Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecxxx(vecyxx(veczxxvecx)=vecb nd vecxxxvecy=vecc, find vecx, vecy, vecz` in terms of `veca,vecb and vecc`.A. `1/2[(veca-vecb)xx vecc+ (veca + vecb)]`B. `1/2[(veca+vecb)xx vecc+ (veca - vecb)]`C. `1/2[-(veca+vecb)xx vecc+ (veca + vecb)]`D. `1/2[(veca+vecb)xx vecc- (veca + vecb)]`

Answer» Correct Answer - d
Given that `|vecx|= |vecy|=|vecz|=sqrt2` and they are inclined at an angle of `60^(@)` with each other.
`vecx.vecy=vecy.vecz=vecz.vecx=sqrt2.sqrt2cos 60^(@)=1 vecx xx (vecyxxvecz)=veca`
`or (vecx.vecz)vecy-(vecx.vecy)vecz=vecaor vecy-vecz=veca` (i)
similarly `vecyxx(vecz xxvecx)=vecb Rightarrow vecz-vecx=vecb`
`vecy=veca+vecz,vecx=vecz-vecb`
Now , ` vecx, xx vecy=vecc`
` Rightarrow (vecz - vecb) xx (vecz + veca) = vecc`
` or vecz xx (veca xx vecb) = vecc + (vecb xxx veca)`
` or (veca + vecb) xx {vecz xx (veca + vecb)} `
`= (veca xx vecb) xx vecc+ (veca +vecb) xx (vecbxxveca)`
`or (veca + vecb) ^(2)vecz - {(veca + vecb).vecz} (veca + vecb)`
`= (veca + vecb) xx vecc + |veca|^(2)vecb-|vecb|^(2)veca`
`+ (veca.vecb) (vecb.veca)`
`Now , (i) Rightarrow |veca|^(2)= |vecy-vecz|^(2)=2 +2-2=2`
similarly , (ii) `Rightarrow |vecb|^(2)=2`
Also (i) and (ii) `Rightarrow veca+vecb=vecy-vecx`
`Rightarrow |veca+vecb|^(2)=2`
`Also (veca +vecb).vecz= (vecy -vecx).vecz = vecy.vecz-vecx.vecz`
1-1=0
`and veca.vecb= (vecy.vecz). (vecz-vecx)`
` =vecy.vecz-vecx.vecy-|vecz|^(2)+vecx.vecz= -1`
Thus from (v) , we have
`2vecz=(veca+vecb)xxvecc+2(vecb-veca)-(vecb-veca)`
`or vecz= (1//2)[(veca + vecb) xx vecc + vecb-veca]`
`vecy= veca+vecz= (1//2)[(veca+vecb)xxvecc+vecb+veca]`
`and vecx=vecz-vecb=(1//2)[(veca+vecb)xxvecc-(veca+vecb)]`
2.

If `veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc= zhati + xhatj+ yhatk ,, " then " vecaxx (vecbxx vecc) `isA. parallel to ` ( y- z) hati + (z - x) hatj + (x -y) hatk`B. orthogonal to `hati + hatj + hatk`C. orthogonal to ` ( y+z) hati + ( z + x) hatj + ( x + y) hatk`D. orthogonal to `xhati + yhatj + zhatk`

Answer» Correct Answer - a,b,c,d
`veca xx (vecbxxvecc0 = (veca .vecc) vecb- (veca .vecb)vecc`
`= (yz+yx +zx) {(y-z)hati+(z-x)hatj +(x-y)hatk}`
Clearly vector is parallel to `(y-z) hati + (z-x) hatj + (x-y) hatk`
it is orthogonal to `hati+hatj +hatk as (y-z) (1) + (z-x) (1) + (x-y) (1) =0`
it is orhtogonal to `( y+z) hati+ (z+x) hatj + (x +y) hatk`
as (y-z) (y+z) + (z+x) + (x-y) (x+y)
` = y^(2) -z^(2) +z^(2)- x^(2) +x^(2) -y^(2) =0`
Also it is orthogonal to `xhati + yhatj + zhatk`
3.

Let `veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vecc = 2hati - alphahatj + hatk`. Find the value of `6 alpha`. Such that `{(vecaxxvecb)xx(vecbxx vecc)}xx(veccxxveca)=0`

Answer» Correct Answer - 4
`veca=alphahati+2hati-3hatk,vecb=hati+2alphahati-2hatk,`
`vecc= 2hati - alphahatj + hatk {(veca xx vecb) xx (vecb xx vecc)}xx (vecc xx veca)=vec0`
`or {[veca vecb vecc] vecb-[veca vecbvecb]vecc}xx (veccxxveca)=0`
`or [veca vecb vecc] vecb xx (vecc xx veca)=vec0`
`or [veca vecb vecc] ((veca.vecb)vecc- (vecb.vecc)veca)=vec0`
`[ veca vecb vecc] =0 ` ( `veca and vecc` are not collinear)
`Rightarrow |{:(alpha,2,-3),(1,2alpha,-2),(2,-alpha,1):}|`
`or alpha(2alpha - 2alpha) -2(1+4) -3 (-alpha - 4alpha)=0`
`or 10 -15 alpha=0`
`alpha 2//3`
4.

If `veca,vecb,vecc and vecd` are unit vectors such that `(vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2` then (A) `veca,vecb,vecc` are non coplanar (B) `vecb,vecc, vecd` are non coplanar (C) `vecb, vecd` are non paralel (D) `veca, vecd` are paralel and `vecb, vecc` are parallelA. `veca, vecb and vecc` are non- coplanarB. `vecb, vecc and vecd` are non-coplanarC. `vecb and vecd` are non- parallelD. `veca and vecd` are parallel and `vecb and vecc` are parallel

Answer» Correct Answer - c
` (veca xx vecb) . (vecc xx vecd) =1 ` is possible only when
` |veca xx vecb|= |vecc xx vecd|=1 and (veca xx vecb) || (vecc xx vecd)`
since `veca . Vecc = 1/2 and if vecb||vecd , " then " |vecc xx vecd|ne 1`
5.

