InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Evaluate:\(\int\frac{tanx\,sec^2x}{(1-tan^2x)}dx\)∫tanx sec2x/(1 - tan2x)dx |
|
Answer» Let 1 - tan2 x = t -2 tan x. sec2 x dx = dt -1/2∫dt/t = -1/2 logt + c \(\int\frac{tanx\,sec^2x}{(1-tan^2x)}dx\) = -1/2 log|1 - tan2x| + c |
|
| 2. |
\(\int\frac{cosx}{\sqrt{4-sin^2x}}\) = ?∫cosx/√{4 - sin2x}A.sin-1x/2 + CB.sin-1(1/2cosx) + CC.sin-1(2sinx) + CD. sin-1(1/2sinx) + C |
|
Answer» Put sin x = t ⇒ cos x dx = dt ∴ The given equation becomes \(\int\frac{dt}{\sqrt{4-t^2}}\) = sin-1 t/2 + C But t = sin x = sin-1\((\frac{sinx}2)\) + C |
|
| 3. |
Evaluate: \(\int\cfrac{dx}{\sqrt{16-x^2}}\)∫ dx/√(16-x2) |
|
Answer» Formula to be used -\(\int\cfrac{dx}{\sqrt{a^2-x^2}}=sin^{-1}\cfrac{x}{a}+c\) where c is the integrating constant \(\therefore\int\cfrac{dx}{\sqrt{16-x^2}}\) \(=\int\cfrac{dx}{\sqrt{4^2-x^2}}\) = \(sin^{-1}\cfrac{x}{4}+c\) , c being the integrating constant |
|
| 4. |
Evaluate:∫x cosx2 dx |
|
Answer» Let x2 = t 2xdx = dt 1/2∫ cos t dt = 1/2 sin t + c ∫ x cosx2 dx = 1/2 sinx2 + c |
|
| 5. |
Evaluate the following integrals :\(\int\frac{cosec^2x}{1+cotx}\)dx |
|
Answer» Assume, 1 + cotx = t d(1 + cotx) = dt ⇒cosec2x = dt Put t and dt in given equation we get, ⇒ ∫\(\frac{dt}{t}\) = ln|t| + c But, t = 1 + cotx = ln|1 + cotx| + c. |
|
| 6. |
Evaluate:(i) ∫sec x(sec x + tan x) dx(ii) ∫cosec x(cosec x – cot x) dx |
|
Answer» (i) ∫sec x(sec x + tan x) dx It can be written as = ∫sec2 x + sec x tan x dx By integrating w.r.t x = tan x + sec x + c (ii) ∫cosec x(cosec x – cot x) dx It can be written as = ∫cosec2 x – cosec x cot x dx By integrating w.r.t x = – cot x + cosec x + c |
|
| 7. |
Evaluate:\(\int(2x +1)(\sqrt{x^2+x+1})dx\)∫(2x + 1)(√{x2 + x + 1})dx |
|
Answer» Let x2 + x + 1 = t (2x +1)dx = dt ∫ √tdt = 2/3t3/2 + c = 2/3(x2 + x + 1)3/2 + c |
|
| 8. |
Evaluate:\(\int\frac{sec^2(logx)}{x}dx\)∫sec2(logx)/x dx |
|
Answer» Let log x = 1 1/x dx = dt ∫sec2t dt = tan t + c \(\int\frac{sec^2(logx)}{x}dx\) = tan(logx) + c |
|
| 9. |
Evaluate:\(\int\frac{sec^2x}{{cosec^2 x}}dx\)∫sec2x/cosec2xdx |
|
Answer» \(\frac{sec^2x}{{cosec^2 x}}\) = tan2x ∫ tan2x dx = ∫ (sec2x - 1)dx \(\int\frac{sec^2x}{{cosec^2 x}}dx\) = tan x - x + c |
|
| 10. |
Evaluate:\(\int\frac{sec^2(log\,x)}{x}dx\)∫sec2(logx)/x dx |
|
