InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Class 11 Maths MCQ Questions of Complex Numbers and Quadratic Equations with Answers? |
|
Answer» Students are advised to resolve the Class 11 Maths MCQ Questions of Complex Numbers and Quadratic Equations to understand different concepts. Practicing the MCQ Questions class 11 Maths chapter-wise with answers will boost your confidence thereby helping you score well within the exam. Use MCQ Questions for class 11 Maths with Answers during preparation and score maximum marks within the exam. Students can access the Complex Numbers and Quadratic Equations Class 11 MCQ Questions with Answers from here and test their problem-solving skills. Clear all the basics and prepare thoroughly for the exam taking help from Class 11 Maths Objective Questions. Practice MCQ Questions for class 11 Maths Chapter-Wise 1. The value of \(\sqrt{(-16)}\) is (a) -4i 2. The value of \(\sqrt{(-144)}\) is (a) -12i 3. The value of \(\sqrt{-25}+3\sqrt{-4}+2\sqrt{-9}\) is (a) -17i 4. if z lies on |z| = 1, then 2/z lies on (a) a circle 5. If ω is an imaginary cube root of unity, then (1 + ω – ω2)7 equals (a) 128 ω 6. The value of i135 is (a) 1 7. Let z1 and z2 be two roots of the equation z2 + az + b = 0, z being complex. Further assume that the origin, z1 and z1 form an equilateral triangle. Then (a) a2 = b 8. The curve represented by Im(z2) = k, where k is a non-zero real number, is (a) a pair of striaght line 9. The value of x and y if (3y – 2) + i(7 – 2x) = 0 (a) x = 7/2, y = 2/3 10. Find real θ such that (3 + 2i × sin θ)/(1 – 2i × sin θ) is imaginary (a) θ = nπ ± π/2 where n is an integer 11. If arg (z) < 0, then arg (-z) – arg (z) = (a) π 12. The modulus of 3 + 4i is (a) 5 13. The modulus of 5 + 3i is (a) \(\sqrt{34}\) 14. The value of 1+ i2 + i4 + i6 + i8 + ........+ i20 (a) 1 15. Number of solutions of the equation z2+|z|2 =0 is (a) 1 16. If ∣z−4∣<∣z−2∣, its solution is given by (a) Re(z)>0 17. If a + ib = c + id, then (a) a2 + c2 = 0 18. If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (– 4, 0), the greatest value of |z +1| is (a) 4 19. If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then the value of a – b is (a) -4 20. The simplified value of (1 – i)3/(1 – i3) is (a) 1 Answer: 1. Answer: (b) 4i Explanation: Given, \(=\sqrt{(16)}\times\sqrt{(-1)}\) = 4i {since i = \(\sqrt{(-1)}\)} 2. Answer: (b) 12i Explanation: Given, \(=\sqrt{(144)}\times\sqrt{(-1)}\) = 12i {since i = \(\sqrt{(-1)}\)} 3. Answer: (c) 17i Explanation: \(\sqrt{-25}+3\sqrt{-4}+2\sqrt{-9}\) \(=5\sqrt{-1}+6\sqrt{-1}+6\sqrt{-1}\) \(\therefore \sqrt{-1}=i\) =5i+6i+6i = 17i 4. Answer: (a) a circle Explanation: Let \(w=\frac{2}{z}\) \(w=2\overset{-}{z}\) .....(Multiplying and dividing by \(\overset{-}{z}\) and ∣z∣2 =1 Now locus of w represents a circle. 