Let `veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk` be three vectors. A vectors `vecv` in the plane of `veca and vecb` , whose projection on `vecc is 1/sqrt3` is given byA. `hati-3hatj + 3hatk`B. `-3hati-3hatj +hatk `C. `3hati -hatj + 3hatk`D. `hati+ 3hatj -3hatk`

Answer» Correct Answer - c
`vecv= lamdaveca + muvecb`
`= lambda( hati +hatj +hatk) + mu(hati - hatj +hatk)`
Projection of `vecv " on " vecc`
`(vecv.vecc)/(|vecc|)= 1/sqrt3`
`or ([(lamda+mu)hati+(lamda-mu)hatj+(lamda+mu)hatk].(hati-hatj-hatk))/sqrt3= 1/sqrt3`
`or lamda + mu - lamda+ mu- lamda- mu =1`
` or mu - lamda =1`
`or lamda = mu -1`
`Rightarrow vecv= (mu-1) (hati+hatj+hatk)+mu(hati-hatj+hatk)`
` = (2mu -1) hati -hati -hatj + (2mu -1) hatk`
At `mu-2 , vecv = 3hati -hatj +3hatk`
6.

Statement 1: Vector `vecc = -5hati + 7 hatj + 2hatk ` is along the bisector of angle between `veca = hati + 2hatj + 2hatk and vecb = 8 hati + hatj - 4hatk`. Statement 2 : `vecc` is equally inclined to `veca and vecb`.A. Both the statements are true and statement 2 is the correct explanation for statement 1.B. Both statements are true but statement 2 is not the correct explanation for statement 1.C. Statement 1 is true and Statement 2 is falseD. Statement 1 is false and Statement 2 is true.

Answer» Correct Answer - b
A vector along the bisector is
` veca/(|veca|)+vecb/|vecb|= (-5hati+7hatj+2hatk)/9`
Hence `vecc = -5hati + 7hatj +2hatk` is along the bisectior. It is obvious that `vecc` makes an equal with `veca and vecb` However, statement 2 does not explain statment 1, as a vector equally inclined to given two vectors is not necessarily coplanar.
7.

Which of the following expressionsare meaningful?` vec udot( vec vxx vec w)`b. `( vec udot vec v)dot vec w`c. `( vec udot vec v)dot vec w`d. ` vec uxx( vec vdot vec w)`A. `vecu.(vecvxx vecw)`B. `(vecu.vecv).vecw`C. `(vecu.vecv)vecw`D. `vecu xx (vecv . Vecw)`

Answer» Correct Answer - a,c
Dot product of two vectors gives a scalar quantity.
8.

Let `veca=a_(1)hati+a_(2)hatj+a_(3)hatk, vecb=b_(1)hati+b_(2)hatj+b_(3)hatk` and `vecc=c_(1)hati+c_(2)hatj+c_(3)hatk` be three non zero vectors such that `vecc` is a unit vector perpendicular to both `veca` and `vecb` . If the angle between `veca` and `vecb` is `(pi)/6`, then `|(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|^(2)` is equal to

Answer» Correct Answer - c
We are given that `veca = a_(1)hati+a_(2)hatj +a_(3)hatk`
`vecb = b_(1)hati +b_(2)hatj +b_(3)hatk`
`vecc =c_(1)hati +c_(2)hatj +c_(3)hatk`
`"then"|{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|^(2)=[veca vecbvecc]^(2)`
` (veca xx vecb.vecc)^(2)`
`(|veca xx vecb|.1cos)^(@2)`
(since `vecc` is `bot "to" veca and vecb, vecc "is " bot "to" vecaxx vecb)`
`(|veca xx vecb|)^(2)`
`(|veca||vecb|.sin""pi/6)^(2)`
`(1/2sqrt(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))sqrt(b_(1)^(2)+b_(2)^(2)+b_(3)^(2)))^(2)`
`1/4(a_(1)^(2)+a_(2)^(2)+a_(2)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))`
9.

Let `veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk and vecc= hati+hatj-hatk` A vector in the plane of `veca and vecb` whose projections on `vecc`` `is` `1//sqrt3` isA. `4 hati - hatj + 4hatk`B. `3hati+hatj - 3hatk`C. `2hati+hat- 2hatk`D. `4hati + hatj -4hatk`

Answer» Correct Answer - a
A vector in the plane of `veca and vecb` is
`vecu=muveca +lambdavecb= (mu +lamda)hati+ (2mu - lamda) hatj + ( mu +lambda)hatk`
projection of `vecu` on ` vecc = 1/sqrt3`
` Rightarrow (vecu.vecc)/(|vecc|)= 1/sqrt3`
`or vecu.vecc=1`
`or |mu + lambda+ 2mu -lamda-mu-lambda|=1`
`or |2mu -lamda|=1`
`or lamda = 2mu +- 1`
`Rightarrow vecu = 2hati +hatj + 2hatk or 4 hati -hatj + 4hatk` j
10.

For three vectors `vecu,vecv,vecw` which of the following expressions is not eqal to any of the remaining three?A. `vecu.(vecvxx vecw)`B. `(vecvxx vecw).vecu`C. `vecv.(vecuxx vecw)`D. `(vecuxx vecv).vecw`

Answer» Correct Answer - c
`[ vecu vecv vecw] = [vecv vecw vecu] = [vecw vecu vecv]`
but `[vecv vecu vecw]=- [vecu vecv vecw]`
11.

The number of vectors ofunit length perpendicular to vectors ` vec a=(1,1,0)a n d vec b=(0,1,1)`isa. one b. two c.three``d. infiniteA. oneB. twoC. threeD. infinite

Answer» Correct Answer - b
we know that if `hatn` is perpendicular to `veca` as we as `vecb` .then
`hatn=(vecaxxvecb)/(|vecaxxvecb|)or (vecbxxveca)/(|vecbxxveca|)`
As ` veca xx vecb and vecb xx veca` represent two vectors in opposite directions , we have two possible value of `hatn`.
12.

If `veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk`, then find the value of `|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|`

Answer» `|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|=[veca vecbvecc][vecavecbvecc]=[vecavecbvecc]^(2)`
`|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|= 4^(2)=16`
13.