Answer» Let log x = t 1/xdx = dt ∫sec2tdt = tan t + c \(\int\frac{sec^2(log\,x)}{x}dx\) = tan (logx) + c |
|
| 11. |
Integrate : ∫5sin2x-cosx / 9sin2x+4\(\int\frac{5sin 2x-cos x}{9sin^2x+4}dx\) |
|
Answer» \(\int\frac{5sin 2x-cos x}{9sin^2x+4}dx\) \(=\int\frac{5sin2x}{9sin^2x+4}dx-\int\frac{cos x}{9sin^2x+4}dx\) = \(5\int\frac{dt}{9t+4}-\frac19\int\cfrac{du}{u^2+\frac49}\) (By taking sin2x = t and sin x = u) = \(\frac59\)log|9t + 4| - \(\frac16\)tan-1(3u/2) + c = \(\frac59\) log|9 sin2x + u| - \(\frac16\) tan-1(\(\frac{3sinx}2\)) + c (By putting t = sin2x and u = sin x) |
|
| 12. |
Evaluate:∫2xdx |
|
Answer» We know that, ∫axdx = ax/In a + c ∫2xdx = 2x/In 2 + c |
|
| 13. |
Evaluate ∫ cos33x dx |
|
Answer» We can write ∫ cos33x dx as: ∫cos3x(cos3x)2dx ∫cos3x(cos23x)dx and further as : = cos3x(1-sin23x)dx = ∫cos3xdx-∫cos3x(sin23x)dx Taking A = ∫cos3xdx Solving for A, A = \(\frac{sin3x}{3}\) Taking B = ∫cos3x(sin23x)dx In this taking sin3x = t Differentiating on both sides we get, 3cos3xdx = dt Solving by putting these values we get, B = \(\int\frac{t^2}{3}\)dt = \(\frac{t^3}{9}\) + c Substituting values we get, B = \(\frac{sin^33x}{9}\) + c Our final answer is A+B i.e, \(\frac{sin3x}{3}\) + \(\frac{sin3x}{3}\) + c |
|
| 14. |
Evaluate:\(\int{\sqrt{x^2-16}}dx\)∫√{x2 - 16} dx |
|
Answer» We know that, \(\int{\sqrt{x^2-a^2}}dx\) = \(\frac{x}2\)\({\sqrt{x^2-a^2}}\) - \(\frac{a^2}2\) log | x + \({\sqrt{x^2-a^2}}\) + c \(\int{\sqrt{x^2-4^2}}dx\) = \(\frac{x}2\)\({\sqrt{x^2-16}}\) - 8 log | x + \({\sqrt{x^2-16}}\) + c |
|
| 15. |
Evaluate :- \(\int \frac{sec^2\sqrt x}{\sqrt{x}}\,dx\) |
|
Answer» Let \(\sqrt x\) = z ⇒ \(\frac{1}{2\sqrt x}\,dx=dz\) ⇒ \(\frac{dx}{\sqrt x} =2dz\) ∴ \(\int \frac{sec^2\sqrt x}{\sqrt{x}}\,dx\) = \(2\int sec^2z\,dz\) = tan z + C = 2 tan \(\sqrt{x}+C\) |
|
| 16. |
Evaluate the following :∫cos √x dx |
|
Answer» Let I = ∫cos √x dx Put √x = t ∴ x = t2 ∴ dx = 2t dt ∴ I = ∫(cos t) 2t dt = ∫ 2t cos t dt = 2t ∫cos t dt – ∫[d/dt(2t) ∫cos t dt]dt = 2t sin t – ∫2 sin t dt = 2t sin t + 2 cos t + c = 2[√x sin√x + cos√x] + c. |
|
| 17. |
Evaluate the following integrals :\(\int\)\(\frac{sin\sqrt x}{\sqrt x}\)dx |
|
Answer» Assume , √x = t d(√x) = dt ⇒ \(\frac{1}{2\sqrt x}\) dx = dt ⇒ \(\frac{1}{\sqrt x}\) dx = dt Substituting t and dt ⇒ 2∫ sint dt = - 2cost + c But, √x = t ⇒2 cos(√x) + c. |
