InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Prove the following trigonometric identities:sec A(1 - sin A)(sec A + tan A) = 1 |
|
Answer» sec A(1 - sin A)(sec A + tan A) \(\Big(sec A - \frac{1}{cos A}\times sinA\Big)(sec A + tan A)\) (sec A - tan A)(sec A + tan A) (sec2 A + tan2 A) (tan2 A + 1 - tan2 A) = 1 Hence Proved. |
|
| 2. |
Prove the following trigonometric identities:\(\frac{1-cosθ}{sinθ}=\frac{sinθ}{1+cosθ}\) |
|
Answer» \(\frac{1-cosθ}{sinθ}=\frac{1-cosθ}{sinθ}\times\frac{1+cosθ}{1+cosθ}\) = \(\frac{1-cos^2θ}{sinθ(1+cosθ)}\) = \(\frac{sin^2θ}{sinθ(1+cosθ)}\) = \(\frac{sinθ}{1+cosθ}\) Hence Proved. |
|
| 3. |
If cosθ = \(\frac{4}{5}\) ,find all other trigonometric ratios of angle θ . |
|
Answer» sinθ = \(\frac{3}{5}\) ,tanθ = \(\frac{3}{4}\) ,secθ = \(\frac{5}{4}\) , cosθ = \(\frac{4}{5}\) ⇒ sinθ = \(\frac{3}{5}\) secθ = \(\frac{1}{cosθ}\) = \(\frac{1}{4/5}\) = \(\frac{5}{4}\) tanθ = \(\frac{sinθ}{cosθ}\) = \(\frac{3/5}{4/5}\) = \(\frac{3}{4}\) Hence Proved. |
|
| 4. |
Express the following terms of trigonometric ratios of angles 0° to 45°.(i) sin 81° + sin 71°(ii) tan 68° + sec 68° |
|
Answer» (i) sin 81° + sin 71° = sin(90° – 9°) + sin(90° – 19°) = cos 9° + cos 19° (ii) tan 68° + sec 68° = tan(90° – 22°) + sec(90° – 22°) = cot 22° + cosec 22° |
|
| 5. |
If cos θ = \(\frac{4}{5}\), find all other trigonometric ratios of angle θ. |
|
Answer» We have, cos θ = \(\frac{4}{5}\) And we know that, sin θ = √(1 – cos2 θ) ⇒ sin θ = √(1 – (\(\frac{4}{5}\))2) = √(1 – (\(\frac{16}{25}\))) = √[\(\frac{(25 \,–\, 16)}{25}\)] = √(\(\frac{9}{25}\)) = \(\frac{3}{5}\) ∴ sin θ =\(\frac{3}{5}\) Since, cosec θ = \(\frac{1}{sin\, θ }\) = \(\frac{1}{(3/5)}\) ⇒ cosec θ = \(\frac{5}{3}\) And, sec θ = \(\frac{1}{cos θ }\) = \(\frac{1}{(4/5)}\) ⇒ cosec θ = \(\frac{5}{4}\) Now, tan θ = \(\frac{sin θ}{cos θ }\) = \(\frac{(3/5)}{(4/5)}\) ⇒ tan θ = \(\frac{3}{4}\) And, cot θ = \(\frac{1}{tan θ}\) = \(\frac{1}{(3/4)}\) ⇒ cot θ = \(\frac{4}{3}\) |
|
| 6. |
cos4A − sin4A is equal to A. 2 cos2A + 1 B. 2 cos2A − 1 C. 2 sin2A − 1 D. 2 sin2A + 1 |
|
Answer» To find: cos4A – sin4A Consider cos4A – sin4A = (cos2A)2 – (sin2A)2 ∵ a2 – b2 = (a – b) (a + b) ∴ cos4A – sin4A = (cos2A)2 – (sin2 A)2 = (cos2A – sin2A) (cos2A + sin2A) = (cos2A – sin2A) [∵ cos2A + sin2A = 1] = cos2A –(1 – cos2A) [∵ sin2A = 1 – cos2A] = cos2A – 1 + cos2A = 2 cos2A – 1 |
|
| 7. |
If sinθ + cosθ = x, prove that sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\) |
|