Let `veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk` be three vectors . A vector in the pland of `vecb and vecc` whose projection on `veca` is of magnitude `sqrt((2/3))`is (A) `2hati+3hatj+3hatk` (B) `2hati+3hatj-3hatk` (C) `-2hati-hatj+5hatk` (D) `2hati+hatj+5hatk`A. `2hati+3hatj-3hatk`B. `2hati+3hatj +3hatk`C. `-2hati - hatj + 5hatk`D. `2hati + hatj + 5hatk`

Answer» Correct Answer - a,c
we have
`veca =2hati-hatj+hatk,vecb=hati+2hatj-hatk,vecc=hati+hatj=2hatk`
Any vector in the plane of `vecb and vecc` is
`vecu=muvecb+lamdavecc`
` mu(hati+2hatj-hatk)+lamda(hati +hatj-2hatk)`
`=(mu+lamda)hati+(2mu+lamda)hatj-(mu + 2lamda)hatk`
Given that the magnitude of projection of `vecu "on " veca` is `sqrt(2//3)` thus
`sqrt(2/3)=|(vecu.veca)/(|veca|)|`
`|(2(mu+lamda)-(2mu+lamda) -(mu+2lamda))/sqrt6|`
`or |-lamda- mu|2`
` Rightarrow lamda + mu=2 or lamda+mu =-2`
14.

If `vecb and vecc` are two non-collinear such that `veca ||(vecbxxvecc)`. Then prove that `(vecaxxvecb).(vecaxxvecc)` is equal to `|veca|^(2)(vecb.vecc)` `

Answer» `veca||(vecbxxvecc)`
`veca=lambda(vecbxxvecc)and veca=vecabotvecband vecabotvecc`
`Now, (vecaxxvecb).(vecaxxvecc)=|{:(veca.a,veca.vecc),(vecb.veca,vecb.vecc):}|`
`=|{:(veca.veca,0),(0,vecb.vecc):}|=|veca|^(2)(vecb.vecc)`
15.

`vecA=(2veci+veck),vecB=(veci+vecj+veck) and vecC=4veci-vec3j+7veck` determine a vector `verR` satisfying `vecRxxvecB=vecCxxvecB and vecR.vecA=0`

Answer» Correct Answer - `-hati-8hatj+2hatk`
we are given that `vecA=2hati + hatk,vecB=hati+hatj+hatk and vecC= 4hati -3hatj +7hatk and ` to determine a vector `vecR` such that `vecR xx vecB = vecC xx vecB and vecR.vecA =0` Let `vecR =x hati + yhatj + zhatk`
then `vceR xx vecB = vecC xx vecB`
`Rightarrow |{:(hati,hatj,hatk),(x,y,z),(1,1,1):}|=|{:(hati,hatj,hatk),(4,-3,7),(1,1,1):}|`
`or (y-z) hati - (x-z) hatj + (x-y) hatk`
` =-10 hati + (x -z) hatj + 7 hatk`
y-z= -10
x-z =-3
x-y= 7
Also ` vecR.vecA=0`
` Rightarrow 2x +z=0`
Subsituting y =x-7 and z =-2x from (ii) and (iv), respectively in (i) , we get
x-7 +2x =-10
3x=-3
x=-1,y =-8 and z=2
16.

If `veca and vecb` are any two unit vectors, then find the greatest postive integer in the range of `(3|veca + vecb|)/2+2|veca-vecb|`

Answer» Correct Answer - 5
Let angle between `veca and vecb br theta`
we have ` |veca| = |vecb|=1`
Now `|veca + vecb|= 2cos theta/2 and |veca - vecb|=2 sin theta/2`
consider `F(theta) = 3 cos theta/2 + 4 sin theta/2 theta in [ 0,pi]`
17.

Let `vecu` be a vector on rectangular coodinate system with sloping angle `60^(@)` suppose that `|vecu-hati|` is geomtric mean of `|vecu| and |vecu-2hati|`, where `hati` is the unit vector along the x-axis . Then find the value of `(sqrt2+ 1) |vecu|`

Answer» Correct Answer - 1
since angle between `vecu and hati is 60^(@)` we have
`vecu. I = |vecu||hati|cos 60^(@) = (|vecu|)/2`
Given that ` |vecu - hati| ,|vecu| , |vecu -2hati|` are in G.P. so
`|vecu - hati|^(2)= |vecu| |vecu -2 hati|`
squaring both sides,
`[|vecu|^(2)+|hati|^(2)-2vecu.hati]^(2)=|vecu|^(2)[|vecu|^(2)+4|hati|^(2)-4vecu.hati]`
`[|vecu|^(2)+1-(2|vecu|)/2]^(2)=|vecu|^(2)[|vecu|^(2)+4-4(|vecu|)/2]`
`or |vecu|^(2)+ 2|vecu|-1=0Rightarrow|vecu|=-(2+-2sqrt2)/2`
`or |vecu|= sqrt2-1`
18.

If `(veca xxv vecb) xx (vecc xx vecd) . (veca xx vecd) =0` then which of the following may be true ?A. `veca, vecb and vecd` are nenessarily coplanarB. `veca` lies iin the plane of `vecc and vecd`C. `vecvb` lies in the plane of `veca and vecd`D. `vecc` lies in the plane of `veca and vecd`

Answer» Correct Answer - b,c,d
`(vecaxxvecb )xx(vecc xx vecd). (vecaxxvecd) =0`
`or ([veca vecc vecd] vecb- [vecb vecc vecd]veca) . (veca xx vecd)=0`
`or [veca veccvecd] [vecb veca vecd] =0`
Hence, either `vecc or vecb` must lie in the plane of ` veca and vecd`.
19.

Vector ` vec O A= hat i+2 hat j+2 hat k`turns through a right anglepassing through the positive x-axis on the way. Show that the vector in its new position is`(4 hat i- hat j- hat k)/(sqrt(2))dot`

Answer» Let the new vector be `vec(OB)= xhati+yhatj=zhatk`
According to the given condition, we have
`|vec(OB)|=|vec(OA)|=3 Rightarrowx^(2)+y^(2)+z^(2)=9`
`vec(OA)vec(OB)Rightarrowx+2y+2z=0`
Since with turing `vec(OA)`, it passes through the postivie x-axis on the way, vectors `vec(OA),vec(OB)and lambdahati` coplanar . thus,
`|{:(x,y,z),(1,2,2),(lambda,0,0):}|=0`
or y-z=0
solving (i) (ii) and (iii) for x,y and z. we have x-4y=-4z
`Rightarrow 16y^(2)+y^(2)+y^(2)=9`
`Rightarrowy=+-1/sqrt2`
`Rightarrow vec(OB) = +-(4/sqrt2hati-1/sqrt2hatj-1/sqrt2hatk)`
since angle between `vec(OB) and hati` is acute, `vec(OB)=4/sqrt2hati-1/sqrt2hatj-1/sqrt2hatk`
20.