|
| 18. |
Evaluate the following integrals :\(\int \frac{sec^2\sqrt x}{\sqrt x}\)dx |
|
Answer» Assume, √x = t d(√x) = dt ⇒ \(\frac{1}{2\sqrt x}\)dx = dt ⇒ \(\frac{1}{\sqrt x}\) = dt Substituting t and dt ⇒2 ∫ sec2t dt = 2 tan t + c But, √x = t ⇒2 tan(√x) + c. |
|
| 19. |
Evaluate the following integrals :\(\int\frac{cos\sqrt x}{\sqrt x}\)dx |
|
Answer» Assume, √x = t d(√x) = dt ⇒ \(\frac{1}{2\sqrt x}\) dx = dt ⇒ \(\frac{1}{\sqrt x}\) dx = 2dt Substituting t and dt ⇒2 \(\int\) cost dt = 2sint + c But, √x = t ⇒2 sin(√x) + c. |
|
| 20. |
Evaluate the following integrals : ∫(sec2x + cosec2x) dx |
|
Answer» Given : ∫(sec2x + cosec2x) dx By Splitting, we get, ∫(sec2x dx + ∫cosec2x dx By applying the formula, ∫(sec2x dx = tanx ∫cosec2x dx = - cotx ⇒tan x – cot x + c |
|
| 21. |
Evaluate: ∫secx (secx + tanx) dx |
|
Answer» Given, ∫secx (secx + tanx) dx =∫ (sec2x + secx . tanx) dx = tanx + secx + c |
|
| 22. |
Write a value of ∫ tan3xsec2xdx. |
|
Answer» Given, ∫ tan3xsec2xdx let tan x = t Differentiating on both sides we get, sec2x dx = dt Substituting above equation in ∫tan3x sec2x dx we get, = ∫t3 dt = \(\frac{t^4}{4}\)+ c = \(\frac{tan^4x}{4}\) + c |
|
| 23. |
Write a value of ∫ ex secx (1+tanx) dx. |
|
Answer» Given, ∫ ex sec x( 1 + tan x) dx = ∫ ex (sec x + sec x tan x) dx = ex sec x + c ∵∫ex (f(x) +f'(x)) dx = ex f(x)+c |
|
| 24. |
Evaluate the following integrals :\(\int\)\(\frac{2cos2x+sec^2x}{sin2x+tanx-5}\)dx |
|
Answer» Assume, sin2x + tanx - 5 = t d(tanx + sin2x - 5) = dt (2cos2x + sec2x) dx = dt Put t and dt in given equation we get ⇒ \(\int\frac{dt}{t}\) = In|t| + c But, t = sin2x + tanx - 5 = ln|sin2x + tanx - 5| + c. |
|
| 25. |
Write a value of ∫ tan6x sec2x dx. |
|
Answer» Given, ∫ tan6x sec2x dx let tan x = t Differentiating on both sides we get, sec2x dx = dt Substituting above equation in ∫ tan3x sec2x dx we get, =∫t6 dt = \(\frac{t^7}{7}\) + c = \(\frac{tan^7x}{7}\) + c |
|
| 26. |
Write a value of ∫ tanx sec3x dx. |
|
Answer» Given, ∫ tanx sec3x dx = ∫ (tanx secx) sec2x dx Let secx = t Differentiating on both sides we get, tanx secx dx = dt Substituting above equation in ∫ tanx sec3x dx we get, = ∫t2 dt = \(\frac{t^3}{3}+c\) = \(\frac{sec^3x}{3}\) + c |
|
| 27. |
