InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If `log_(a)x = m and log_(b)x =n` then `log_(a/b)`x= ______A. `m/(m-n)`B. `(mn)/(m-n)`C. `n/(m-n)`D. (mn)/(n-m)` |
|
Answer» Correct Answer - D ` log_(a)x=m, log_(b)x=n` `log_(a/b)x= (log x)/(log_(a/b)) = (log_(x)x)/(log_(x) (a/b))` ` = 1/(log_(x)a- log_(b)b)` `1/(1/(log_(x)a) - 1/(log_(b)x))` ` 1/ (1/m - 1/n)= 1/ ((n-m)/(mn))= (mn)/(n-m)` |
|
| 2. |
` if 2^(log_(3)9) + 25 log_(9)3 = 8 log_(x)9`then x= _______A. 9B. 8C. 3D. 2 |
|
Answer» Correct Answer - B `2log_(3)9 + 25log_(6)3= 8 log_(x)9` `2^(log_(3)3^(2)) + 25 log_(3^(2))3 = 8 log_(x)9` `Rightarrow 2^(2) + 25^(1//2) = 8 log_(x)9` ` Rightarrow = 8 log_(x)9` ` Rightarrow log_(x)9 = log_(8)9` ` Rightarrow x=8` . |
|
| 3. |
If `x^(2)+y^(2)-3xy = 0 and x gt y` then find the value of `log_(xy)(x-y)^2`A. `1/4`B. 4C. `1/2`D. 2 |
|
Answer» Correct Answer - C Given `x^(2) + y^(2) - 3xy =0` ` x^(2) + y^(2) - 2xy = xy` Applying log on both sides ` log (x - y^(2)) = log xy` ` 2 log (x-y) = log xy` ` Rightarrow ( log(x-y))/(log xy) = 1/2` `Rightarrow log_(xy) (x-y) = 1/2` |
|
| 4. |
If `x^(2) + y^(2) -3xy = 0 and x gt y` then find the value of `log_(xy)(x-y)`.A. `1/4`B. 4C. `1/2`D. 2 |
|
Answer» Correct Answer - C Given ` x^(2) + y^(2) - 3xy =0` ` x^(2) + y^(2) - 2xy= xy` Applying log on both sides, ` log(x-y)^(2) = logxy` `2log ( x-y) = log xy` ` (log(x-y))/(log xy) = 1/2` `Rightarrow (x-y)= 1/2` |
|
| 5. |
If `log_(a)x("where "a gt 1)` is positive, then the range of x is ______. |
| Answer» Correct Answer - `(1, oo)` | |
| 6. |
The set of real values of `x` satisfying `log_(1/2) (x^2-6x+12)>=-2`A. `(-oo, 2]`B. `[2, 4]`C. `[4, oo)`D. none of these |
|
Answer» Correct Answer - B As `x^(2)-6x + 12 gt 0` for all x. Therefore, `"log"_(1//2)(x^(2)-6x + 12)` is defined for all` x in R` Now, `"log"_(1//2)(x^(2)-6x + 12) ge -2` `rArr x^(2)-6x + 12 le ((1)/(2))^(-2)` `rArr x^(2)-6x +8 le 0 rArr (x-2)(x-4) le 0 rArr x in [2, 4]` |
|
| 7. |
The solution set of `|x+2|^(log_(10)(x^(2)+6x+9))=1` is ______.A. `{-3, -4}`B. `{0, -3}`C. `{-4, -1}`D. `{-3, -1}` |
|
Answer» Correct Answer - C Given, `|x+2|^(log_(10)x^(2) + 6x+ 9) = 1` As the RHS = 1 The exponent of x + 2 should be 0 `(a^(0) = 1)` or `|x + 2| = 1` `implies log_(10) x^(2) + 6x + 9 = 0 or x + 2 = pm 1` `x^(2) + 6x + 9 = 1 or x = - 1 or - 3` `x = -2 or -4` `x = -1 or -3` when x = -3, `log_(10)(x^(2) + 6x + 9)` is not defined. When x = -2, |x + 2| = 0 which is not possible. x = -4, or -1. |
|
| 8. |