Find `vecaxxvecb and |vecaxxvecb|` if `vec=hati-7hatj+7hatk vecb=3hati-2hat+2hatk``

Answer» `veca=hati-7hatjandvecb=3hati+2hatk`
`vecaxxvecb=|{:(hati,hatj,hatk),(1,-7,7),(3,-2,2):}|`
`= hati(-14+14)-hatj(2-21)+hatk(-2+21)=19hatj+19hatk`
`|vecaxxvecb|=sqrt((19)^(2)+(19)^(2))=sqrt(2xx(19)^(2))=19sqrt2`
21.

Prove that `(veca-vecb)xx(veca+vecb)=2(vecaxxvecb)` also interpret this result.

Answer» `(veca-vecb)xx(veca+vecb)=(veca-vecb) xxveca+(veca-vecb)xxvecb` [ By distributivity of vector product over addition]
`= vecaxxveca-vecbexxveca+vecaxxvecb-vecbxxvecb` [ Again , by distributivity of vector product over addition ]
`=vec0 +vecaxxvecb+vecaxxvecb-vec0`
`= 2vecaxxvecb`
22.

Find a unit vectorperpendicular to the plane determined by the points `(1,-1,2),(2,0,-1)a n d(0,2,1)dot`

Answer» Given points are A(1,-1,2),B(2,0,-1) and C(0,2,1)
`Rightarrow vec(AB)=veca=hati+hatj-3hatk,vec(BC)=vecb=-2hati+2hatj+2hatk`
`vecaxxvecb=|{:(hati,hatj,hatk),(1,1,-3),(-2,2,2):}|=8hati+4hatj+4hatk`
Hence, Unit vector `vecaxxvecb=|{:(hati,hatj,hatk),(1,1,-3),(-2,2,2):}|=8hati+4hatj+4hatk`
23.

Let the vectors `veca and vecb` be such that `|veca|=3and|vecb|=sqrt2/3"then|" vecaxxvecb`is a unit vector. If the angle between `veca and vecb` is ?

Answer» It is given that `|veca|=3and |vecb|=sqrt2/3`
we know that `vecaxxvecb= |veca|vecb|sin theta hatn "where" hatn` is a unit vector peroendicular to both `veca and vecb and theta` is the angle between `veca and vecb`.
`now veca xx vecb` is a unit vector if `|vecaxxvecb|=1`
` or , ||veca||vecb|sin theta|=1`.
`or , ||veca||vecb| sin theta|=1`
`or 3xxsqrt2/3xxsintheta=1`
`or theta=pi/4`
Hence , `veca xx vecb` is a unit vector if the angle between `veca and vecb is pi/4`.
24.

If `veca and vecb` are two vectors , then prove that `(vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|`

Answer» `(vecaxxvecb)^(2)=(ab sintheta.hatn)^(2)`
`=a^(2)b^(2)sin^(2)theta`
=`(veca.veca) (vecb.vecb)-(veca.vecb)^(2)`
`=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|`
25.

A unit vector a makes an angle `pi/ 4` with z-axis. If `a + i + j` is a unit vector, then a can be equal to

Answer» `Let veca= xhati+yhatj+zhatk`
Given `|veca|=1` therefore,
`x^(2)+y^(2)+z^(2)=1`
Angle between `veca` and z-axis is `pi//4` , therefore,
`cos (pi/4)= (veca.hatk)/(|veca||hatk|)`
`z=1/sqrt2`
`Now veca+hati+ahtj= (x+1)hati+(y+1)hatj+zhatk`
Given that `veca+hati+hatj` is a unit vector. therefore,
`|veca+hati+hatj|=sqrt([(x+1)^(2)+(y+1)^(2)z^(2)])=1`
`x^(2)+y^(2)=z^(2)+2x+2y+1=0`
1+2x+2y+1=0
y=-(x+1)
from (i), we have
`x^(2)+(x+1)^(2)+(1//2)=1`
`Rightarrow 4x^(2)+4x+1=0or(2x + 1)^(2)=0`
`x=1/2 Rightarrowy=1/2`
Hence,` veca=-1/2hati-1/2hatj+1/sqrt2hatk`
26.

If `a+2b+3c=4,`then find the least valueof `a^2+b^2+c^2dot`

Answer» consider vectors `vecP=ahati+bhatj+chatkandvecq=hati+2hatj+3hatk`
`costheta= (a+2b+3c)/(sqrt(a^(2)b^(2)=c^(2))sqrt(1^(2)+2^(2)+3^(2)))`
`cos^(2)theta= ((a+2b+3c)^(2))/(14(a^(2)+b^(2)+c^(2)))le1`
`Rightarrow a^(2)+b^(2)+c^(2)ge8/7`
Hence, least value of `a^(2) + b^(2) + c^(2) is 8/7`
27.

Prove that: `[vecaxxvecb vecb xx vecc veccxxveca]=[vecavecbvecc]^2`

Answer» `[vecaxxvecb" "vecbxxvecc " " veccxxveca]=(vecaxxvecb).((vecbxxvecc)xx(veccxxveca))`
`= (veca xxvecb).[[vecbveccveca]vecc-[vecbvecc vecc]veca]`
`= [veca vecbvecc]^(2)`
28.

Prove that `hati xx(vecaxxveci)+hatjxx(vecaxxvecj)+hatkxx(vecaxxveck)=2veca`

Answer» `hatixx(veca xxhati)=(hati.hati)veca-(veca.veci)=veca-(veca.veci)hati`
`hatjxx(vecaxxhatj)=veca-(veca.hatj)and hatkxx(vecaxxhatk)veca-(veca.hatk)hatk`.
`hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxhatk)=3veca-((veca.hati)hati+(veca.hatj)+(vecaxx hatk)hatk)=2veca`
29.