Write a value of ∫ cos4x sin x dx. |
|
Answer» Let cosx = t Differentiating on both sides we get, - sinx dx = dt Substituting above equation in ∫cos4x sinx dx we get, = ∫- t4 dt = \(-\frac{t^5}{5}\) + c = \(-\frac{cos^5x}{5}\) + c |
|
| 28. |
Write a value of ∫ sin3x cosx dx. |
|
Answer» Let sin x = t Differentiating on both sides we get, cosx dx = dt Substituting above equation in ∫sin3x cosx dx we get, = ∫t3 dt = \(\frac{t^4}{4}\) + c = \(\frac{sin^4x}{4}\) + c |
|
| 29. |
Evaluate the following integrals :\(\int\)\(\frac{1+cotx}{x+log\,sinx}\)dx |
|
Answer» Assume, x + log(sinx) = t d(x + log(sinx)) = dt 1 + \(\frac{cos\,x}{sin\,x}\)dx = dt (1 + cot)dx = dt Put t and dt in given equation we get, ⇒∫\(\frac{dt}{t}\) = In|t| + c But, t = x + log(sinx) = ln| x + log(sinx) | + c. |
|
| 30. |
Write a value of ∫ elog sinx cosx dx. |
|
Answer» Given, ∫ elog sinx cosx dx = ∫sin x cos x dx (∵elogx = x) Let sin x = t Differentiating on both sides we get, Cos x dx = dt Substituting above equations in given equation we get, = ∫t dt = \(\frac{t^2}{2}\) + c = \(\frac{sin^2x}{2}\) + c |
|
| 31. |
Write a value of ∫ e3logx x4 dx. |
|
Answer» Consider ∫ e3 logx x4 e3 logx = \(e^{log\,x^3}\) = x3 ∫ e3 logx x4 = ∫ x3x4dx = ∫ x7 dx = \(\frac{x^8}{8}\) + c |
|
| 32. |
Evaluate the following integrals : ∫ cotx log sinx dx |
|
Answer» Assume, log(sinx) = t d(log(sinx)) = dt ⇒ \(\frac{cosx}{sinx}\)dx = dt ⇒ cot x dx = dt Substituting the values oft and dt we get ⇒ \(\int\)t dt ⇒ \(\frac{t^2}{2}\) + c But, t = log(sinx) ⇒ \(\frac{log(sin\,x)^2x}{2}\) + c. |
|
| 33. |
Write a value of ∫(1 + cotx)/(x + log sinx)dx.\(\int\frac{1+cot\,x}{x+log\,sin\,x}\) dx |
|
Answer» Let x + log sin x = t Differentiating it on both sides we get, (1+cot x) dx = dt - i Given that, ∫(1 + cotx)/(x + log sinx)dx Substituting i in above equation we get, = \(\int\frac{dt}{t}\) = log t + c = log(x + log sin x ) + c |
|
| 34. |
Evaluate the following integral: ∫ (2x+1)/(x+1)(x-2)dx \(\int\frac{2x+1}{(x+1)(x-2)}\) dx |
|