The value of `x^("log"_(x) a xx "log"_(a)y xx "log"_(y) z)` isA. xB. yC. zD. a prime number |
|
Answer» Correct Answer - C We have, `"log"_(x)a xx "log"_(a)y xx "log"_(y)z = "log"_(x)y xx "log"_(y)z = "log"_(x)z` `therefore x^("log"_(x)a xx "log"_(a)y xx "log"_(y)z) = x^("log"_(x)z) = z " " [because a^("log"_(a) N)=N]` |
|
| 9. |
The solution set for `|1-x|^(log_(10)(x^(2)-5x+5))=1`, is ______.A. {0, 1, 4}B. {1, 4}C. {0, 4}D. {0, 2, 4} |
|
Answer» Correct Answer - C (i) Use `a^(@) = 1` and `1^(m) = 1`. (ii) Consider RHS, i.e., 1 as `|1 - x|^(@)` and equate the exponents. (iii) convert the logarithm in the exponential form by using `log_(b) a = N implies a = b^(N)`. (iv) Solve the quadratic equations for x. |
|
| 10. |
The least positive integral value of the expression `(1)/(2) log_(10) m - log_(m^(-2)) 10` is ______. |
|
Answer» Correct Answer - B (i) The least positive integral value of `x + (1)/(x) = 2` (ii) Let `log_(m) 10 = x` then `log_(m) 10 = (1)/(x)`. (iii) The given expression becomes `(1)/(2) (x + (1)/(x))` (iv) Now the least positive value is obtained if `x + (1)/(x)` is minimum. |
|
| 11. |
If `2^("log"_(10) 3sqrt(3)) = 3^(k"log"_(10)2)`, then k =A. `(1)/(2)`B. `(3)/(2)`C. 3D. 2 |
| Answer» Correct Answer - B | |
| 12. |
The value of `"log"_(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2))))`, isA. `(15)/(16)`B. `(7)/(16)`C. `(15)/(8)`D. `(31)/(32)` |
| Answer» Correct Answer - C | |
| 13. |
If `x = "log"_(0.1) 0.001, y = "log"_(9) 81`, then `sqrt(x - 2sqrt(y))` is equal toA. `3-2sqrt(2)`B. `sqrt(3)-2`C. `sqrt(2)-1`D. `sqrt(2)-2` |
|
Answer» Correct Answer - C We have, `x = "log"_(0.1) 0.001 " and " y = "log"_(9) 81` `rArr x = "log"_(0.1) (0.1)^(3) " and" y = "log"_(9)9^(2)` `rArr x = 3 and y = 2` `therefore sqrt(x-2sqrt(y)) = sqrt(3-2sqrt(2)) = sqrt((sqrt(2)-1)^(2)) = |sqrt(2)-1| = sqrt(2)-1` |
|
| 14. |
If `"log"_(ax)x, "log"_(bx) x, "log"_(cx)x` are in H.P., where a, b, c, x belong to `(1, oo)`, then a, b, c are inA. A.PB. G.PC. H.PD. none of these |
|
Answer» Correct Answer - B We have, `"log"_(ax) x, "log"_(bx) x, "log"_(cx)x` in H.P. `rArr "log"_(x)ax,"log"_(x)bx, "log"_(x)`cx are in A.P. `rArr "log"_(x)a + 1, "log"_(x)b+1, "log"_(x)c+1` are in A.P. `rArr "log"_(x)a, "log"_(x) b, "log"_(x) "c are in A.P " rArr` a, b, c are in G.P |
|
| 15. |
The value of log `sqrt(2sqrt(2sqrt(2...oo" times")))+log sqrt(3sqrt(3sqrt(3...oo" times")))` isA. 1B. 2C. log5D. log6 |
|