If ` |veca|=2` then find the value of `|vecaxxveci|^(2)+|vecaxxvecj|^(2)+|vecaxxveck|^2`

Answer» `|vecaxxveci|^(2)=|{:(hati,hatj,hatk),(a_(1),a_(2),a_(3)),(1,0,0):}|^(2)`
`=|a_(3)hatj-a_(2)hatk|^(2)=a_(3)^(2)+a_(2)^(2)`
similarly, `|vecaxxvecj|^(2)=a_(1)^(2)+a_(3)^(2) and|vecaxxveck|^(2)=a_(1)^(2)+a_(2)^(2)`
Hence, the required result can be given as `2(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))=2|veca|^(2)=8`
30.

If `veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk)` . Then find the unit vector `veca`.

Answer» Let `veca=xhati+yhatj+zhatk`
then `veca.hati=(xhati+yhatj+zhatk).hati=x and veca. (hati+hatj)=x+y`
`and veca.(hati+hatj=hatk)=x+y+z("given that" x=x+y=x+y+z)`
now, `x=x+y Rightarrow y =0 and x+y =x+y+z Rightarrow z=0`
Hence, x =1 ( sicne `veca` is a unit vector)
`veca=veci`
31.

If `hati xx[(veca-hatj)xxhati]+hatjxx[(veca-hatk)xxhatj]+veckxx[(veca-veci)xxhatk]=0` , then find vector `veca`.

Answer» `hatixx[(veca-vecj)xxhati]=(hati.hati)(veca-vecj)-(hati.(veca-hatj))hati`
`= veca-hatj-(hati.veca)hati`
similarly, `hatjxx[(veca-hatk)xxvecj]=veca-veck+(vecj.veca)hatj`
`hatkxx[(veca-hati)xxhatk]=veca-hati-(hatk.veca)hatj`
`hatixx[(veca-hatj)xxhati]xx[(veca-veck)xxhatj]+hatkxx[(veca-hati)xxhatk]`
`=veca-hatj-(hati.veca)hati+veca-hatk+(hatj.veca)hatj+veca-hati-(hatk.veca)hatk=0`
`3veca-(hati+hatj+hatk)-veca=0`
`veca=1/2(hati+hatj+hatk)`
32.

Let `veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk`. Let `veca_(1)` be the projection of `veca on vecb and veca_(2)` be the projection of `veca_(1) on vecc` . Then`veca_(1).vecb` is equal toA. `-41`B. `-41//7`C. 41D. 287

Answer» Correct Answer - a
`veca_(1).vecb= (-41)/49 (2hati - 3hatj + 6hatk) . (2hati - 3hatj + 6hatk) =-41`
33.

Let `veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk`. Let `veca_(1)` be the projection of `veca on vecb and veca_(2)` be the projection of `veca_(1) on vecc` . Then which of the following is true ?A. `veca and vcea_(2)` are collinearB. `veca_(1) and vecc` are collinearC. `veca m veca_(1) and vecb` are coplanarD. `veca, veca_(1) and a_(2)` are coplanar

Answer» Correct Answer - c
`veca,veca_(1)andvecb` are coplanar because `veca_(1) and vecb` are collinear.
34.

Let `veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk`. Let `veca_(1)` be the projection of `veca on vecb and veca_(2)` be the projection of `veca_(1) on vecc` . Then `veca_(2)` is equal toA. `943/49 (2 hati - 3hatj - 6hatk)`B. `943/(49^(2)) (2 hati - 3hatj - 6hatk)`C. `943/49 (-2 hati + 3hatj + 6hatk)`D. `943/(49^(2)) (-2 hati + 3hatj + 6hatk)`

Answer» Correct Answer - b
`veca_(1)[(2hati+3hatj-6hatk)((2hati-3hatj + 6hatk))/7](2hati-3hatj + 6hatk)/7`
`(-41)/49(hati-3hatj + 6hatk)`
`veca_(2) (-41)/49((2hati-3hatj + 6hatk).((-2hati+3hatj+6hatk))/7)`
`xx ((-2hati + 3hatj = 6hatk))/7`
`(-41)/((49)^(2))(-4-9+36) (-2hati+3hatj + 6hatk)`
`943/(49^(2))(2hati -3hatj - 6hatk)`
35.

Given two orthogonal vectors `vecA and VecB` each of length unity. Let `vecP` be the vector satisfying the equation `vecP xxvecB=vecA-vecP`. then `(vecP xx vecB ) xx vecB` is equal toA. `vecP`B. `-vecP`C. `2vecB`D. `vecA`

Answer» Correct Answer - b
`vecPxxvecB=vecA-vecP and |vecA|=|vecB|=1 and vecA.vecB=0`is given
Now `vecP xx vecB = vecA-vecP`
`(vecPxxvecB) xxvecB= (vecA-vecP)xxvecB`
(taking cross product with `vecB` on both sides)
`or (vecP.vecB)vecB- (vecB.vec B)vecP=vecAxxvec B -vecP xx vecB`
`or (vecP.vecB) vecB-vecP=vecA xx vecB-vecA+vecP`
`or 2vecP = vecA-vecA-vecAxxvec B-(vecP.vecB)vecB`
`or vecP= (vecA-vecAxxvecB=-(vecP.vecB)vecB)/2`
taking dot product with `vecB` on both sides of (i) get
`vecP.vecB=vecA.vecB-vecP.vecB`ltbr gt `Rightarrow vecP.vecB=0`
`Rightarrow vecP=( vecA + vecBxxvecA)/2`
Now
`(vecP xx vecB) xx vecB= (vecP.vecB) vecB-(vecB.vecB) vecP=-vecP`
`vecP,vecA,vecPxxvecB(=vecA-vecP)` are depenment
Also `vecP.vecB=0`
` and |vecP|^(2)=|(vecA-vecAxxvecB)/2|^(2)`
`(|vecA|^(2)+|vecAxxvecB|^(2))/4`
`(1+1)/4=1/2or |vecP|=1/sqrt2`
36.