Answer» sinθ + cosθ = x Squaring on both sides (sinθ + cosθ)2 = x2 ⇒ sin2θ + cos2θ + 2sinθcosθ = x2 ∴ sinθcosθ = \(\frac{x^2-1}{2}\) ...(1) We know sin2θ + cos2θ = 1 combining both since (sin2θ + cos2θ)3 = (1)3 sin6θ + cos6θ + 3sinθCos2θ (sin2θ + cos2θ) = 1 ⇒ sin6θ + cos6θ = 1- 3sin2θCos2θ = 1- \(\frac{3(x^2-1)^2}{4}\) from -(1) sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\) Hence Proved. |
|
| 8. |
Prove:sin2 A cot2 A + cos2 A tan2 A = 1 |
|
Answer» We know that, cot2 A = \(\frac{cos^2 A}{sin^2 A}\) and tan2 A = \(\frac{sin^2 A}{cos^2 A}\) Substituting the above in L.H.S, we get L.H.S = sin2 A cot2 A + cos2 A tan2 A = {sin2 A (\(\frac{cos^2 A}{sin^2 A}\))} + {cos2 A (\(\frac{sin^2 A}{cos^2 A}\))} = cos2 A + sin2 A = 1 [∵ sin2 θ + cos2 θ = 1] = R.H.S Hence Proved |
|
| 9. |
Write the value of sinθ cos(90°-θ)+cosθ sin(90°-θ). |
|
Answer» sinθ cos(90°-θ)+cosθ sin(90°-θ) = sinθ x sinθ + cosθ x cosθ = sin2θ + cos2θ = 1 |
|
| 10. |
In a right ∆ABC , right-angled at B, if tan A = 1 , then verify that 2 sin A·cos A = 1. |
|
Answer» Consider ΔABC to be a right angled triangle at B. angle C = 90 degree Given: tan A = 1 …(1) tan A = 1 = BC/AB AB = BC Again, tan A = sin A/cos A sin A = cos A …using (1) By Pythagoras theorem: AC2 = BC2 + AB2 AC2 = 2BC2 (AC/BC)2 = 2 Or AC/BC = √2 cosec A = √2 or sin A = 1/√2 and cos A = 1/√2 Now, 2 sin A cos A = 2(1/√2)( 1/√2) = 2(1/2) = 1 = RHS |
|
| 11. |
Prove the following trigonometric identities:(secA-tanA)2 = \({\frac{1-sinA}{1+sinA}}\) |
|
Answer» (sec A - tan A)2 = \(\Big(\frac{1}{cosA}-\frac{sinA}{cosA}\Big)^2\) = \(\frac{(1-sinA)^2}{cos^2A}\) = \(\frac{(1-sinA)^2}{1-sin^2A}\) = \(\frac{(1-sinA)^2}{(1-sinA)(1+sinA)}\) = \(\frac{1-sinA}{1+sinA}\) Hence Proved. sec A = 1/cos A tan A = sin A/ cos A Thus, L.H.S=(1/cosA - sin A/cos A)2 =(1-sin A)2/cos2 A =(1-sin A)(1- sin A)/(1-sin2 A) By a2-b2=(a+b)(a-b) and sin2 A + cos2 A=1 =(1-sin A)/(1+sin A)=R.H.S(corrected) Hence, proved |
|
| 12. |
Prove the following trigonometric identities:\(\sqrt{\frac{1+sinA}{1-sinA}}\) = secA + tanA |
|
Answer» \(\sqrt{\frac{1+sinA}{1-sinA}}\) = \(\sqrt{\frac{1+sinA}{1-sinA}}\times \sqrt{\frac{1+sinA}{1+sinA}}\) = \(\sqrt{\frac{(1+sinA)^2}{1-sin^2A}}\) = \(\sqrt{\frac{(1+sinA)^2}{cos^2A}}\) = \(\frac{1+sinA}{cosA}\) = \(\frac{1}{cosA}+\frac{sinA}{cosA}\) = secA + tanA Hence Proved. |
|
| 13. |
Prove the following trigonometric identities:(1+cotA - cosecA)(1 + tanA + secA) = 2 |
|
Answer» = \(\Big(1+\frac{cosθ}{sinθ}-\frac{1}{sinθ}\Big)\) \(\Big(1+\frac{cosθ}{sinθ}+\frac{1}{sinθ}\Big)\) = \(\Big(\frac{sinθ+cosθ-1}{sinθ}\Big)\) \(\Big(\frac{cosθ+sinθ+1}{cosθ}\Big)\) = \(\frac{[(sinθ+cosθ)-1][(sinθ+cosθ)+1]}{sinθ.cosθ}\) = \(\frac{(sinθ+cosθ)^2-(1)^2}{sinθ.cosθ}\) = \(\frac{sin^2θ+cos^2θ+2sinθcosθ-1}{sinθ.cosθ}\) = \(\frac{1+2sinθcosθ-1}{sinθ.cosθ}\) = \(\frac{2sinθcosθ}{sinθ.cosθ}\) = 2 = R.H.S Hence Proved. |
