InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
निम्नलिखित फलनों का अवकलज ज्ञात कीजिए- `sec^(-1)((x^(2)+1)/(x^(2)-1))` |
|
Answer» `y=sec^(-1)((x^(2)+1)/(x^(2)-1))` माना `x=cottheta`, तब `theta=cot^(-1)x` `thereforey=sec^(-1)((cot^(2)theta+1)/(cot^(2)theta-1))` `rArry=sec^(-1)((1+tan^(2)theta)/(1-tan^(2)theta))` ltbr gt`rArry=sec^(-1)((cos^(2)theta+sin^(2)theta)/(cos^(2)theta-sin^(2)theta))` `rArry=sec^(-1)(1/(cos^(2)theta-sin^(2)theta))` `rArry=sec^(-1)(1/(cos2theta))` `y=sec^(-1)(sec2theta)` `rArry=2theta=2cot^(-1)x` दोनों पक्षों का x के सापेक्ष अवकलन करने पर, `(dy)/(dx)=2d/(dx)(cot^(-1)x)` `rArr(dy)/(dx)=2xx(-1)/(1+x^(2))` `rArr(dy)/(dx)=(-2)/(1+x^(2))` |
|
| 202. |
`y=cos^(-1)((1-x^(2))/(1+x^(2)))` जबकि `0ltxlt1` का अवकलज ज्ञात कीजिए |
|
Answer» `y=cos^(-1)((1-x^(2))/(1+x^(2)))`, जहाँ `0ltxlt1` `x=tantheta` रखने पर, `thereforey=cos^(-1)((1-tan^(2)theta)/(1+tan^(2)theta))` `rArry=cos^(-1)(cos2theta)` `rArry=2theta` `[because0ltxlt1rArr0lttanthetalt1rArr0ltthetaltpi/4rArr0lt2thetaltpi/2]` `rArry=2tan^(-1)x,` `[becausex=tanthetarArrtheta=tan^(-1)x]` दोनों पक्षों का x के सापेक्ष अवकलन करने पर, `(dy)/(dx)=2d/(dx)tan^(-1)x` `rArr(dy)/(dx)=2.(1)/(1+x^(2))` `rArr(dy)/(dx)=2/(1+x^(2))` |
|
| 203. |
यदि `y=sin^(-1)[xsqrt(1-x)-sqrtxsqrt(1-x^(2))]` हो,तो `(dy)/(dx)` ज्ञात कीजिए। |
|
Answer» `y=sin^(-1)[xsqrt(1-x)-sqrtxsqrt(1-x^(2))]` `rArry=sin^(-1)[sqrt(1-(sqrtx)^(2))-sqrtxsqrt(1-x^(2))]` `x=sintheta` और `sqrtx=sinphi` रखने पर, ltbr gt`y=sin^(-1)[sinthetasqrt(1-sin^(2)phi)-sinphisqrt(1-sin^(2)theta)]` `rArry=sin^(-1)[sinthetacosphi-sinphicostheta]` `rArry=sin^(-1)[sin(theta-phi)]` `rArry=theta-phi` `rArry=sin^(-1)x-sin^(-1)sqrtx` दोनों पक्षों का x के सापेक्ष अवकलन करने पर, `(dy)/(dx)=d/(dx)(sin^(-1)x)-d/(dx)(sin^(-1)sqrtx)` `(du)/(dx)=1/(sqrt(1-x^(2)))-1/(1-(sqrtx)^(2)).d/(dx)(sqrtx)` `(dy)/(dx)=1/(sqrt(1-x^(2)))-1/(1-x)xx1/(2sqrtx)` `therefore(dy)/(dx)=1/(sqrt(1-x^(2)))-1/(2sqrtx(1-x))` |
|
| 204. |
यदि `x^(m)y^(n)=(x+y)^(m+n)` हो, तो `dy/dx` का मान होगा-A. `(x+y)/(xy)`B. xyC. `(x)/(y)`D. `(y)/(x)` |
| Answer» Correct Answer - D | |
| 205. |
`sin^(-1)((2x)/(1+x^(2)))` का अवकलज `sin^(-1)((1-x^(2))/(1+x^(2)))` के सापेक्ष है-A. `-1`B. 1C. 2D. `1/2` |
| Answer» Correct Answer - A | |
| 206. |
यदि `siny=x sin(a+y)` हो, तो `(dy)/(dx)` का मान होगा-A. `(sin(a+y))/(sin a)`B. `(sin^(2)(a+y))/(sin a)`C. `(2sin (a+y))/(sin a)`D. `(sin^(2)(a+y))/(sin y)` |
| Answer» Correct Answer - B | |
| 207. |
यदि `y=sin^(-1)((2^(x+1))/(1+4^(x)))`, हो,तो `(dy)/(dx)` ज्ञात कीजिए। |
|
Answer» `y=sin^(-1)((2^(x+1))/(1+4^(x)))` `y=sin^(-1)((2^(x).2)/(1+4^(x)))` `y=sin^(-1)((2.2^(x))/(1+(2^(x))^(2)))` माना `2^(x)=tantheta`, तब `theta=tan^(-1)(2^(x))` `thereforey=sin^(-1)[(2tantheta)/(1+tan^(2)theta)]` `rArry=sin^(-1)(sin2theta)` `rArry=2theta=2tan^(-1)2^(x)` `therefore(dy)/(dx)=d/(dx)(2tan^(-1)2^(x))` `rArr(dy)/(dx)=2xx1/(1+(2^(x))^(2)).d/(dx)(2^(x))` `rArr(dy)/(dx)=2/(1+4^(x)).2^(x)log_(e)2` `rArr(dy)/(dx)=(2^(x+1)(log_(e)2))/(1+4^(x))` |