5. Answer: (d) -128 ω2 Explanation: 1 + ω + ω2 = 0 and ω3 = 1 Now, (1 + ω – ω2)7 = (-ω2 – ω2)7 ⇒ (1 + ω – ω2)7 = (-2ω2)7 ⇒ (1 + ω – ω2)7 = -128 ω14 ⇒ (1 + ω – ω2)7 = -128 ω12 × ω2 ⇒ (1 + ω – ω2)7 = -128 (ω3)4 ω2 ⇒ (1 + ω – ω2)7 = -128 ω2 6. Answer: (d) -i Explanation: 135 leaves remainder as 3 when it is divided by 4. ∴ i135 = i3 = -i 7. Answer: (c) a2 = 3b Explanation: Given, z1 and z2 be two roots of the equation z2 + az + b = 0 Now, z1 + z2 = -a and z1 × z2 = b Since z1 and z2 and z3 from an equilateral triangle. ⇒ z12 + z22 + z32 = z1 × z2 + z2 × z3 + z1 × z3 ⇒ z12+ z22 = z1 × z2 {since z3 = 0} ⇒ (z1 + z2)2 – 2z1 × z2 = z1 × z2 ⇒ (z1 + z2)2 = 2z1 × z2 + z1 × z2 ⇒ (z1 + z2)2 = 3z1 × z2 ⇒ (-a)2 = 3b ⇒ a2 = 3b 8. Answer: (d) a hyperbola Explanation: Let z = x + iy Now, z2 = (x + iy)2 ⇒ z2 = x2 – y2 + 2xy Given, Im(z2) = k ⇒ 2xy = k ⇒ xy = k/2 which is a hyperbola. 9. Answer: (a) x = 7/2, y = 2/3 Explanation: Given, (3y – 2) + i(7 – 2x) = 0 3y – 2 = 0 ⇒ y = 2/3 and 7 – 2x = 0 ⇒ x = 7/2 So, the value of x = 7/2 and y = 2/3 10. Answer: (a) x = 7/2, y = 2/3 Explanation: Given,(3 + 2i × sin θ)/(1 – 2i × sin θ) = {(3 + 2i × sin θ)×(1 – 2i × sin θ)}/(1 – 4i2× sin2 θ) (3 + 2i × sin θ)/(1 – 2i × sin θ) = {(3 – 4sin² θ) + 8i × sin θ}/(1 + 4sin² θ) …………. (i) 3 – 4sin2 θ = 0 ⇒ 4sin2 θ = 3 ⇒ sin2 θ = 3/4 ⇒ sin θ = \(\pm\frac{\sqrt3}{2}\) ⇒ θ = nπ ± π/3 where n is an integer 11. Answer: (a) π Explanation: Given, arg (z) < 0 Now, arg (-z) – arg (z) = arg(-z/z) ⇒ arg (-z) – arg (z) = arg(-1) ⇒ arg (-z) – arg (z) = π {since sin π + i cos π = -1, So arg(-1) = π} 12. Answer: (a) 5 Explanation: \(\sqrt{3^2+4^2}\) = 5 13. Answer: (a) Explanation: \(\sqrt{5^2+3^2}\) = \(\sqrt{34}\) 14. Answer: (a) 1 Explanation: 1+ i2 + i4 + i6 + i8 + i10 + i12 + i14 + i16 + i18.+ i20 = 1+(−1)+1+(−1)+1+(−1)+1+(−1)+1+(−1)+1 = 1 15. Answer: (d) infinitely many Explanation: z2+|z|2=0 , z ≠ 0 ⇒x2−y2 +i2xy+x2+y2 =0 ⇒2x2+i2xy = 0 ⇒2x(x+iy) = 0 ⇒x=0 or x+iy=0 (not possible) ∴x=0 and z≠0 So y can have any real value. Hence infinitely many solutions. 16. Answer: (c) Re(z)>3 Explanation: Given ∣z−4∣<∣z−2∣ all complex numbers lie farther from (2,0) than from (4,0) as ∣z−4∣<∣z−2∣ So they lie on the side of (z,0) which is closer to (4,0) than (2,0) z = x+iy ⇒ x>3 ∴Re(z)>3 17. Answer: (d) a2 + b2 = c2 + d2 Explanation: a + ib = c + id ⇒ |a + ib| = |c + id| ⇒ \(\sqrt{(a^2+b^2)}\) = \(\sqrt{(c^2+d^2)}\) Squaring on both sides, we get; a2 + b2 = c2 + d2 18. Answer: (b) 6 Explanation: The distance of the point representing z from the centre of the circle is |z – (-4 + i0)| = |z + 4| |z + 4| ≤ 3 |z + 1| = |z + 4 – 3| ≤ |z + 4| + |-3| ≤ 3 + 3 ≤ 6 Hence, the greatest value of |z + 1| is 6. 19. Answer: (a) -4 Explanation: Given that 1 – i is the root of x2 + ax + b = 0. Thus, 1 + i is also the root of the given equation since non-real complex roots occur in conjugate pairs. Sum of roots = −a/1 = (1 – i) + (1 + i) ⇒ a = – 2 Product of roots, b/1 = (1 – i)(1 + i) b = 1 – i2 b = 1 + 1 {since i2 = -1} ⇒ b = 2 Now, a – b = -2 – 2 = -4 20. Answer: (b) -2 Explanation: (1 – i)3/(1 – i3) = (1 – i)3/(13 – i3) = (1 – i)3/ [(1 – i)(1 + i + i2)] = (1 – i)2/(1 + i – 1) = (1 – i)2/i = (1 + i2 – 2i)/i = (1 – 1 – 2i)/i = -2i/i = -2 Click here to practice MCQ Questions for Complex Numbers and Quadratic Equations 11 |
|
| 2. |
If (a + ib)(c + id){e + if) (g + ih) = A + iB then show that (a2 + b2)(c2 + d2)(e2 + f2) (g2 + h2) = A2 + B2 |
|
Answer» Given: A + iB = (a + ib)(c + id)(e + if)(g + ih) ∴ A-iB = (a- ib)(c – id)(e – if)(g – ih) But A2 + B2 = (A + iB)(A – iB) = (a2 + b2)(c2 + d2)(c2 + f2)(g2 + h2) |
|
| 3. |
Find the modulus of each of the following complex numbers and hence express each of them in polar form: 2i |