|
| 14. |
Prove:tan θ + 1/ tan θ = sec θ cosec θ |
|
Answer» We have, L.H.S = tan θ + \(\frac{1}{tan\, θ}\) = \(\frac{(tan^2 θ\, +\, 1)}{tan θ}\) = \(\frac{sec^2 \,θ }{tan \,θ}\) [∵ sec2 θ − tan2 θ = 1] = (\(\frac{1}{cos^2\, θ}\)) x \(\frac{1}{sinθ \over cos θ}\) [∵ tan θ = \(\frac{sin \,θ }{cos \,θ}\)] = \(\frac{cos \,θ}{(sin θ \,\times\, cos^2\, θ)}\) = \(\frac{1}{cos\, θ}\) x \(\frac{1}{sin\, θ}\) = sec θ x cosec θ = sec θ cosec θ = R.H.S Hence Proved |
|
| 15. |
Prove:(sec2 θ − 1)(cosec2 θ − 1) = 1 |
|
Answer» Using identities, (sec2 θ − tan2 θ) = 1 and (cosec2 θ − cot2 θ) = 1 We have, L.H.S = (sec2 θ – 1)(cosec2θ – 1) = tan2θ × cot2θ = (tan θ × cot θ)2 = (tan θ × 1/tan θ)2 = 12 = 1 = R.H.S Hence Proved |
|
| 16. |
If (2 sin θ + 3 cos θ) = 2, show that (3 sin θ − 2 cos θ) = ± 3. |
|
Answer» (2 sin θ + 3 cos θ) = 2 …(1) (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 4sin2 θ + 9 cos2 θ + 12sin θ cos θ + 9 sin2 θ + 4 cos2 θ – 12 sin θ cos θ = 13sin2 θ + 13 cos2 θ = 13(sin2 θ + cos2 θ) = 13 (Because (sin2 θ + cos2 θ) = 1) => (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13 Using equation (1) => (2)2 + (3 sin θ – 2 cos θ)2 = 13 => (3 sin θ – 2 cos θ)2 = 9 or (3 sin θ – 2 cos θ) = ± 3 Hence Proved. |
|
| 17. |
Prove the following trigonometric identities:\(\frac{cosθ}{1+sinθ}=\frac{1-sinθ}{cosθ}\) |
|
Answer» \(\frac{cosθ}{1+sinθ}=\frac{cosθ}{1+sinθ}\times\frac{1-sinθ}{1-sinθ}\) = \(\frac{cosθ(1-sinθ)}{1-sin^2θ}\) = \(\frac{cosθ(1-sinθ)}{cos^2θ}\) = \(\frac{1-sinθ}{cosθ}\) Hence Proved. |
|
| 18. |
Prove the following trigonometric identities:\(\frac{1}{secA-1}+\frac{1}{secA+1}\) = 2cosec A cot A |
|
Answer» \(\frac{1}{secA-1}+\frac{1}{secA+1}\) = \(\frac{secA+1+secA-1}{sec^2A-1}\) = \(\frac{2secA}{tan^2A}\) = \(\frac{2}{cosA}\times\frac{cosA}{sin^2A}\) = 2cosec A cot A Hence Proved. |
|
| 19. |
If cot A = 4/3 and (A + B) = 90, what is the value of tan B? |
|
Answer» We have Cot A = 4/3 cot ( 90-B) = 4/3 (A+B = 90) tan B = 4/3 |
|
| 20. |
If cos B = 3/5 and (A +B) = 90, find the value of sin A. |
|
Answer» We have cos B = 3/5 cos (90- A) = 3/5 sin A = 3/5 |
|
| 21. |
Write the value of sinθ cos(90-θ) + cosθ sin(90-θ) |
|
Answer» sinθ cos(90-θ) + cosθ sin(90-θ) = sinθsinθ + cosθcosθ = sin2θ + cos2θ = 1 |
|
| 22. |
What is the value of (1 – cos2θ) cosec2θ? |
|
