\) ⇒ secθ = \(\frac{X^2+1}{2X}\) ⇒ secθ = \(\frac{X^2+1}{2X}\) |
|
| 81. |
If cosecθ = 2x and cotθ = \(\frac{2}{x}\) , find the value of 2 \(\Big(x^2-\frac{1}{x^2}\Big)\) |
|
Answer» Given: cosecθ = 2x ⇒ x = \(\frac{ cosec θ}{2}\) ⇒ x2 = \(\frac{ cosec^2θ}{4}\) .........(1) And cotθ = \(\frac{2}{x}\) ⇒ x = \(\frac{2}{cotθ}\) ⇒ x2 = \(\frac{4}{cot^2θ}\) ⇒ \(\frac{1}{x^2}\) = \(\frac{cot^2θ}{4}\) .....(ii) To find: \(2\Big(x^2-\frac{1}{x^2}\Big)\) Consider \(2\Big(x^2-\frac{1}{x^2}\Big)\) = \(2\Big(\frac{cosec^2 θ}{4}-\frac{1}{x^2}\Big)\) [Using (i)] = \(2\Big(\frac{cosec^2 θ}{4}-\frac{cot^2 θ}{4}\Big)\) [Using (ii)] = \(2\Big(\frac{cosec^2 θ-cot^2 θ}{4}\Big)\) = \(\frac{1}{2}\) (cosec2θ – cot2θ) Now, as 1 + cot2θ = cosec2θ ⇒ 1 = cosec2 θ – cot2 θ ⇒ \(2\Big(x^2-\frac{1}{x^2}\Big)\) = \(\frac{1}{2}\) (cosec2θ – cot2θ) = \(\frac{1}{2}\) |
|
| 82. |
If cosecθ + cotθ = m and cosecθ - cotθ = n, prove that mn =1. |
|
Answer» cosecθ + cotθ = m cosecθ + cotθ = n mn = (cosecθ + cotθ)(cosecθ - cotθ) mn = (cosec2θ + cot2θ) mn = 1 Hence Proved. |
|
| 83. |
If sinθ + cos θ = √2cos(90° - θ), find cotθ. |
|
Answer» sinθ + cos θ = √2cos(90° - θ) cos θ = √2sinθ - sinθ cos θ = (√2-1)sinθ \(\frac{cosθ}{sinθ}\) = √2-1 |
|
| 84. |
Prove the following trigonometric identities:\(\frac{cosecA}{cosecA-1}+\frac{cosecA}{cosecA+1}\) =2sec2A |
|
Answer» \(\frac{cosecA}{cosecA-1}+\frac{cosecA}{cosecA+1}\) = \(\frac{cosecA(cosecA+1)+cosecA(cosecA-1)}{cosec^2A-1}\) = \(\frac{cosec^2A+cosecA+cosec^2A-cosecA}{cosec^2A-1}\) = \(\frac{2cosec^2A}{cot^2A}\) = \(\frac{2}{sin^2A}\times \frac{sin^2A}{cos^2A}\) = 2sec2A Hence Proved. |
|
| 85. |
Prove the following trigonometric identities:\(\frac{1+sec θ}{sec θ}=\frac{sin^2 θ}{1-cos θ}\) |
|
Answer» \(\frac{1+sec θ}{sec θ}\) = \(1+\frac{1}{\frac{cos θ}{\frac{1}{cos θ}}}\) = \(\frac{1+cos θ}{1}\) = \( \frac{(1+cos θ)(1-cos θ)}{(1-cos θ)}\) = \( \frac{1-cos^2 θ}{(1-cos θ)}\) = \(\frac{sin^2 θ}{1-cos θ}\) Hence Proved. |
|