|
Answer» Let Z = 2i = r(cosθ + isinθ) Now, separating real and complex part, we get 0 = rcosθ ……….eq.1 2 = rsinθ …………eq.2 Squaring and adding eq.1 and eq.2, we get 4 = r2 Since r is always a positive no., therefore, r = 2, Hence its modulus is 2. Now, dividing eq.2 by eq.1, we get, \(\frac{rsin\theta}{rcos\theta}=\frac{2}{0}\) Tanθ = ∞ Since cosθ = 0, sinθ = 1 and tanθ = ∞. Therefore the θ lies in first quadrant. tanθ = ∞, therefore θ = π/2 Representing the complex no. in its polar form will be Z = 2{cos(π/2)+i sin(π/2)} |
|
| 4. |
Where does z lie, if |(z - 5i)/(z + 5i)| = 1. |
|
Answer» Given |(z - 5i)/(z + 5i)| = 1. ⇒ |z – 5i| = |z + 5i| ⇒ |x + iy – 5i| = |x + iy + 5i| ⇒ |x + i (y – 5) |2 = |x + i (y + 5) |2 ⇒ x2 + (y – 5)2 = x2 + (y + 5)2 ⇒ 20y = 0 ⇒ y = 0 ∴ z lies on the x – axis. |
|
| 5. |
Find the principal argument of (–2i). |
|
Answer» Let, z = -2i Let 0 = r cosθ and -2 = r sinθ By squaring and adding, we get (0)2 + (-2)2 = (r cosθ)2 + (r sinθ)2 ⇒ 0+4 = r2 (cos2θ + sin2θ) ⇒ 4 = r2 ⇒ r = 2 ∴ cosθ = 0 and sinθ = -1 Since, θ lies in fourth quadrant, we have θ = -π/2 Since, θ ∈ (-π ,π ] it is principal argument. |
|
| 6. |
The value of (z + 3) (z̅ + 3) is equivalent toA. |z + 3|3B. |z – 3|C. z2 + 3D. None of these |
|
Answer» A. |z + 3|3 Given (z + 3) (z̅ + 3) = (x + iy + 3) (x –iy + 3) = (x + 3)2 – (iy)2 = (x + 3)2 + y2 = |x + 3 + iy|2 = |z + 3|2 |
|
| 7. |
If ω is the complex cube root of unity, find the value of (1 – ω – ω2)3 + (1 – ω + ω2)3 |
|
Answer» ω is the complex cube root of unity. ω3 = 1 and 1 + ω + ω2 = 0 Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1 (1 – ω – ω2)3 + (1 – ω + ω2)3 = [1 – (ω + ω2)]3 + [(1 + ω ) – ω2]3 = [1 – (-1)2] + (-ω – ω)3 = 23 + (-2ω)3 = 8 – 8ω3 = 8 – 8(1) = 0 |
|
| 8. |
If ω is the complex cube root of unity, find the value of (1 + ω2)3 |
|
Answer» ω is the complex cube root of unity. ω3 = 1 and 1 + ω + ω2 = 0 Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1 (1 + ω2)3 = (-ω)3 = -ω3 = -1 |
|
| 9. |
If ω is the complex cube root of unity, find the value of ω2 + ω3 + ω4 |
|
Answer» ω is the complex cube root of unity. ω3 = 1 and 1 + ω + ω2 = 0 Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1 ω2 + ω3 + ω4 = ω2 (1 + ω + ω2 ) = ω2 (0) = 0 |
|
| 10. |
If ω is the complex cube root of unity, show that (2 – ω)(2 – ω2) = 7 |
|
Answer» ω is the complex cube root of unity. ω3 = 1 and 1 + ω + ω2 = 0 Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1 L.H.S. = (2 – ω)(2 – ω2) = 4 – 2ω2 – 2ω + ω3 = 4 – 2(ω2 + ω) + 1 = 4 – 2(-1) + 1 = 4 + 2 + 1 = 7 = R.H.S. |
|
| 11. |
Fill in the blanks:The sum of the series i + i2 + i3 + …. Upto 1000 terms is………… |
|
Answer» Given i + i2 + i3 + …. Upto 1000 terms = (i + i2 + i3 + i4) + (i5 + i6 + i7 + i8) + … 250 brackets Since in + in+1 + in + 2 + in + 3 = 0 where n ∈ N = 0 + 0 + 0 … + 0 = 0 |
|
| 12. |
Find the principal argument of (1+i\(\sqrt{3}\))2 |
|
Answer» As we know that, z = a+ib z = (1+i\(\sqrt{3}\))2 = 12 + \((\sqrt{3i})^2\) + 2 x 1 x \(\sqrt{3i}\) = 1+i2+2i√3 = 1-3+2i√3 = -2+2i√3 a = -2 b = 2√3 tanα = \(|\frac{b}{a}|\) = \(|\frac{2\sqrt{3}}{-2}|\) = |√3| = α = \(\frac{\pi}{3}\) or 60° α<0,b>1 ∴z lies in second quadrant arg(z) = θ =π - a = π = - \(\frac{π}{3}\) = \(\frac{2π}{3}\) |