Answer» Here the denominator is already factored. So let, ∫ (2x+1)/(x+1)(x-2)dx = \(\frac{A}{x+1}+\frac{B}{x-2}\) ...(i) ⇒ \(\int\frac{2x+1}{(x+1)(x-2)}\) = \(\frac{A(x-2)+B(x+1)}{(x+1)(x-2)}\) ⇒ 2x + 1 = A(x – 2) + B(x + 1)……(ii) We need to solve for A and B. One way to do this is to pick values for x which will cancel each variable. Put x = 2 in the above equation, we get ⇒ 2(2) + 1 = A(2 – 2) + B(2 + 1) ⇒ 3B = 5 ⇒ B = \(\frac{5}{3}\) Now Put x = – 1 in equation (ii), we get ⇒ 2( – 1) + 1 = A(( – 1) – 2) + B(( – 1) + 1) ⇒ – 3A = – 1 ⇒ A = \(\frac{1}{3}\) We put the values of A and B values back into our partial fractions in equation (i) and replace this as the integrand. We get, \(\int[\frac{A}{x+1}+\frac{B}{x-2}]\) dx ⇒ \(\int[\frac{\frac{1}{3}}{x+1}+\frac{\frac{5}{3}}{x-2}]\) dx Split up the integral, ⇒ \(\frac{1}{3}\)\(\int[\frac{1}{x+1}]\)dx + \(\frac{5}{3}\)\(\int[\frac{1}{x-2}]\)dx Let substitute u = x + 1 ⇒ du = dx and z = x – 2 ⇒ dz = dx, So the above equation becomes, ⇒ \(\frac{1}{3}\)\(\int[\frac{1}{u}]\)du + \(\frac{5}{3}\)\(\int[\frac{1}{z}]\)dz On integrating we get, ⇒ \(\frac{1}{3}\)log|u| + \(\frac{5}{3}\)log|z| + c Substituting back, we get ⇒ \(\frac{1}{3}\)log|x + 1| + \(\frac{5}{3}\)log|x - 2| + c Note : the absolute value signs account for the domain of the natural log function (x>0). Hence, \(\int\frac{2x+1}{(x+1)(x-2)}\) dx = \(\frac{1}{3}\)log|x + 1| + \(\frac{5}{3}\)log|x - 2| + c |
|
| 35. |
Evaluate : ∫ log xx/x dx\(\int\frac{log\,x^x}{x}\) dx |
|
Answer» Given, \(\int\frac{log\,x^x}{x}\) dx = \(\int\frac{x\,log\,x}{x}\)dx = ∫log x = x log x-x + c |
|
| 36. |
Evaluate : ∫ sec2(7 - 4x)dx |
|
Answer» Given, ∫ sec2(7 - 4x)dx Let 7 – 4x = t Differentiating on both sides we get, -4 dx = dt dx = \(-\frac{1}{4}\) dt Substituting it in ∫ sec2(7 - 4x)dx we get, = \(\int-\frac{1}{4}\) sec2t dt = tan t + c = tan (7 - 4x) + c |
|
| 37. |
Evaluate : ∫ 1/(x(1+logx))dx\(\int\frac{1}{x(1+log\,x)}\) dx |
|
Answer» Given, ∫ 1/(x(1+logx))dx Let 1+log x = t ⇒ \(\frac{d}{dx}\) (1 + logx) = dt ⇒ \(\frac{1}{x}\) dx = dt = \(\int\frac{1}{t}\) dt = logt +c = log (1+logx)+c |
|
| 38. |
If f’(x) = 8x3 – 2x, f(2) = 8, find f(x). |
|
Answer» Given, f’(x) = 8x3 – 2x and f(2) = 8 On integrating the given equation, we have \(\int\)f'(x)dx = \(\int\)(8x3 -2x) dx We know, \(\int\)f'(x)dx = f(x) ⇒ f(x) = \(\int\)(8x3 -2x) dx ⇒ f(x) = \(\int\)(8x3 -2x) dx - \(\int\)2xdx ⇒ f(x) = 8\(\int\)(x3 dx - 2\(\int\)xdx Recall \(\int\)xndx = \(\frac{x^{n+1}}{n+1}\) + c ⇒ f(x) = 8(\(\frac{x^{3+1}}{3+1}\)) - 2(\(\frac{x^{1+1}}{1+1}\)) + c ⇒ f(x) = 8(\(\frac{x^{4}}{4}\)) - 2(\(\frac{x^{2}}{2}\)) + c ⇒ f(x) = 2x4 – x2 + c On substituting x = 2 in f(x), we get f(2) = 2(24) – 22 + c ⇒ 8 = 32 – 4 + c ⇒ 8 = 28 + c ∴ c = –20 On substituting the value of c in f(x), we get f(x) = 2x4 – x2 + (–20) ∴ f(x) = 2x4 – x2 – 20 Thus, f(x) = 2x4 – x2 – 20 |