Let `veca vecb and vecc` be non- zero vectors aned `vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc`.vectors `vecV_(1) and vecV_(2)` are equal . ThenA. `veca and vecb` ar orthogonalB. `veca and vecc` are collinearC. `vecb and vecc` ar orthogonalD. `vecb= lambda (veca xx vecc) " when " lambda ` is a scalar

Answer» Correct Answer - b,d
`vecV_(1) = vecV_(2)`
`vecaxx (vecbxxvecc) = (vecaxxvecb)xxvecc`
`or (veca.vecc)vecb - (veca.vecb)vecc= (veca.vecc)vecb- (vecb.vecc)veca`
`or (veca .vecb)vecc = (vecb.vecc)veca`
Thus , either `vecc and veca` ar collinear or `vecb` is perpendicular to both `veca and vecc Rightarrow vecb = lamda (veca xx vecc) `
37.

Given two orthogonal vectors `vecA and VecB` each of length unity. Let `vecP` be the vector satisfying the equation `vecP xxvecB=vecA-vecP`. then which of the following statements is false ?A. vectors `vecP, vecA and vecP xx vecB` ar linearly dependent.B. vectors `vecP, vecB and vecP xx vecB` ar linearly independentC. `vecP` is orthogonal to `vecB` and has length `1/sqrt2`.D. none of these

Answer» Correct Answer - d
`vecPxxvecB=vecA-vecP and |vecA|=|vecB|=1 and vecA.vecB=0`is given
Now `vecP xx vecB = vecA-vecP`
`(vecPxxvecB) xxvecB= (vecA-vecP)xxvecB`
(taking cross product with `vecB` on both sides)
`or (vecP.vecB)vecB- (vecB.vec B)vecP=vecAxxvec B -vecP xx vecB`
`or (vecP.vecB) vecB-vecP=vecA xx vecB-vecA+vecP`
`or 2vecP = vecA-vecA-vecAxxvec B-(vecP.vecB)vecB`
`or vecP= (vecA-vecAxxvecB=-(vecP.vecB)vecB)/2`
taking dot product with `vecB` on both sides of (i) get
`vecP.vecB=vecA.vecB-vecP.vecB`ltbr gt `Rightarrow vecP.vecB=0`
`Rightarrow vecP=( vecA + vecBxxvecA)/2`
Now
`(vecP xx vecB) xx vecB= (vecP.vecB) vecB-(vecB.vecB) vecP=-vecP`
`vecP,vecA,vecPxxvecB(=vecA-vecP)` are depenment
Also `vecP.vecB=0`
` and |vecP|^(2)=|(vecA-vecAxxvecB)/2|^(2)`
`(|vecA|^(2)+|vecAxxvecB|^(2))/4`
`(1+1)/4=1/2or |vecP|=1/sqrt2`
38.

Given two orthogonal vectors `vecA and VecB` each of length unity. Let `vecP` be the vector satisfying the equation `vecP xxvecB=vecA-vecP`. then `vecP` is equal toA. `vecA/2 + (vecAxxvecB)/2`B. `vecA/2 + (vecBxxvecA)/2`C. `(vecAxxvecB)/2 -vecA/2`D. `vecA xxvecB`

Answer» Correct Answer - b
`vecPxxvecB=vecA-vecP and |vecA|=|vecB|=1 and vecA.vecB=0`is given
Now `vecP xx vecB = vecA-vecP`
`(vecPxxvecB) xxvecB= (vecA-vecP)xxvecB`
(taking cross product with `vecB` on both sides)
`or (vecP.vecB)vecB- (vecB.vec B)vecP=vecAxxvec B -vecP xx vecB`
`or (vecP.vecB) vecB-vecP=vecA xx vecB-vecA+vecP`
`or 2vecP = vecA-vecA-vecAxxvec B-(vecP.vecB)vecB`
`or vecP= (vecA-vecAxxvecB=-(vecP.vecB)vecB)/2`
taking dot product with `vecB` on both sides of (i) get
`vecP.vecB=vecA.vecB-vecP.vecB`ltbr gt `Rightarrow vecP.vecB=0`
`Rightarrow vecP=( vecA + vecBxxvecA)/2`
Now
`(vecP xx vecB) xx vecB= (vecP.vecB) vecB-(vecB.vecB) vecP=-vecP`
`vecP,vecA,vecPxxvecB(=vecA-vecP)` are depenment
Also `vecP.vecB=0`
` and |vecP|^(2)=|(vecA-vecAxxvecB)/2|^(2)`
`(|vecA|^(2)+|vecAxxvecB|^(2))/4`
`(1+1)/4=1/2or |vecP|=1/sqrt2`
39.

Vectors `vecA and vecB` satisfying the vector equation `vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1`. Vectors and `vecb` are given vectosrs, areA. `vecA = ((vecaxxvecb)-veca)/(a^(2))`B. `vecB = ((vecbxx veca) + veca (a^(2) - 1))/a^(2)`C. `vecA = ((vecaxxvecb)+veca)/(a^(2))`D. `vecB = ((vecbxx veca) - veca (a^(2) - 1))/a^(2)`

Answer» Correct Answer - b,c,
we have `vecA.vecB =veca`
`or vecA .veca + vecB.veca = veca.veca`
`or 1+ vecB.veca = a^(2)`
`or vecB.veca= a^(2)-1`
Also `vecA xx vecB =vecb`
`or veca xx (vecA xx vecB ) = veca xx vecb`
` or (veca. vecB)vecA - (veca.vecA) vecB = veca xx vecb`
`or (a^(2)-1) vecA -vecB = veca xx vecb`
( using (i) and ` veca. vecA =1`) (ii)
` and vecA + vecB =a`
form (ii) and (iii) , we have
`vecA= ((vecaxxvecb)+veca)/a^(2)`
`vecB=veca-{((vecaxxvecb)+veca)/a^(2)}`
` = ((vecbxxveca) + veca (a^(2) -1))/a^(2)`
thus `vecA= ((vecaxxvecb)+veca)/a^(2)`
` and vecB= ((vecbxxveca)+veca (a^(2) -1))/a^(2)`
40.