|
| 13. |
Write the additive inverse of 6i - i-√−49 |
|
Answer» Given, 6i − i √−49 = 6i – i(7i) = 6i –7i2 = 6i –7 ∴ Additive inverse = -6 – 7 |
|
| 14. |
Define purely real and purely imaginary numbers. |
|
Answer» A complex number z is said to be:
|
|
| 15. |
Which of the following is correct for any two complex numbers z1 and z2?A. |z1 z2| = |z1||z2|B. arg (z1z2) = arg (z1). Arg (z2)C. |z1 + z2| = |z1|+ |z2|D. |z1 + z2| ≥ |z1| – |z2| |
|
Answer» D. |z1 + z2| ≥ ||z1| - |z2| Let z1 = |z1| (cos θ1 + i sin θ1) and z2 = |z2| (cos θ2 + i sin θ2) Now, z1z2 = |z1| |z2| (cos θ1 + i sin θ1) (cos θ2 + i sin θ2) = |z1| |z2| [cos θ1 cos θ2 + i sin θ1 cos θ2 + i cos θ1 sin θ2 + i2 sin θ1 sin θ2] = |z1| |z2| [cos (θ1 + θ2) + i sin (θ1 + θ2)] ⇒ |z1 z2| = |z1| |z2| And arg (z1 z2) = θ1 + θ2 = arg (z1) + arg (z2) ⇒ |z1 + z2| = |z1| + |z2| is true only when z1, z2 and O are collinear. Also, |z1 + z2| ≥ ||z1| - |z2| |
|
| 16. |
Write the principal argument of -2. |
|
Answer» -2 = -2 + 0i Let -2 + 0i = r(cos θ + i sin θ) ⇒ r cos θ = -2 ….(i) r sin θ = 0 ………(ii) ⇒ tan θ = 0/-2 = 0 Hence, principal argument of -z is π. |
|
| 17. |
If z1, z2 ∈ C then which statement is true:(A) |z1 – z2| ≥ |z1| + |z2|(B) |z1 – z2| ≤ |z1| + |z2|(C) |z1 + z2| ≥ |z1 – z2|(D) |z1 + z2| ≤ |z1 – z2| |
|
Answer» Answer is (B) statement |z1 – z2| ≤ |z1| + |z2| is true. |
|
| 18. |
Find the real values of x and y for which (x – iy) (3 + 5i) is the conjugate of (-6 – 24i). |
|
Answer» Given: (x – iy) (3 + 5i) is the conjugate of (-6 – 24i) We know that, Conjugate of – 6 – 24i = - 6 + 24i ∴ According to the given condition, (x – iy) (3 + 5i) = -6 + 24i ⇒ x(3 + 5i) – iy(3 + 5i) = -6 + 24i ⇒ 3x + 5ix – 3iy – 5i2y = -6 + 24i ⇒ 3x + i(5x – 3y) – 5(-1)y = -6 + 24i [∵ i2 = -1] ⇒ 3x + i(5x – 3y) + 5y = - 6 + 24i ⇒ (3x + 5y) + i(5x – 3y) = - 6 + 24i Comparing the real parts, we get 3x + 5y = - 6 …(i) Comparing the imaginary parts, we get 5x – 3y = 24 …(ii) Solving eq. (i) and (ii) to find the value of x and y Multiply eq. (i) by 5 and eq. (ii) by 3, we get 15x + 25y = -30 …(iii) 15x – 9y = 72 …(iv) Subtracting eq. (iii) from (iv), we get 15x – 9y – 15x – 25y = 72 – (-30) ⇒ - 34y = 72 + 30 ⇒ - 34y = 102 ⇒ y = -3 Putting the value of y = -3 in eq. (i), we get 3x + 5(-3) = - 6 ⇒ 3x – 15 = - 6 ⇒ 3x = - 6 + 15 ⇒ 3x = 9 ⇒ x = 3 Hence, the value of x = 3 and y = - 3 |
|
| 19. |
Evaluate x2 + 5 = 0 |
|
Answer» Given: x2 + 5 = 0 ⇒x2 = -5 ⇒ x = ±√(-5) ⇒ x = ±√5 i Ans: x = ±√5 i |
|
| 20. |
Evaluate x2 + 2 = 0 |
|
Answer» This equation is a quadratic equation. Solution of a general quadratic equation ax2 + bx + c = 0 is given by: \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) Given: ⇒x2 + 2 = 0 ⇒x2 = -2 ⇒x = ± √(-2) But we know that √(-1) = i ⇒ x = ±√2 i Ans: x = ±√2 i |
|
| 21. |
If z = (2 – 3i), prove that z2 – 4z + 13 = 0 and hence deduce that 4z3 – 3z2 + 169 = 0. |
|
Answer» Given: z = 2 – 3i To Prove: z2 – 4z + 13 = 0 Taking LHS, z2 – 4z + 13 Putting the value of z = 2 – 3i, we get (2 – 3i)2 – 4(2 – 3i) + 13 = 4 + 9i2 – 12i – 8 + 12i + 13 = 9(-1) + 9 = - 9 + 9 = 0 = RHS Hence, z2 – 4z + 13 = 0 …(i) Now, we have to deduce 4z3 – 3z2 + 169 Now, we will expand 4z3 – 3z2 + 169 in this way so that we can use the above equation i.e. z2 – 4z + 13 = 4z3 – 16z2 + 13z2 +52z – 52z + 169 Re – arrange the terms, = 4z3 – 16z2 + 52z + 13z2 – 52z + 169 = 4z(z2 – 4z + 13) + 13(z2 – 4z + 13) = 4z(0) + 13(0) [from eq. (i)] = 0 = RHS Hence Proved |