|
| 208. |
`sin^(-1)((1-x^(2))/(1+x^(2)))` का अवकलज ज्ञात कीजिए `0ltxlt1` |
|
Answer» `y=sin^(-1)((1-x^(2))/(1+x^(2)))`, जहाँ `0ltxlt1`. `x=tantheta` रखने पर, `y=sin^(-1)((1-tan^(2)theta)/(1+tan^(2)theta))` `rArry=sin^(-1)(cos2theta)` `rArry=sin^(-1){sin(pi/2-2theta)}` `rArry=pi/2-2theta` `[because0ltxlt1rArr0lttanthetalt1rArr0ltthetaltpi/4rArr0lt2thetaltpi/2rArr0ltpi/2-2thetaltpi/2]` `rArry=pi/2-2tan^(-1)x`, `[becausex=tanthetarArrtheta=tan^(-1)x]` दोनों पक्षों का x के सापेक्ष अवकलन करने पर, `therefore(dy)/(dx)=d/(dx){pi/2-2tan^(-1)x}` `rArr(dy)/(dx)=0-2(1)/(1+x^(2))` `rArr(dy)/(dx)=(-2)/(1+x^(2))` |
|
| 209. |
`sqrt(sin 3x)` को प्रथम सिद्धांत से अवलंकित कीजिएः |
|
Answer» माना `y=sqrt(sin 3x)` `Rightarrow y+deltay=sqrt(sin 3(x+deltax))` `Rightarrow y+deltay-y=sqrt(sin 3(x+8x))-sqrt(sin 3x)` `Rightarrow (deltay)/(deltax)=(sqrt(sin 3(x+deltax))-sqrt(sin 3x))/(deltax)` अब `(dy)/(dx)=underset(deltax to 0)lim (deltay)/(deltax)` `=underset(deltax to 0)lim [({sqrt(sin (3x+3deltax))-sqrt(sin 3x)})/(deltax)xx({sqrt(sin 3x+3deltax)+sqrt(sin3x)})/({sqrt(sin(3x+3deltax))+sqrt(sin 3x)})]` `=underset(deltax to 0)lim ([sin (3x+3deltax)-sin3x])/(deltax.{sqrt(sin(3x+3deltax))+sqrt(sin 3x)})` `=underset(deltax to 0)lim (2 cos (3x+(3)/(2)deltax)sin((3)/(2)deltax))/(deltax.{sqrt(sin (3x+3deltax))+sqrt(sin 3x)})` `=underset(deltax to 0)lim [2cos(3x+(3)/(2)deltax).(sin((3)/(2)deltax))/(((3)/(2)deltax))xx(3)/(2) (1)/(sqrt(sin (3x+3deltax))+sqrt(sin 3x))]` `=underset(deltax to 0)lim cos (3x+(3)/(2)deltax).underset((3)/(2)deltax to 0)lim (sin((3)/(2)deltax))/(((3)/(2)deltax)).3 underset(deltax to 0)lim (1)/(sqrt(sin(3x+3deltax))+sqrt(sin 3x))` `=3 cos 3x xx 1 xx (1)/(2sqrt(sin3x))=(3 cos 3x)/(2 sqrtsin 3x)` |
|
| 210. |
यदि `x=a[cost+1/2logtan^(2)t/2]` और `y=asint,` तब `(dy)/(dx)` ज्ञात कीजिए। |
|
Answer» यहाँ `x=a[cost+1/2logtan^(2)t/2]` और y=asint `rArrx=a{cost+1/2xx2logtant/2}` और y=asint `rArrx=a{cost+logtant/2}` और y=asint दोनों पक्षों का t के सापेक्ष अवकलन करने पर, `(dx)/(dt)=a{-sint+1/(tant/2)(sec^(2)t/2)xx1/2}` और `(dy)/(dt)=acost` `rArr(dx)/(dt)=a{-sint+1/(2sin(t/2)cos(t/2))}` और `(dy)/(dt)=acost` `rArr(dx)/(dt)=a{-sint+1/(sint)}` और `(dy)/(dt)=acost` `rArr(dx)/(dt)=a{(-sin^(2)t+1)/(sint)}` और `(dy)/(dt)=acost` `rArr(dx)/(dt)=(acos^(2)t)/(sint)` और `(dy)/(dt)=acost` `therefore(dy)/(dx)=(dy//dt)/(dx//dt)` `rArr(dy)/(dt)=(acost)/((acos^(2)t)/(sint))=tant` |
|
| 211. |
`tan^(-1)((acosx=bsinx)/(b cosx+asinx))` |
|
Answer» Correct Answer - -1 `=tan^(-1)(((a)/(b)-tanx)/(1+(a)/(b)tanx))="tan"^(-1)(a)/(b)-tan^(-1)(tanx)="tan"^(-1)(a)/(b)-x` |
|