Answer» To find: (1 – cos2θ) cosec2θ ∵ cosecθ = \(\frac{1}{sinθ}\) ∴ cosec2θ = \(\frac{1}{sin^2θ}\) ⇒ (1 – cos2θ) cosec2θ = (1 – cos2θ)\(\frac{1}{sin^2θ}\) ....(1) ∵ sin2 θ + cos2 θ = 1 ∴ sin2 θ = 1 – cos2 θ ⇒ from (i), we have ⇒ (1 – cos2θ) cosec2θ = sin2 θ \(\frac{1}{sin^2θ}\) = 1 |
|
| 23. |
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 = A. a2b2 B. ab C. a4b4 D. a2 + b2 |
|
Answer» Given: x = a sin θ and y = b cos θ ⇒ x2 = a2 sin2θ and y2 = b2 cos2θ ………(i) To find: b2x2 + a2y2 Consider b2x2 + a2y2 = b2 a2 sin2θ + a2 b2 cos2θ = a2b2 (sin2θ + cos2θ) = a2b2 (1) [∵ sin2θ + cos2θ = 1] = a2b2 |
|
| 24. |
Write the value of (1-sin2 θ)sec2 θ. |
|
Answer» (1 – sin2θ) sec2 θ = (cos2 θ) × 1/cos2 θ = 1 |
|
| 25. |
What is the value of (1 + cot2θ) sin2θ? |
|
Answer» To find: (1 + cot2θ) sin2θ ∵ 1 + cot2 θ = cosec2 θ ∴ (1 + cot2θ) sin2θ = cosec2θ sin2θ Also, cosecθ = \(\frac{1}{sinθ}\) ⇒ cosec2θ = \(\frac{1}{sin^2θ}\) (1 + cot2θ) sin2θ = cosec2θ sin2θ = \(\frac{1}{sin^2θ}sin^2θ\) = 1 |
|
| 26. |
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2 ? |
|
Answer» Given: x = asin θ and y = bcos θ ⇒ x2 = a2 sin2 θ and y2 = b2 cos2θ ………(i) To find: b2x2 + a2y2 Consider b2x2 + a2y2 = b2a2 sin2θ +a2b2cos2θ = a2 b2 (sin2θ + cos2θ) = a2 b2 (1) [∵ sin2 θ + cos2θ = 1] = a2 b2 |
|
| 27. |
Write the value of sin A cos (90° − A) + cos A sin (90° − A). |
|
Answer» To find: sin A cos (90° − A) + cos A sin (90° − A) ∵ cos (90° – A) = sin A and sin (90° – A) = cos A ……………(i) ∴ sin A cos (90° − A) + cos A sin (90° − A) = sin A sin A + cos A cos A [Using (i)] = sin2A + cos2A Now, ∵ sin2 θ + cos2 θ = 1 ∴ sin A cos (90° − A) + cos A sin (90° − A) = sin2A + cos2A = 1 |
|
| 28. |
Write the value of (1-cos2θ)cosec2θ. |
|
Answer» (1-cos2θ)cosec2θ = sin2θ x 1/sin2θ = 1 |
|
| 29. |
Prove: (1 – cos2θ) cosec2θ = 1 |
|
Answer» (1 – cos2θ) cosec2θ = 1 L.H.S. = (1 – cos2θ) cosec2θ = (sin2θ) × cosec2θ (Using identity sin2θ + cos2 θ = 1) = 1/ cosec2θ × cosec2θ = 1 = R.H.S. Hence Proved. |
|
| 30. |
Write the value of cot2θ - \(\frac{1}{sin^2θ}\) |
|
Answer» To find: cot2θ - \(\frac{1}{sin^2θ}\) ∵ cosecθ = \(\frac{1}{sinθ}\) cosec2θ = \(\frac{1}{sin^2θ}\) cot2θ - \(\frac{1}{sin^2θ}\) = cot2θ - cosec2θ Also, we know that 1 + cot2 θ = cosec2θ ⇒ cot2θ – cosec2θ = – 1 cot2θ - \(\frac{1}{sin^2θ}\) = cot2θ – cosec2θ = – 1 |
|
| 31. |
Prove: (1 + cot2θ) sin2θ = 1 |
|
Answer» (1 + cot2θ) sin2θ = 1 L.H.S. = (1 + cot2θ) × sin2 θ = (cosec2 θ) × sin2 θ (Using identity 1 + cot2 θ = cosec2 θ) = 1/ sin2θ × sin2 θ = 1 = R.H.S. Hence Proved. |
|
| 32. |
Prove: (sec2θ − 1) (cosec2θ − 1) = 1 |
|
Answer» (sec2θ − 1) (cosec2θ − 1) = 1 L.H.S. = (sec2 θ – 1)(cosec2 θ – 1) = (tan2θ) × cot2θ (using identity 1 + cot2 θ = cosec2 θ and 1 + tan2 θ = sec2 θ) = tan2θ x 1/tan2θ = 1 = R.H.S. Hence Proved. |