|
| 22. |
Solve for x: (1 – i) x + (1 + i) y = 1 – 3i. |
|
Answer» We have, (1 – i) x + (1 + i) y = 1 – 3i ⇒ x - ix+y+iy = 1- 3i ⇒ (x+y)+i(-x+y) = 1 -3i On equating the real and imaginary coefficients we get, ⇒ x+y = 1 (i) and –x+y = -3 (ii) From (i) we get x = 1 - y Substituting the value of x in (ii), we get -(1 - y)+y = -3 ⇒ -1+y+y = -3 ⇒ 2y = -3+1 ⇒ y = -1 ⇒ x = 1 - y = 1- (-1) = 2 Hence, x = 2 and y = -1 |
|
| 23. |
Find the real values of x and y for which:(1 – i) x + (1 + i) y = 1 – 3i |
|
Answer» (1 – i) x + (1 + i) y = 1 – 3i ⇒ x – ix + y + iy = 1 – 3i ⇒ (x + y) – i(x – y) = 1 – 3i Comparing the real parts, we get x + y = 1 …(i) Comparing the imaginary parts, we get x – y = -3 …(ii) Solving eq. (i) and (ii) to find the value of x and y Adding eq. (i) and (ii), we get x + y + x – y = 1 + (-3) ⇒ 2x = 1 – 3 ⇒ 2x = -2 ⇒ x = -1 Putting the value of x = -1 in eq. (i), we get (-1) + y = 1 ⇒ y = 1 + 1 ⇒ y = 2 |
|
| 24. |
Evaluate:[i18 + (1/i)25]3. |
|
Answer» [i18 + (1/i)25]3 = [i16. i2 + (-i)25]3 = [-1 - i]3 = - 1 - 3i + 3 + i = 2 - 2i |
|
| 25. |
Find the conjugate of each of the following:(–5 – 2i) |
|
Answer» Given: z = (-5 – 2i) Here, we have to find the conjugate of (-5 – 2i) So, the conjugate of (- 5 – 2i) is (-5 + 2i) |
|
| 26. |
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form : 1 + i |
|
Answer» Given complex number is Z=1+i We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ) Where, |Z|=modulus of complex number= \(\sqrt{x^2+y^2}\) θ =arg(z)=argument of complex number= tan-1 \(\Big(\frac{|y|}{|x|}\Big)\) Now for the given problem, ⇒ |z| = \(\sqrt{(1)^2+(1)^2}\) ⇒ |z| = \(\sqrt{1+1}\) ⇒ |z| = \(\sqrt{2}\) ⇒ θ = tan-1\(\Big(\frac{1}{1}\Big)\) Since x>0,y>0 complex number lies in 1st quadrant and the value of θ will be as follows 0°≤θ≤90°. ⇒ θ = tan-1(1) ⇒ θ = \(\frac{\pi}{4}\) ⇒ z = \(\sqrt{2}\Big(cos\Big(\frac{\pi}{4}\Big) + isin\Big(\frac{\pi}{4}\Big)\Big)\) ∴ The Polar form of Z=1+i is z =\(\sqrt{2}\Big(cos\Big(\frac{\pi}{4}\Big) + isin\Big(\frac{\pi}{4}\Big)\Big)\) |
|
| 27. |
√(5+12i) |
|
Answer» Let, (a + ib)2 = 5 + 12i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = 5 + 12i Since i2 = -1 a2 - b2 + 2abi = 5 + 12i Now, separating real and complex parts, we get ⇒ a2 - b2 = 5…………..eq.1 ⇒ 2ab = 12……..eq.2 ⇒ a = 6/b Now, using the value of a in eq.1, we get ⇒ (6/b)2 – b2 = 5 ⇒ 36 – b4 = 5b2 ⇒ b4 + 5b2 - 36 = 0 Simplify and get the value of b2, we get, b2 = - 9 or b2 = 4 As b is real no. so, b2 = 4 b = 2 or b = - 2 Therefore, a = 3 or a = - 3 Hence the square root of the complex no. is 3 + 2i and - 3 -2i. |
|
| 28. |
√(-2+2√3i) |
|
Answer» Let, (a + ib)2 = - 2 + 2√3 i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = - 2 + 2√3 i Since i2 = -1 ⇒ a2 - b2 + 2abi = - 2 + 2√3 i Now, separating real and complex parts, we get ⇒ a2 - b2 = - 2…………..eq.1 ⇒ 2ab = 2√3 ……..eq.2 ⇒ a = √3/b Now, using the value of a in eq.1, we get ⇒ (√3/b)2 – b2 = -2 ⇒3 – b4 = -2b2 ⇒ b4 - 2b2 - 3= 0 Simplify and get the value of b2, we get, ⇒ b2 = -1 or b2 = 3 As b is real no. so, b2 = 3 b = √3 or b = -√3 Therefore, a = 1 or a = -1 Hence the square root of the complex no. is 1 + √3 i and -1 - √3 i. |