If `|veca|=|vecb|=|veca+vecb|=1` then find the value of `|veca-vecb|`

Answer» we have
`|veca+vecb|^(2)+|veca-vecb|^(2)=2(|veca|^(2)+|vecb|^(2))`
`1+|veca-vecb|^(2)=4or|veca-vecb|sqrt3`
41.

If `veca=4hati+6hatj and vecb=3hati+4hatk` find the vector component of `veca alond vecb`.

Answer» The components of vector `veca long vecb` is `((veca.vecb)vecb)/(|vecb|^(2))=18/25(3hati+4hatk)`
42.

If `vecb and vecc` are any two mutually perpendicular unit vectors and `veca` is any vector, then `(veca.vecb)vecb+(veca.vecc)vecc+(veca.(vecbxxvecc))/(|vecbxxvecc|^2)(vecbxxvecc)=` (A) 0 (B) `veca (C) `veca/2` (D) `2veca`

Answer» Correct Answer - `veca`
Let `vecalpha, vecbeta,vecgamma` be any three mutually perpendicular non-coplanar, unit vectors and `veca` be any vector, then
`veca= (veca.vecalpha)vecalpha+ (veca.vecbeta)+(veca.vecgamma)vecgamma`
Here `vecb, vecc` are two mutually perpendicular vectors,
therefore, `vecb , vecc and (vecb xx vecc)/(|vecb xx vecc|)` are three mutually
Perpendicular non-coplanaar unit vectors. Hence
`veca=(veca .vecb)vecb+(veca.vecc)vecc`
`+(veca.(vecbxxvecc)/(|vecb xx vecc|))(vecb xx vecc)/(|vecb xx vecc|)`
`(veca.vecb)vecb+(veca.vecc)vecc`
`+(veca.(vecbxxvecc))/(|vecb xx vecc|^(2))(vecbxxvecc)`
43.

A non vector `veca` is parallel to the line of intersection of the plane determined by the vectors `hati,hati+hatj` and thepane determined by the vectors `hati-hatj,hati+hatk` then angle between `veca and hati-2hatj+2hatk` is = (A) `pi/2` (B) `pi/3` (C) `pi/6` (D) `pi/4`

Answer» Correct Answer - `pi//4 or 3pi//4`
A vector normal to the plane containing vectors ` hati and hati + hatz` is
`vecp=|{:(hati,hatj,hatk),(1,0,0),(1,1,0):}|=hatk`
A vector normal to the plane containing vectors ` hati- hatj, hati + hatk` is
`vecq=|{:(hati,hatj,hatk),(1,-1,0),(1,0,1):}|=-hati-hatj+hatk`
vector `veca` is parllel to vector `vecp xx vecq`
`vecp xx vecq=|{:(hati,hatj,hatk),(0,0,1),(-1,-1,1):}|=hati-hatj`
Therefore, a vector in direction of `veca` is `hati - hatj`
Now `theta` is the angle between `hata and hati - 2hatj + 2hatk` then
`cos theta=+-(1.1+(-1).(-2))/(sqrt(1+1)sqrt(1+4+4))=+-3/(sqrt(2).3)`
`Rightarrow +-1/sqrt2 Rightarrow theta=pi/4or (3pi)/4`
44.

Let `vec(r)` is a positive vector of a variable pont in cartesian OXY plane such that `vecr.(10hatj-8hati-vecr)=40` and `p_1=max{|vecr+2hati-3hatj|^2},p_2=min{|vecr+2hati-3hatj|^2}`. A tangent line is drawn to the curve `y=8/x^2` at the point A with abscissa 2. The drawn line cuts x-axis at a point BA. 9B. `2sqrt2-1`C. `6sqrt6+3`D. `9-4sqrt2`

Answer» Correct Answer - d
Let `vecx= x hati + yhatj`
`x^(2) + y^(2) + 8x - 10y + 40 =0` , which is a circle
centre C(-4,5) , radius r = 1
`p_(1)= max {(x+2)^(2)+ (y-3)^(2)}`
`P_(2) = min {(x+2)^(2)+ (y-3)^(2)}`
Let P be (-2,3). Then
`CP = sqrt2,r=1`
` P_(2)= (2sqrt2-1)^(2)`
`P_(1) = (2sqrt2+1)^(2)`
`P_(1) + p_(2) =18`
Slope = AB = `((dy)/(dx))_(2,2)=-2`
Equation of AB, 2x+y=6
`vec(OA)=2hati=2hatj,vec(OB)= 3hati`
`vec(AB)=hati-2hatj`
`vec(AB).vec(OB)= (hati-2hatj) (3hati)=3`
45.

Let `vec(r)` is a positive vector of a variable pont in cartesian OXY plane such that `vecr.(10hatj-8hati-vecr)=40` and `p_1=max{|vecr+2hati-3hatj|^2},p_2=min{|vecr+2hati-3hatj|^2}`. A tangent line is drawn to the curve `y=8/x^2` at the point A with abscissa 2. The drawn line cuts x-axis at a point BA. 2B. 10C. 18D. 5

Answer» Correct Answer - c
Let `vecx= x hati + yhatj`
`x^(2) + y^(2) + 8x - 10y + 40 =0` , which is a circle
centre C(-4,5) , radius r = 1
`p_(1)= max {(x+2)^(2)+ (y-3)^(2)}`
`P_(2) = min {(x+2)^(2)+ (y-3)^(2)}`
Let P be (-2,3). Then
`CP = sqrt2,r=1`
` P_(2)= (2sqrt2-1)^(2)`
`P_(1) = (2sqrt2+1)^(2)`
`P_(1) + p_(2) =18`
Slope = AB = `((dy)/(dx))_(2,2)=-2`
Equation of AB, 2x+y=6
`vec(OA)=2hati=2hatj,vec(OB)= 3hati`
`vec(AB)=hati-2hatj`
`vec(AB).vec(OB)= (hati-2hatj) (3hati)=3`
46.

If `veca, vecb, vecc` are unit vectors such that `veca. Vecb =0 = veca.vecc` and the angle between `vecb and vecc is pi/3` , then find the value of `|veca xx vecb -veca xx vecc|`

Answer» Correct Answer - 1
`veca.vecb = 0 Rightarrow veca bot vecb`
`veca .vecc = 0 Rightarrow veca bot vecc`
` Rightarrow veca bot vecb -vecc`
`|veca xx vecb -veca xx vecc|=|veca xx (vecb-vecc)|`
`= |veca||vecb-vecc|=|vecb -vecc|`
Now `|vecb -vecc|^(2) = |vecb|^(2)+|vecc|^(2) -2 |vecb||vecc|cos "" pi/3`
` = 2 -2 x xx 1/2=1 `
`|vecb -vecc|=1`
47.