|
| 39. |
Evaluate the following integrals :\(\int\frac{-sin\,x+2cos\,x}{2sinx+cosx}\)dx |
|
Answer» Assume, 2sinx + cosx = t d(2sinx + cosx) = dt (2cosx - sinx)dx = dt Put t and dt in given equation we get ⇒ ∫\(\frac{dt}{t}\) = In|t| + c But, t = 2sinx + cosx = ln|2sinx + cosx| + c. |
|
| 40. |
Evaluate the following integrals :\(\int\)\(5^{x+tan^{-1}x}\)(\(\frac{x^2+2}{x^2+1}\))dx |
|
Answer» Assume, x + tan-1x = t d(x + tan-1x) = dt ⇒ 1 + \(\frac{1}{x^2+1}\) = dt ⇒ \(\frac{2+x^2}{x^2+1}\) = dt Substituting t and dt ⇒ \(\int\)5tdt ⇒ \(\frac{5^t}{log\,5}\) + c But, t = x + tan-1x ⇒ \(\frac{5^{x+tan^{-1}x}}{log\,5}\) + c. |
|
| 41. |
Evaluate ∫√((1-x)/x) dx\(\int\sqrt{\frac{1-x}{x}}\) dx |
|
Answer» Given, ∫√((1-x)/x) dx Let, \(\sqrt x\) = t \(\frac{d}{dx}(\sqrt x)\) = dt \(\frac{1}{2\sqrt x}\) dx = dt dx = 2t dt Now, \(\int\frac{\sqrt {1-t^2}}{t}\) 2t dt = 2\(\int\sqrt{1-t^2}\) dt Consider, t = sin k dt = cos k dk = 2\(\int\sqrt{1-sin^2k}\) .cosk dk = 2\(\int\sqrt{cos^2k}\) .cosk dk = 2 ∫cos2k dk = ∫2 cos2k dk =∫cos 2k-1 dk [since, cos 2x = 2cos2x-1] = \(\frac{sin\,2k}{2}\) - k + c = \(\frac{2sink\,cosk}{2}\) - k + c = t cos(sin-1t) - 2sin-1t + 2c =√x cos(sin-1√x )- 2sin-1√x + 2c |
|
| 42. |
Evaluate : ∫ (x+cos6x)/(3x2 + sin6x)dx\(\int\frac{x+cos\,6x}{3x^2+sin\,6x}\)dx |
|
Answer» Given, ∫ (x+cos6x)/(3x2 + sin6x)dx Let 3x2 + sin6x = t ⇒ \(\frac{d}{dx}\) (3x2 + sin6x) = dt ⇒ 6x + cos 6x. 6 = dt ⇒ x + cos 6x = \(\frac{dt}{6}\) Substituting the values, = \(\int\frac{1}{6t}\) dt = \(\frac{1}{6}\)log t +c = \(\frac{1}{6}\)log(3x2 + sin6x) +c |
|
| 43. |
\(\int \frac{sin^m X}{cos^{m + 2}X}.dx =\)∫ (sinm X)/(cosm + 2 X) . dx =(a) \(\frac{tan^{m + 1}X}{m + 1} + c\)(b) (m + 2) tanm + 1 x + c(c) \(\frac{tan^m\,X}{m} + c\)(d) (m + 1) tanm + 1 x + c |
|
Answer» Correct answer is (a) \(\frac{tan^{m + 1}X}{m + 1} + c\) |
|
| 44. |
\(\int \frac{e^x (x - 1)}{x^2}.dx =\)∫ (ex(x - 1))/x2 . dx =(a) \(\frac{e^x}{x} + c\)(b) \(\frac{e^x}{x^2} + c\)(c) \((x - \frac{1}{x})e^x + c\)(d) x e-x + c |