|
| 29. |
Find the real values of x and y for which:(1 + i) y2 + (6 + i) = (2 + i)x |
|
Answer» Given: (1 + i) y2 + (6 + i) = (2 + i)x Consider, (1 + i) y2 + (6 + i) = (2 + i)x ⇒ y2 + iy2 + 6 + i = 2x + ix ⇒ (y2 + 6) + i(y2 + 1) = 2x + ix Comparing the real parts, we get y2 + 6 = 2x ⇒ 2x – y2 – 6 = 0 …(i) Comparing the imaginary parts, we get y2 + 1 = x ⇒ x – y2 – 1 = 0 …(ii) Subtracting the eq. (ii) from (i), we get 2x – y2 – 6 – (x – y2 – 1) = 0 ⇒ 2x – y2 – 6 – x + y2 + 1 = 0 ⇒ x – 5 = 0 ⇒ x = 5 Putting the value of x = 5 in eq. (i), we get 2(5) – y2 – 6 = 0 ⇒ 10 – y2 – 6 = 0 ⇒ -y2 + 4 = 0 ⇒ - y2 = -4 ⇒ y2 = 4 ⇒ y = √4 ⇒ y = ± 2 Hence, the value of x = 5 and y = ± 2 |
|
| 30. |
Prove that (1 + i10 + i20 + i30) is a real number. |
|
Answer» L.H.S = (1 + i10 + i20 + i30) = (i + i4 x 2 + 2 + i4 x 5 + i4 x 7 + 2) Since ⇒ i4n = 1 ⇒ i4n+1 = i ⇒ i4n+2 = -1 ⇒ i4n+3 = -1 = 1 + i2 + 1 + i2 = 1 + -1 +1 + -1 = 0, which is a real no. Hence, (1 + i10 + i20 + i30) is a real number. |
|
| 31. |
Define modulus of a complex number. |
|
Answer» Let. z = a + ib be a complex number. Then, the modulus of z, denoted by |z| to be the non-negative real number √(a2 + b2) |
|
| 32. |
Define conjugate of a complex number. |
|
Answer» Let z = a + ib be a complex number. Then, the conjugate of complex number z, denoted as , is the complex number a – ib, i.e., i= a – ib |
|
| 33. |
Find quadratic equation which has the following roots(i) 5 and -2(ii) 1 + 2i |
|
Answer» (i) root α = 5 and β = – 2 Then, sum of roots = α + β = 5 – 2 ⇒ α + β = 3 and product of roots = αβ = 5 × (-2) ⇒ αβ = -10 Hence, required equation whose roots are 5 and -2. x2 – (sum of roots) x + product of roots = 0 ⇒ x2 – 3x + (-10) = 0 ⇒ x2 – 3x – 10 = 0 Hence, required equation is x2 – 3x – 10 = 0 whose roots are 5 and -2. (ii) Roots α = 1 + 2i and β = 1 – 2i Then, sum of roots α + β = 1 + 2i + 1 – 2i = 2 and product of roots αβ = (1 + 2i)(1 – 2i) = 1 – 4i2 = 1 + 4 = 5 Hence, required equation whose roots are 1 + 2i and 1 – 2i, x2 – (sum of roots) x + Product of roots = 0 ⇒ x2 – 2x + 5 = 0. Remark: If one root is 1 + 2i, then second not will be 1 – 2i. |
|
| 34. |
Find the cube root of the following:(i) -216(ii) -512 |
|
Answer» (i) -216 = (-6) (1)1/3 = -6, -6ω, -6ω2 Hence, cube root of -216 = -6, -6ω, -6ω2 (ii) -512 = (-8) (1)1/3 = -8, - 8ω, -8ω2 Hence, cube root of -512 = -8, -8ω, – 8ω2 |
|
| 35. |
2 is not a complex number. |
|
Answer» False It is a false statement because 2 = 2 + i(0), which is of the form α + ib, and the number of the form a + ib, where a and b are real numbers is called a complex number. |
|
| 36. |
State true or false for the following:The order relation is defined on the set of complex numbers. |
|
Answer» False The given statement is false because the order relation “greater than” and “less than” are not defined on the set of complex numbers. |
|
| 37. |
The value of \(\frac{(i^5 + i^6 + i^7 + i^8 + i^9)}{(1 + i)}\) is A. \(\frac{1}{2}(1+i)\)B. \(\frac{1}{2}(1-i)\)C. 1 D. \(\frac{1}{2}\) |
|