|
| 33. |
Prove: (sec2θ − 1) cot2θ = 1 |
|
Answer» (sec2θ − 1) cot2θ = 1 L.H.S. = (sec2 θ – 1) × cot2 θ = (tan2θ) x cot2θ (using identity 1 + tan2 θ = sec2 θ) = 1/cot2θ x cot2θ = 1 = R.H.S. Hence Proved. |
|
| 34. |
Prove: (1 + cos θ) (1 − cos θ) (1 + cot2θ) = 1 |
|
Answer» (1 + cos θ) (1 − cos θ) (1 + cot2θ) = 1 LHS: (1 + cos θ) (1 − cos θ) (1 + cot2θ) = (1 – cos2 θ) × cosec2 θ (Using sin2 θ + cos2 θ = 1) = (sin2 θ) × cosec2 θ = sin2 θ x 1/sin2 θ = 1 = R.H.S. Hence Proved |
|
| 35. |
Write the value of cos1 cos 2 ........cos180. |
|
Answer» Cos 1 cos 2 … cos 180 = cos 1 cos 2 … cos 90… cos 180 = cos 1 cos 2 … 0 … cos 180 = 0 |
|
| 36. |
cosec (- θ) is equal to:(A) sin θ(B) tan θ(C) cos θ(D) -cosec θ |
|
Answer» Answer is (D) -cosec θ |
|
| 37. |
Prove:cosec θ √(1 – cos2 θ) = 1 |
|
Answer» Using identity, sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ Taking L.H.S, L.H.S = cosec θ √(1 – cos2 θ) = cosec θ √( sin2 θ) = cosec θ x sin θ = 1 = R.H.S Hence Proved |
|
| 38. |
If x = cos3θ, y = bsin3θ,prove that\(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}=1\) |
|
Answer» x = acos3θ ⇒ \(\frac{x}{a}\) = cos3θ y = bsin3θ ⇒ \(\frac{y}{b}\) = sin3θ Now, \(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}\) = (cos3θ)2/3 + (sin3θ)2/3 = cos2θ +sin2θ = 1 \(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}\) = 1 |
|
| 39. |
Prove the following trigonometric identities:cosecθ\( \sqrt{1-cos^2θ}=1\) |
|
Answer» cosecθ\( \sqrt{1-cos^2θ} \) = \(\frac{1}{sinθ}\sqrt{sin^2θ}\) = \(\frac{1}{sinθ}\times sinθ\) = 1 Hence Proved. |
|
| 40. |
Prove the following trigonometric identities:(sec2θ -1)(cosec2θ-1)=1 |
|
Answer» (sec2θ -1((cosec2θ-1)=tan2θ x cot2θ = 1 Hence Proved. |
|
| 41. |
If tanθ = \(\frac{12}{5}\) , find the value of \(\frac{1+sinθ}{1-sinθ}\) |
|
Answer» \(\frac{1+sinθ}{1-sinθ}\) = \(\frac{1+sinθ}{1-sinθ}\times \frac{1+sinθ}{1+sinθ}\) = \(\frac{(1+sinθ)^2}{1-sin^2θ}\) = \(\frac{(1+sinθ)^2}{cos^2θ}\) = sec2θ + tan2θ = tan2θ + 1 + tan2θ = 2 tan2θ + 1 = 2 x \(\Big(\frac{12}{5}\Big)^2+1\) \(\Big(∵tanθ=\frac{12}{5}\Big)\) = \(\frac{288}{25}+1\) = \(\frac{288+25}{25}\) = \(\frac{313}{25}\) |
|
| 42. |
Prove:(1 + cot2 A) sin2 A = 1 |
|
Answer» By using the identity, cosec2 A – cot2 A = 1 ⇒ cosec2 A = cot2 A + 1 Taking, L.H.S = (1 + cot2 A) sin2 A = cosec2 A sin2 A = (cosec A sin A)2 = ((1/sin A) × sin A)2 = (1)2 = 1 = R.H.S Hence Proved |
|
| 43. |
Prove:(1 – cos2 A) cosec2 A = 1 |
|