Answer» Correct Answer - D (i) log a + log b = log ab and log `sqrt(xsqrt(x...oo))= x`. (ii) Use, `sqrt(asqrt(asqrt(asqrt(a...oo)))) = a` and then use log a + log b = log ab. |
|
| 16. |
The value of `(0.16)^("log"_(0.25)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo))`, isA. 0.16B. 1C. 0.4D. 4 |
| Answer» Correct Answer - D | |
| 17. |
`(log)_(0. 3)(x-1) |
|
Answer» Correct Answer - A We have, `"log"_(0.3) (x-1) lt "log"_(0.09) (x-1)` Clearly, it is defined for ` x gt 1` Now, `"log"_(0.3)(x-1) lt "log"_(0.09) (x-1)` `rArr "log"_(0.3)(x-1) lt "log"_((0.3))^(2) (x-1)` `rArr "log"_(0.3)(x-1) lt (1)/(2) "log"_(0.3) (x-1)` `rArr "log"_(0.3)(x-1) lt 0 rArr x -1 gt (0.3)^(0) rArr x gt 2 rArr x in (2, oo)` |
|
| 18. |
If in a right angled triangle, `a a n d b`are thelengths of sides and `c`is thelength of hypotenuse and `c-b!=1, c+b!=1`, then show that `(log)_("c"+"b")"a"+(log)_("c"-"b")=2(log)_("c"+"b")adot(log)_("c"-"b")adot`A. 1B. 2C. `(1)/(2)`D. none of these |
|
Answer» Correct Answer - B Since a, b, c are the sides of a right-angled triangle with c as the largest side i.e. hypotenuse. Therefore, `c^(2) = a^(2) + b^(2)` Now, `("log"_(c+b)a + "log"_(c-b)a)/("log"_(c+b)a."log"_(c-b)a)` `= (1)/("log"_((c-b))a) + (1)/("log"_((c+b))a) = "log"_(a) (c-b) + "log"_(a) (c+b)` ` = "log"_(a) (c^(2) -b^(2)) = "log"_(a)a^(2) = 2"log"_(a)a = 2` |
|
| 19. |
Find x:x1-log2x = 0.01 |
|
Answer» 21-log2x = 0.01 ⇒ 2 log22 - log2x = 0.01 = 1/100 ⇒ 2 log2(2/x) = 1/100 (\(\because\) log A - log B = log\(\frac{A}B\)) ⇒ \(\frac2x\) = \(\frac1{100}\) (\(\because\) alogax = x) ⇒ x = 2 x 100 = 200 |
|
| 20. |
Let `x in(1,oo)` and `n` be a positive integer greater than `1`. If `f_n (x) =n/(1/log_2x+1/log_3x+...+1/log_nx)` , then `(n!)^(f_n (x))`equals toA. `n^(x)`B. `x^(n)`C. `n^(n)`D. `n^(nx)` |
| Answer» Correct Answer - B | |
| 21. |
In a right-angled triangle, the sides are a, b and c with c as hypotenuse and c – b ≠ 1, c + b ≠ 1. Then the value of \(\bigg[\frac{log_{c+b}\,a+log_{c-b}\,a}{2\,log_{c+b}\,a\times\,log_{c-b}\,a}\bigg]\) is(a) –1 (b) \(\frac{1}{2}\)(c) 1 (d) 2 |
|
Answer» (c) 1 In a right angled triangle with a, b as sides and c as hypotenuse, c2 = a2 + b2 (Pythagoras’ Theorem) Now, given expression = \(\frac{log_{c+b}\,a+log_{c-b}\,a}{2\times\,log_{c+b}\,a\times\,log_{c-b}\,a}\) = \(\frac{1}{2}\bigg[\frac{1}{\text{log}_{c-b}\,a}+\frac{1}{\text{log}_{c+b}\,a}\bigg]\) = \(\frac{1}{2}\big[\text{log}_a(c-b)+\text{log}_a(c+b)\big]\) = \(\frac{1}{2}\big[\text{log}_a(c-b)(c+b)\big]\) = \(\frac{1}{2}\big[\text{log}_a(c^2-b^2)\big]\) = \(\frac{1}{2}\text{log}_a\,a^2\) = loga a = 1. |