|
Answer» Correct answer is (a) \(\frac{e^x}{x} + c\) |
|
| 45. |
∫3x dx = ?A. 3x (log 3) + CB. 3x + CC. 3x/log 3 + CD. log 3/3x + C |
|
Answer» Given: \(\int3^xdx\) \(\int a^xdx=\frac{a^x}{In\,a}+c\) \(\int 3^xdx=\frac{3^x}{In\,3}+c\) |
|
| 46. |
Evaluate:\(\int\cfrac{dx}{(x^2+16)}\)∫ dx/(x2+16) |
|
Answer» To find: \(\int\frac{dx}{(x^2+16)}\) Formula Used: \(\int\cfrac{dx}{a^2+x^2}=\frac{1}{a}tan^{-1}(\frac{x}{a})+c\) Rewriting the given equation, \(\Rightarrow\)\(\int\frac{dx}{4^2+x^2}\) Here a = 4 \(\Rightarrow\)\(\cfrac{1}{4}\times tan^{-1}(\frac{x}{4})+c\) Therefore, \(\int\cfrac{dx}{(x^2+16)}=\frac{1}{4}\times tan^{-1}(\frac{x}{4})+c\)\(\) |
|
| 47. |
Evaluate: \(\int\cfrac{cosx}{(1+sin^2x)}dx\)∫ cos x/(1-sin2x)dx |
|
Answer» To find: \(\int\cfrac{cosx}{(1+sin^2x)}dx\) Formula Used: \(\int\cfrac{dx}{a^2+x^2}=\cfrac{1}{a}tan^{-1}(\cfrac{x}{a})+C\) Let y = sin x … (1) Differentiating both sides, we get dy = cos x dx Substituting in given equation, \(\Rightarrow\)\(\int\cfrac{dy}{1+y^2}\) ⇒ tan-1 y From (1), ⇒ tan-1 (sin x) Therefore, \(\int\cfrac{cosx}{(1+sin^2x)}dx=tan^{-1}(sinx)+C\) |
|
| 48. |
\(\int \frac{1 + x \sqrt{x + x^2}}{\sqrt{x} + \sqrt{1 + x}}.dx =\)∫ (1 + x √(x + x2))/(√x + √1 + x)(a) \(\frac{1}{2} \sqrt{x + 1} + c\)(b) \(\frac{2}{3} (x + 1) ^{\frac{3}{2}}+ c\)(c) \(\sqrt{x + 1} + c\)(d) \(2 (x + 1) ^{\frac{3}{2}}+ c\) |
|
Answer» Correct answer is (b) \(\frac{2}{3} (x + 1) ^{\frac{3}{2}}+ c\) |
|
| 49. |
\(\int\frac{dx}{\sqrt{x^2-16}}\) =?∫dx/√{x2 -16}A. sin-1\((\frac{x}4)\) + cB. log |x + \(\sqrt{x^2-16}\)| + cC. log |x - \(\sqrt{x^2-16}\)| + cD. none of these |
|
Answer» \(\int\frac{dx}{\sqrt{x^2-a^2}}\) = log | x + \(\sqrt{x^2-a^2}\)| \(\int\frac{dx}{\sqrt{x^2-4^2}}\) = log | x + \(\sqrt{x^2-16}\)| |
|
| 50. |
Evaluate: \(\int\frac{3e^x}{e^{2x} + 5e^x + 6}dx\) |
|
Answer» \(\int\frac{3e^x}{e^{2x} + 5e^x + 6}dx\) = 3\(\int\frac{t}{t^2 + 5t + 6}dt\) put ex = t = 1\(\int\frac{3tdt}{(t + 2)(t + 3)} = \int\frac{A}{t + 2} + \frac{B}{t + 3}dt\) Let 36 = A(t + 3) + B(t + 2) put t = -2 - 6 = A(1) ⇒ A = -6 put t = -3, - 9 = A(0) + B(-1) ⇒ B = 9 ∴ \(\int\frac{3e^x}{(e^x)^2 + 5e^x + 6} = \int\frac{-6}{t + 2} + \frac{9}{t + 3}dt\) = -6log(t + 2) + 9log(t + 3) + C = -6log(ex + 3) + 9 log(ex + 3) + c |
|