Answer» Taking the L.H.S, (1 – cos2 A) cosec2 A = (sin2 A) cosec2 A [∵ sin2 A + cos2 A = 1 ⇒1 – sin2 A = cos2 A] = 12 = 1 = R.H.S Hence Proved |
|
| 44. |
Define an identity. |
|
Answer» An equation that is true for all values of the variables involved is said to be an identity. For example: a2 – b2 = (a – b) (a + b) sin2θ + cos2θ = 1 |
|
| 45. |
Prove:sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1 |
|
Answer» From trig. Identities we have, sec2 θ − tan2 θ = 1 On cubing both sides, (sec2θ − tan2θ)3 = 1 sec6 θ − tan6 θ − 3sec2 θ tan2 θ(sec2 θ − tan2 θ)= 1 [Since, (a – b)3 = a3 – b3 – 3ab(a – b)] sec6 θ − tan6 θ − 3sec2 θ tan2 θ = 1 ⇒ sec6 θ = tan6 θ + 3sec2 θ tan2 θ + 1 Hence, L.H.S = R.H.S Hence proved |
|
| 46. |
Prove:(cosec θ + sin θ)(cosec θ – sin θ) = cot2 θ + cos2 θ |
|
Answer» Taking L.H.S = (cosec θ + sin θ)(cosec θ – sin θ) On multiplying we get, = cosec2 θ – sin2 θ = (1 + cot2 θ) – (1 – cos2 θ) [Using cosec2 θ − cot2 θ = 1 and sin2 θ + cos2 θ = 1] = 1 + cot2 θ – 1 + cos2 θ = cot2 θ + cos2 θ = R.H.S Hence Proved |
|
| 47. |
9 sec2A − 9 tan2A is equal to A. 1 B. 9 C. 8 D. 0 |
|
Answer» To find: 9 sec2A – 9 tan2A Consider 9 sec2A – 9 tan2A = 9 (sec2A – tan2A) ∵ 1 + tan2A = sec2A ∴ 9 sec2A – 9 tan2A = 9 (sec2A – tan2A) = 9 (1 + tan2A – tan2A) = 9 |
|
| 48. |
If x = a sec θ cos φ, y = b sec θ sin φ and z = c tan θ, then = \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) A. \(\frac{z^2}{c^2}\) B. \(1-\frac{z^2}{c^2}\) C. \(\frac{z^2}{c^2}-1\) D. \(1+\frac{z^2}{c^2}\) |
|
Answer» Given: x a sec θ cos ϕ Squaring both sides, we get x2 = a2sec2θ cos2ϕ and y = b sec θ sin ϕ Squaring both sides, we get y2 = b2 sec2θ sin2ϕ And z = c tan θ ⇒ z2 = c2tan2θ ⇒ tan2θ = \(\frac{z^2}{c^2}\) ........(i) To find: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) Consider \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) = \(\frac{a^2sec^2θcos^2Φ}{a^2} + \frac{b^2sec^2θsin^2Φ}{b^2}\) = sec2θ cos2ϕ + sec2θ sin2ϕ = sec2θ (cos2ϕ + sin2ϕ) = sec2θ [∵ sin2ϕ + cos2ϕ = 1] = 1 + tan2θ [∵ 1 + tan2θ = sec2θ] = \(1+\frac{z^2}{c^2}\) |
|
| 49. |
Prove the following trigonometric identities:\(\frac{1-sinθ}{1+sinθ}\) (secθ-tanθ)2 |
|
Answer» \(\frac{1-sinθ}{1+sinθ}\) = \(\frac{1-sinθ}{1+sinθ}\times\frac{1-sinθ}{1-sinθ}\) = \(\frac{(1-sinθ)^2}{1-sin^2θ}\) = \(\frac{(1-sinθ)^2}{cos^2θ}\) = \(\Big(\frac{1-sinθ}{cosθ}\Big)^2\) = \(\Big(\frac{1}{cosθ}-\frac{sinθ}{cosθ}\Big)^2\) = (secθ - tanθ)2 Hence Proved. |
|
| 50. |
Prove the following trigonometric identities: sin2A + \(\frac{1}{1+tan^2A}=1\) |
|
Answer» sin2A + \(\frac{1}{1+tan^2A}=sin^2A+\frac{1}{sec^2 A}\) = sin2 A + cos2A = 1 Hence Proved. |
|