|
| 22. |
If x = `log_(3)27 and y = log_(9)27` then `1/x + 1/y` = ______A. `1/3`B. `1/9`C. 3D. 1 |
|
Answer» Correct Answer - D `{:(x= log_(3)27,y=log_(9)27),(Rightarrowx=log_(3)3^(3),y= log_(3^(2))3^(3)),(Rightarrowx=3, y= 3/2):}` `therefore 1/x+1/y= 1/3+ 1/((3/2))= 1/3 + 2/3+ 3/3=1` |
|
| 23. |
If `log_(6)x + 2log_(36)x + 3log_(216)x = 9` then x = ______A. 6B. 36C. 216D. None of these |
|
Answer» Correct Answer - C `log_(6)x+ 2log_(36) + 3log_(216)x = 19` ` Rightarrow log_(6)x + log_(6)x + log_(6)x =9` ` Rightarrow 3 log_(6)x = 9 Rightarrow log_(6)x = 3` ` Rightarrow x= 6^(3)` ` thereforex= 216` |
|
| 24. |
The value of `2^("log"3^(5)) - 5^("log"3^(2))` isA. 2B. -1C. 1D. 0 |
|
Answer» Correct Answer - D We have, `2^("log"3)5)-5^("log"3) 2)=5^("log"3)2)-5^("log"3)2)=0 " " [because x^("log"ay) = y^("log"a x)]` |
|
| 25. |
The number of zeroes coming immediately after the decimal point in the value of `(0.2)^25` is : Given `log_10 2 = 0.30103`)A. 16B. 17C. 18D. none of these |
|
Answer» Correct Answer - B Let `x = (0.2)^(25)`. Then, `"log"_(10)x = 25 "log"_(10)0.2` `rArr "log"_(10) x = 25 ("log"_(10) 2-1)` `rArr "log"_(10) = 25 xx 0.30103 - 25 = -18 + 0.52575` Hence, there are 17 zeros immediately after the decimal point. |
|
| 26. |
If `log_10 7=0.8451,` find the position of the first significant figure in `7^-20.`A. 15B. 20C. 17D. 18 |
|
Answer» Correct Answer - C `"Let" x = 7^(-20)`. Then, `"log"_(10) x = -20 "log"_(10)7 = -20 xx (0.8451) = -16.9020` `"log"_(10) x = -17 + 1 - 0.9020= bar(17). 0980` Hence, position of first significant figure is 17 th. |
|
| 27. |
If `log_(10)2= 0.3010 and log_(10)3= 0.4771` , then the value of `log_(10)((2^(3) xx 3^(2))/(5^(2)))` isA. 0.4592B. 0.5492C. 0.4529D. 0.5429 |
|
Answer» Correct Answer - A Apply lows of logartihm. (ii) Use `log(a/b) = log a- log b and log a^(m) = m loga` |
|
| 28. |
If `log 2= 0.3010 , and log 3= 0.4771 ` then log 150 = ______A. 2.1761B. 2.8751C. 2.5762D. 2.6126 |
|
Answer» Correct Answer - A (i) Express as product of powers of 2 and 3 then use the values of log 2 and log3. (ii) log 150 = 2log5 + log 2 + log3. (iii) Also, log5 = log 10 - log2. |
|
| 29. |
If \(\cfrac{log\,a}{x+y-2z}=\cfrac{log\,b}{y+z-2x}=\cfrac{log\,c}{z+x-2y}\),log a/x+y-2z = log b/ y +z -2x = log c/z+x-2y, show that abc = 1. |
|