Let `vecx, vecy and vecz` be three vectors each of magnitude `sqrt2` and the angle between each pair of them is `pi/3 if veca` is a non-zero vector perpendicular to `vecx and vecy xx vecz and vecb` is a non-zero vector perpendicular to `vecy and vecz xx vecx`, thenA. `vecb= (vecb.vecz) (vecz-vecx) `B. `veca= (veca.vecy)(vecy - vecz)`C. `veca.vecb=-(veca.vecy) (vecb.vecz)`D. `veca= (veca.vecy)(vecz- vecy)`

Answer» Correct Answer - a,b,c
Accoding to the question
` vecx. Vecz = vecx .vecy =vecy.vecz=sqrt2.sqrt2. cos " " pi/3=1 `
Given `veca` is perpendicular to `vecx and vecy xx vecz`
`veca = lamda_(1)((vecx.vecz) vecy- (vecx .vecy) vecz)`
` Rightarrow veca = lamda _(1) (vecy -vecz)`
Now, `veca. vecy =lamda_(1) (vecy. vecy.vecz) = lamda_(1)(2-1)`
` Rightarrow lamda_(1) = veca. vecy`
From (1) and )(2), `veca. (veca.vecy)(vecy-vecz)`
Similarly, `vecb= (vecb.vecz) (vecz-vecx)`
Now `veca.vecb= (veca.vecy) (vecb.vecz) [(vecy-vecz).(vecz-vecx)]`
`= (veca.vecy) (vecb.vecz) [ 1-2+1]`
` =- (veca.vecy) (vecb.vecb.vecz)`
48.

Let `vec a ` be vector parallel to line of intersection of planes `P_1 and P_2` through origin. If `P_1`is parallel to the vectors `2 bar j + 3 bar k and 4 bar j - 3 bar k` and `P_2` is parallel to `bar j - bar k` and ` 3 bar I + 3 bar j `, then the angle between `vec a` and `2 bar i +bar j - 2 bar k` is :A. `pi//2`B. `pi//4`C. `pi//6`D. `3pi//4`

Answer» Correct Answer - b,d
Normal to plane `P_(1)` is
`vecn_(1)= (2hatj+3hatk)xx)(4hatj-3hatk)=-18hati`
Normal to plane `P_(2)` is
Therefore, `vecn_(2)= (hatj-hatk)xx (3hati +3hatj)=3hati -3hatj-3hatk`
`vecA` is parallel to `+-(vecn_(1)xx vecn_(2))=+- (-54hatj+54hatk)`
Now , the angle between `vecA nad 2hati +hatj - 2hatk` is given by
`cos thet=+-((-54hatj+54hatk).(2hati+hatj-2hatk))/(54sqrt2 .3)`
`=+-1/sqrt2`
`theta= pi//4 or 3pi//4`
49.

Let a three- dimensional vector `vecV` satissgy the condition , `2vecV + vecV xx ( hati + 2hatj ) = 2hati + hatk . If 3|vecV| = sqrtm` . Then find the value of m.

Answer» Correct Answer - 6
`2vecV+vecVxx(hati+2hatj) = (2hati+hatk)`
`or 2vecV. (hati+2hatj) +0=(2hati+hatk). (hati+2hatj)`
`or 2vecVr. (hati+2hatj)=2`
`or |vecV. (hati+2hatj)^(2)|=1`
`or |vecV|^(2).|hati +2hatj|^(2) cos^(2)theta=1`
(`theta` is the angle between `vecV and hati+2hatj)`
`or |vecV|^(2)5(1-sin^(2)theta)=1`
`or |vecV|^(2) 5 sin^(2)theta =5|vecV|^(2)-1`
from Eq. (i), we have
`|2vecV+vecVxx(hati+2hatj)|^(2)=|2hati+hatk|^(2)`
`or 4|vecV|^(2)+|vecVxx(hati+2hatj)|^(2)=5`
`or 4|vecV|^(2)+|vecV|^(2).|hati + 2hatj|^(2) sin^(2) theta=5`
`or 4|vecV|^(2)+5|vecV|^(2)sin^(2)theta=5`
`or 4|vecV|^(2)+5|vecV|Y^(2)-1=5`
` 9|vecV|^(2)=6`
`or 3|vecV|=sqrt6`
` = sqrt6 = sqrtm`
m=6
50.

Let `tianglePQR` be a triangle . Let `veca=overline(QR),vecb = overline(RP) and vecc= overline(PQ).if |veca|=12, |vecb|=4sqrt3and vecb.vecc= 24` then which of the following is (are) true ?A. `|vecc|^(2)/2-|veca|=12`B. `|vecc|^(2)/2-|veca|=30`C. `|vecaxxvecvb + veccxxveca|= 48sqrt3`D. `veca.vecb=-72`

Answer» Correct Answer - a,c,d
`veca + vecb+vecc =0`
`Rightarrow vecb + vecc= -veca`
`Rightarrow |vecb|^(2) +|vecc|^(2) + 2vecb.vecc= |veca|^(2)`
` Rightarrow 48 + |vec|^(2) + 48 = 144 `
` Rightarrow |vecc|^(2)=48`
`|vecc|= 4sqrt3`
` (|vecc|)^(2))/2+|veca|=36`
Further,
`veca+vecb=-vecc`
`Rightarrow |veca|^(2)+|vecb|^(2)+2veca.vecb=|vecc|^(2)`
`Rightarrow 144 + 48 + 2 veca. vecb= 48`
`veca. vecb = -72`
`veca.vecb + vecc=0`
`Rightarrow veca xx vecb +veca xx vecc=0`
`|veca xx vecb +vecc xx veca|`
`2|veca xx vecb|`
`=2 sqrt(a^(2)b^(2)-(veca.vecb)^(2))`
`2sqrt((144)(48)-(72)^(2))=48sqrt3`