Answer» We know that i4n+1 = i i4n+2 = i2 = -1 i4n+3 = i3 = -i i4n+4 = i4 = 1 i5 + i6 + i7 + i8 + i9 = i + (-1) + (-i) + 1 + i = i \(\frac{(i^5 + i^6 + i^7 + i^8 + i^9)}{(1 + i)}\) = \(\frac{1}{1+i}\) =\(\frac{1}{1+i}\times\frac{(1-i)}{(1-i)}\) = \(\frac{1}{2}(1+i)\) |
|
| 38. |
Evaluate the following if z = 5 – 2i and w = -1 + 3i (i) z + w (ii) z – iw (iii) 2z + 3w (iv) zw (v) z2 + 2zw+ w2 (vi) (z + w)2 |
|
Answer» (i) z = 5 – 2i, w = -1 + 3i z + w = (5 – 2i) + (-1 + 3i) = (5 – 1) + (-2i + 3i) = 4 + i (ii) z – iw = (5 – 2i) – i (-1 + 3i) = 5 – 2i + i + 3 = (5 + 3) + (-2i + i) = 8 – i (iii) 2z + 3w = 2(5 – 2i) + 3 (-1 +3i) = 10 – 4i – 3 + 9i = 7 + 5 i (iv) zw = (5 – 2i) (-1 + 3i) = -5 + 15i + 2i – 6i = -5 + 17i + 6 = 1 + 17i (v) z2 + 2zw + w2 = (z + w)2 [from (i)] = (4 + i)2 = 16 – 1 + 8i = 15 + 8i (vi) (z + w)2 = 15 + 8z [from (v)] |
|
| 39. |
Find the square of 18i |
|
Answer» Let √18i = a + bi, where a, b ∈ R. Squaring on both sides, we get 18i = a2 + b2 i2 + 2abi 0 + 18i = a2 – b2 + 2abi …..[∵ i2= -1] Equating real and imaginary parts, we get a2 – b2 = 0 and 2ab = 18 a2 – b2 = 0 and b = \(\frac9a\) a2 - (\(\frac9a\))2 = 0 a2 - \(\frac{81}{a^2}\) = 0 a4 – 81 = 0 (a2 – 9) (a2 + 9) = 0 a2 = 9 or a2 = -9 But a ∈ R ∴ a2 ≠ -9 ∴ a2 = 9 ∴ a = ± 3 When a = 3, b = 9/3 = 3 When a = -3, b = 9/-3 = -3 \(\therefore\) √18i = ±(3 + 3i) = ±3(1 + i) |
|
| 40. |
If x2 + x + 1 = 0, then the value of (x + 1/x)2 + (x2 + 1/x2) + .... + (x27 + 1/x27)2 is(a) 27(b) 72(c) 54(d) None of these |
|
Answer» Correct option (c) 54 Explanation: ∴ (ω + 1/ω)2 + (ω2 + 1/ω2) + (ω2 + 1/ω3)2 .....+ (ω27 + 1/ω27)2 = (–1)2 + (–1)2 + (2)2 + .................+(2)2 = 18 x 1 + 9 x 4 = 54 |
|
| 41. |
Define addition of two complex numbers. |
|
Answer» Let z1= a + ib and z2 = c + id be any two complex numbers. Then addition of z1 and z2 defined as z1 + z2 = (a + c) + i(b + d) which is again a complex number. Properties of addition of complex numbers: (i) Closure property: The sum of two complex numbers is always a complex number, i.e., addition is closed in C set of complex numbers. (ii) Commutative property: For any two complex numbers z1 and z2 we have z1 + z2 = z2 + z1 (iii) Associative properly: For any complex numbers z1, z2 and Z3, we have z1 + (z2 + z3) = (z1 + z2) + z3 (iv) Existence of additive identity: For any complex number z, we have z + 0 = 0 +-z = z Thus, 0 is the additive identity for complex numbers. (v) Existence of additive inverse: Every complex number z-a + ib has -z = (-a) + i(-b) as its additive inverse, as z + (-z) = (-z) + z = 0. |
|
| 42. |
Prove that(i) (z1 + z2)2 = z21 + 2z1z2 + z22 |
|
Answer» (i) We have, (z1 + z2)2 = (z, + z2)(z1 + z2) = (z1 + z2)z1 + (z1 + z2)z2 (by distributive law) = z21 + z2z1 +z1z2 + z2 (by distributive law) = z21 + 2z1z2 + z22 ∵ z1z2 = z2z1 |
|
| 43. |
Define difference of two complex numbers. |
|
Answer» Let z1 and z2 be any two complex numbers. The different z1 – z2 is defined as follows: z1 – z2 =z1 + (-z2) |
|
| 44. |
Define multiplication numbers. |
|
Answer» Let z1 = a + ib and z2 = c + id be any two complex numbers. Then, the product z1z2 is defined as follows: z1z2 = (ac – bd) + i(ad + bc) Properties of product of complex numbers:
z-1 = 1/z = 1/(a + ib) = 1/(a + ib) . (a - ib)/(a - ib) = (a - ib)/(a2 + b2) Clearly z. 1/z = 1/z . z = 1 Thus, every z = a + ib has its multiplicative inverse, given z-1 = 1/z = a/(a2 + b2) - a/(a2 + b2)i (z ≠ 0) |
|
| 45. |
Express the following complex numbers in the standard form a + ib : \(\frac{2+3i}{4+5i}\) |
|
Answer» Given: ⇒ a +ib = \(\frac{2+3i}{4+5i}\) Multiplying and dividing with 4-5i ⇒ a +ib = \(\frac{2+3i}{4+5i}\) x \(\frac{4-5i}{4-5i}\) ⇒ a +ib = \(\frac{2(4-5i)+3i(4-5i)}{(4)^2-(5i)^2}\) ⇒ a +ib = \(\frac{8-10i+12i-15i^2}{16-25i^2}\) We know that i2=-1 ⇒ a +ib = \(\frac{8+2i-15(-1)}{16-25(-1)}\) ⇒ a +ib = \(\frac{23+2i}{41}\) ∴ The values of a, b are \(\frac{23}{41}\) , \(\frac{2}{41}\) . |
|
| 46. |
Express the following complex numbers in the standard form a + ib : \(\frac{(2+i)^3}{2+3i}\) |
|
Answer» Given: ⇒ a+ ib = \(\frac{(2+i)^3}{2+3i}\) ⇒ a+ ib = \(\frac{2^3+i^3+3(2)^2(i)+3(i)^2(2)}{2+3i}\) ⇒ a+ ib = \(\frac{8+(i^2.i)+3(4)(i)+6i^2}{2+3i}\) We know that i2=-1 ⇒ a+ ib = \(\frac{8+(-1)i+12i+6(-1)}{2+3i}\) ⇒ a+ ib =\(\frac{2+11i}{2+3i}\) Multiplying and dividing with 2-3i ⇒ a+ ib = \(\frac{2+11i}{2+3i}\) x \(\frac{2-3i}{2-3i}\) ⇒ a+ ib = \(\frac{2(2-3i)+11i(2-3i)}{(2)^2-(3i)^2}\) ⇒ a+ ib = \(\frac{4-6i+22i-33i^2}{4-9i^2}\) We know that i2=-1 ⇒ a+ ib = \(\frac{4+16i-33(-1)}{4-9(-1)}\) ⇒ a+ ib = \(\frac{37+16i}{13}\) ∴ The values of a, b are \(\frac{37}{13}\) , \(\frac{16}{13}\). |
|
| 47. |
Express the following complex numbers in the standard form a + ib : \(\frac{(1-i)^3}{1-i^3}\) |
|
Answer» Given: ⇒ a + ib = \(\frac{(1-i)^3}{1-i^3}\) ⇒ a + ib = \(\frac{1^3-3(i)^2(i)+3(1)(i)^2-i^3}{1-i^2.i}\) We know that i2 = -1 ⇒ a + ib = \(\frac{1-3i+3(-1)-i^2.i}{1-(-1)i}\) ⇒ a + ib = \(\frac{-2-3i-(-1)i}{1+i}\) ⇒ a + ib = \(\frac{-2-4i}{1+i}\) Multiplying and diving with 1-i ⇒ a + ib = \(\frac{-2-4i}{1+i} \times \ \frac{1-i}{1-i}\) ⇒ a + ib = \(\frac{-2(1-i)-4i(1-i)}{1^2-i^2}\) We know that i2 = -1 ⇒ a+ib = \(\frac{-2+2i-4i+4i^2}{1-(-1)}\) ⇒ a + ib = \(\frac{-2-2i+4(-1)}{2}\) ⇒ a + ib = \(\frac{-6-2i}{2}\) ⇒ a + ib = -3-i ∴ The values of a, b are -3, -1. |
|
| 48. |
Express the following complex numbers in the standard form a + ib : \(\frac{1-i}{1+i}\) |
|
Answer» Given: ⇒ a + ib = \(\frac{1-i}{1+i}\) Multiplying and dividing by 1-i ⇒ a + ib = \(\frac{1-i}{1+i}\) x \(\frac{1-i}{1-i}\) ⇒ a + ib = \(\frac{1^2+i^2-2(1)(i)}{1^2-(i)^2}\) We know that i2 = -1 ⇒ a + ib = \(\frac{1+(-1)-2i}{1-(-1)}\) ⇒ a + ib = \(\frac{-2i}{2}\) ⇒ a + ib = -i ⇒ a + ib = 0 - i ∴ The values of a, b is 0, -1. |
|
| 49. |
Express the following complex numbers in the standard form a + i b :\(\frac{3+2i}{-2+i}\) |
|
Answer» Given: ⇒ a + ib = \(\frac{3+2i}{-2+i}\) Multiplying and dividing with -2-i ⇒ a + ib = \(\frac{3+2i}{-2+i}\) x \(\frac{-2-i}{-2-i}\) ⇒ a + ib = \(\frac{3(-2-i)+2i(-2-i)}{(-2)^2-(i)^2}\) We know that i2=-1 ⇒ a + ib = \(\frac{-6-3i-4i-2i^2}{4-i^2}\) ⇒ a + ib = \(\frac{-6-7i-2(-1)}{4-(-1)}\) ⇒ a + ib = \(\frac{-4-7i}{5}\) ∴ The values of a, b are \(-\frac{4}{5}\), \(-\frac{7}{5}\) . |
|
| 50. |
Express the following complex numbers in the standard form a + i b : (1 + i) (1 + 2i) |
|
Answer» ⇒ a+ib = (1+i)(1+2i) ⇒ a+ib = 1(1+2i)+i(1+2i) ⇒ a+ib = 1+2i+i+2i2 We know that i2=-1 ⇒ a+ib = 1+3i+2(-1) ⇒ a+ib = 1+3i-2 ⇒ a+ib=-1+3i ∴ The values of a, b are -1, 3. |
|