Answer» Let \(\cfrac{log\,a}{x+y-2z}=\cfrac{log\,b}{y+z-2x}=\cfrac{log\,c}{z+x-2y}\) = k \(\therefore\) log a = k (x + y - 2z), log b = k (y + z - 2x), log c = k (z + x - 2y) We have to prove that abc = 1 i.e., to prove that log (abc) = log 1 i.e. , to prove that log a + log b + log c = 0 L.H.S.= log a + log b + log c = k (x + y -2z) + k (y + z -2x) + k (z + x -2y) = k (x + y -2z + y + z -2x + z + x -2y) = 0 = R.H.S. |
|
| 30. |
If \(\cfrac{log\,x}{a}=\cfrac{log\,y}{2}=\cfrac{log\,z}{5}=k\,\) and x4 y3 z-2 = 1, find ‘a’.log x /a = logy /2 = log z/5 = k |
|
Answer» Let \(\cfrac{log\,x}{a}=\cfrac{log\,y}{2}=\cfrac{log\,z}{5}=k\,\) \(\therefore\) log x = ak, log y = 2k, log z = 5k ….(i) But x4 y3 z-2 = 1 Taking log on both sides, we get log (x4 .y3 .z-2 ) = log 1 \(\therefore\) log x4 + log y3 + log z-2 = 0 \(\therefore\) 4 log x + 3 log y -2 log z = 0 \(\therefore\) 4(ak) + 3(2k) - 2(5k) = 0 ….[From(i)] \(\therefore\) 4ak + 6k - 10k = 0 \(\therefore\) 4ak = 4k \(\therefore\) a = 1 |
|
| 31. |
If b2 = ac, prove that log a + log c = 2 log b. |
|
Answer» b2 = ac Taking log on both sides, we get log b2 = log ac \(\therefore\) 2 log b = log a + log c \(\therefore\) log a + log c = 2 log b |
|
| 32. |
If `"log"_(2) 7 = x`, then x is:A. a rational number such that `0 lt x lt 2`B. an irrational number such that `2 lt x lt3`C. a rational number such that `2 lt x lt 3`D. a prime number of the form `7x+2` |
| Answer» Correct Answer - B | |
| 33. |
If log10√(1 + x) + 3log10√(1 - x) = log10√(1 - x2) + 2. Find x. |
|
Answer» log10(x + 1)1/2 + log10(1 – x)3/2 = log10(1 – x2)1/2 + log10010 ⇒ (x + 1)1/2(1 – x)3/2 = (1 – x2)1/2 – 100 ⇒ √(1 - x2) (1 – x – 100) = 0 ⇒ x = ±1. x = -99 But x ≠ ± 1, -99 ∴ There is no value of x exists. |
|
| 34. |
Find x if logx 0.4 = -3 |
|
Answer» logx0.4 = - 3 = x = (0.4)-3 = x= (4/10)-3 = (2/5)-3 = (5/2)3 = 125/8 |
|
| 35. |
If `2^((3)/("log"_(3)x)) = (1)/(64)`, then x =A. 3B. `(1)/(3)`C. `(1)/(sqrt(3))`D. `-(1)/(sqrt(3))` |
| Answer» Correct Answer - C | |
| 36. |
Given `a^2+b^2=c^2& a .0 ; b >0; c >0, c-b!=1, c+b!=1, `prove that: `(log)_("c"+"b")a+(log)_("c"-"b")a=2(log)_("c"+"b")adot(log)_("c"-"b")a`A. 1B. 2C. `-1`D. `-2` |
|
Answer» Correct Answer - B We have, `(1)/("log"_(c+a)b) + (1)/("log"_(c-a)b)` ` = "log"b (c+a) + "log"_(b) (c-a)` ` = "log"_(b) (c^(2)-a^(2)) = "log"_(b)b^(2) " " [because c^(2) -a^(2) = b^(2)]` `2 "log"_(b) b= 2` |
|
| 37. |
If x = 27, b = log43 then flow that xb = 64 |
|
Answer» xb = 27log43 = 33log43 = 3log(4)33 = 3log643 = 64 |
|
| 38. |
If a,b,c are any three consecutive integers , prove that `log(1+ac)=2logb`A. `"log" b`B. `"log" ((b)/(2))`C. `"log" (2b)`D. `2"log"b` |
|
Answer» Correct Answer - D Since a, b, c are three consective positive integers, `therefore b = a + 1, c= a + 2 " and " 2b = a+ c` Now, `"log" (1+ca)` `= "log"{1+(a+2)a} = "log" (a+1)^(2) = 2"log" (a+1) = 2 "log" b` |
|
| 39. |
If `("log"_(a)x)/("log"_(ab)x) = 4 + k + "log"_(a)b, "then" k=` |
|
Answer» Correct Answer - D We have, `("log"_(a)x)/("log"_(ab)x) = ("log"_(x)ab)/("log"_(x)a) = "log"_(a)ab = "log"_(a)a + "log"_(a)b = 1 + "log"_(a)b` `therefore ("log"_(a)x)/("log"_(ab)x) = 4 + k + "log"_(a)b` `rArr 1 + "log"_(a)b = 4 + k + "log"_(a)b rArr 1 = 4 + k rArr k = -3` |
|
| 40. |
`(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=`A. 1B. `"log"_(43!)n`C. `"log"_(n)43!`D. none of these |
|
Answer» Correct Answer - C We have, `(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)` ` = "log"_(n)2 + "log"_(n)3 + "log"_(n)4 +… +"log"_(n)43` ` = "log"_(n) (2 xx 3 xx 4 xx .. xx 43) = "log"_(n)43!` |
|
| 41. |
If a, b, c are positive real numbers, then `(1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =` |
|
Answer» Correct Answer - C We have, `(1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =` ` = "log"_(abc)ab + "log"_(abc)bc + "log"_(abc)ca` ` = "log"_(abc) (ab xx bc xx ca) = "log"_(abc) (abc)^(2) = 2"log"_(abc) abc = 2` |
|
| 42. |
If `x - 27 " and " y = "log"_(3) 4, "then" x^(y)` equalsA. 64B. 16C. `(3)/(7)`D. `(1)/(16)` |
|
Answer» Correct Answer - A We have, `x = 27 " and " y = "log"_(3) 4` `therefore x^(y) = 27^("log"3) ""^(4)= 3^(3"log"3) ""^(4) = 3^(3"log"3) ""^(4) = 3^("log"3 4^(3)) = 4^(3) = 64` |
|
| 43. |
If `x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), ` then which of the following is correct?A. `(1)/(x+1) + (1)/(y+1) + (1)/(z+1) =1`B. `(1)/(x-1) + (1)/(y-1) + (1)/(z-1) =1`C. xyz =x + y + z + 1D. xyz = 1 |
|
Answer» Correct Answer - A We have, `x = "log"_(a)bc, y = "log"_(b)ca, z = "log"_(c) ab` `rArr x + 1 = "log"_(a)bc + "log"_(a) a, y+1 = "log"_(b)ca + "log"_(b)b, z+1 = "log"_(c)ab + "log"_(c)c` `rArr x+ 1 = "log"_(a)abc, y + 1 = "log"_(b)abc, z+1 = "log"_(c)abc` `rArr (1)/(x+1) + (1)/(y + 1) + (1)/(z+1) = "log"_(abc)a+"log"_(abc)b + "log"_(abc)c` `rArr (1)/(x + 1) + (1)/(y + 1) + (1)/(z+1) = "log"_(abc) abc = 1` |
|
| 44. |
The value of `(bc)^log(b/c)*(ca)^log(c/a)*(ab)^log(a/b)` is |
|
Answer» Correct Answer - C We have, `"log"{(ab)^("log"((a)/(b))) xx (bc)^("log"((b)/(c))) xx (ca)^("log"((c)/(a)))}` `="log"((a)/(b))"log"(ab) + "log"((b)/(c)) "log" (bc) + "log"((c)/(a))"log"(ca)` ` =("log"a- "log"b)("log"a+ "log"b) + ("log"b-"log"c)("log"b + "log"c) + ("log"c-"log"a)("log"c + "log"a)` = 0 `therefore (ab)^("log"((a)/(b))) xx (bc)^("log"((b)/(c))) xx (ca)^("log"((c)/(a))) = 1` |
|
| 45. |
If \(\frac{log\,x}{a^2+ab+b^2}\) = \(\frac{log\,y}{b^2+bc+c^2}\) = \(\frac{log\,z}{c^2+ca+a^2}\), then xa-b . yb-c . zc-a = (a) 0 (b) –1 (c) 1 (d) 2 |
|
Answer» (c) 1 Let each ratio = k and base = e ⇒ loge x = k(a2 + ab + b2) ⇒ (a – b) loge x = k (a – b) (a2 + ab + b2) ⇒ loge xa – b = k(a3 – b3) ⇒ xa – b = \(e^{k(a^3-b^3)}\) Similarly, yb-c = \(e^{k(b^3-c^3)}\), zc-a = \(e^{k(c^3-a^3)}\) ∴ xa-b . yb-c . zc-a = \(e^{k(a^3-b^3)}\). \(e^{k(b^3-c^3)}\) . \(e^{k(c^3-a^3)}\) = \(e^{k[a^3-b^3+b^3-c^3+c^3-a^3]}\) = e0 = 1. |
|
| 46. |
If `3^(log_(3)(5))+5^(log_(x)3) =8` then find the value of x.A. 3B. 5C. 4D. 8 |
|
Answer» Correct Answer - B ` 3( log_(3)5 ) + 5^(log_(x)3) = 8` ` Rightarrow 5 + 5^(log_(x) 3) =8` ` Rightarrow 5 log_(x)3) =3` ` 3^(log_(x) 5) =3` ` log_(x) 5=1` `Rightarrow log_(x) 5=1` ` Rightarrow x=5` |
|
| 47. |
If `x^(2)-y^(2) =1 , (x gt y)` ,then find the value of `log(x-y) (x+y)`A. -2B. 2C. -1D. 1 |
|
Answer» Correct Answer - C Given `x^(2) - y^(2) =1` Applying log on both the sides, we get ` Rightarrow [ ( x+y) (x-y) = -0` ` Rightarrow (x+y) + log ( x-y) =0` ` Rightarrow (x+y) = - log ( x-y)` ` ( log (x + y) )/)(log (x - y)0 = -1` `Rightarrow log_(x-y) ( x+y) = -1` |
|
| 48. |
If `3^(log_(9)x)=2`, then x = ______. |
| Answer» Correct Answer - 4 | |
| 49. |
If x = log2a a, y = log3a2a, z = log4a3a, then xyz – 2yz equals(a) a3 (b) 1 (c) 0 (d) –1 |
|
Answer» (d) -1 \(x\) = log2a a = \(\frac{\text{log}\,a}{\text{log}\,2a}\), y = log3a 2a = \(\frac{\text{log}\,2a}{\text{log}\,3a}\) z = log4a 3a = \(\frac{\text{log}\,3a}{\text{log}\,4a}\) ∴ xyz - 2yz = \(\frac{\text{log}\,a}{\text{log}\,2a}\).\(\frac{\text{log}\,2a}{\text{log}\,3a}\).\(\frac{\text{log}\,3a}{\text{log}\,4a}\) - 2\(\frac{\text{log}\,2a}{\text{log}\,3a}\).\(\frac{\text{log}\,3a}{\text{log}\,4a}\) = \(\frac{\text{log}\,a}{\text{log}\,4a}\) - 2\(\frac{\text{log}\,2a}{\text{log}\,4a}\) = \(\frac{\text{log}\,a-2\,\text{log}\,2a}{\text{log}\,4a}\) = \(\frac{\text{log}\,a-\,\text{log}\,(2a^2)}{\text{log}\,4a}\) = \(\frac{\text{log}\frac{a}{4}a^2}{\text{log}\,4a}\) = \(\frac{\text{log}\,(4a)^{-1}}{\text{log}\,(4a)}\) = \(\frac{-1.\text{log}\,4a}{\text{log}\,4a}\) = -1. |
|
| 50. |
`(log15-log6)/(log20-log8)` = ______. |
| Answer» Correct Answer - 1 | |