Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Prove the following trigonometric identities:sec A(1 - sin A)(sec A + tan A) = 1

Answer»

sec A(1 - sin A)(sec A + tan A)

 \(\Big(sec A - \frac{1}{cos A}\times sinA\Big)(sec A + tan A)\)                       

(sec A - tan A)(sec A + tan A)

(sec2 A + tan2 A)

(tan2 A + 1 - tan2 A)

= 1

Hence Proved.

2.

Prove the following trigonometric identities:\(\frac{1-cosθ}{sinθ}=\frac{sinθ}{1+cosθ}\)

Answer»

\(\frac{1-cosθ}{sinθ}=\frac{1-cosθ}{sinθ}\times\frac{1+cosθ}{1+cosθ}\)

\(\frac{1-cos^2θ}{sinθ(1+cosθ)}\)

\(\frac{sin^2θ}{sinθ(1+cosθ)}\)

\(\frac{sinθ}{1+cosθ}\)

​​​​​​Hence Proved.

3.

If cosθ = \(\frac{4}{5}\) ,find all other trigonometric ratios of angle θ .

Answer»

sinθ  = \(\frac{3}{5}\) ,tanθ = \(\frac{3}{4}\) ,secθ = \(\frac{5}{4}\) ,

cosθ = \(\frac{4}{5}\) ⇒ sinθ = \(\frac{3}{5}\) 

secθ = \(\frac{1}{cosθ}\) = \(\frac{1}{4/5}\) = \(\frac{5}{4}\) 

tanθ = \(\frac{sinθ}{cosθ}\) = \(\frac{3/5}{4/5}\) = \(\frac{3}{4}\) 

Hence Proved.

4.

Express the following  terms of trigonometric ratios of angles 0° to 45°.(i) sin 81° + sin 71°(ii) tan 68° + sec 68°

Answer»

(i) sin 81° + sin 71°

= sin(90° – 9°) + sin(90° – 19°)

= cos 9° + cos 19°

(ii) tan 68° + sec 68°

= tan(90° – 22°) + sec(90° – 22°)

= cot 22° + cosec 22°

5.

If cos θ = \(\frac{4}{5}\), find all other trigonometric ratios of angle θ.

Answer»

We have, 

cos θ = \(\frac{4}{5}\) 

And we know that, 

sin θ = √(1 – cos2 θ)

⇒ sin θ = √(1 – (\(\frac{4}{5}\))2

= √(1 – (\(\frac{16}{25}\))) 

= √[\(\frac{(25 \,–\, 16)}{25}\)

= √(\(\frac{9}{25}\)

= \(\frac{3}{5}\)

∴ sin θ =\(\frac{3}{5}\)

Since, 

cosec θ = \(\frac{1}{sin\, θ }\)

= \(\frac{1}{(3/5)}\)

⇒ cosec θ = \(\frac{5}{3}\) 

And, sec θ = \(\frac{1}{cos θ }\)

= \(\frac{1}{(4/5)}\)

⇒ cosec θ = \(\frac{5}{4}\) 

Now, 

tan θ = \(\frac{sin θ}{cos θ }\)

= \(\frac{(3/5)}{(4/5)}\)

⇒ tan θ = \(\frac{3}{4}\) 

And, cot θ = \(\frac{1}{tan θ}\) 

= \(\frac{1}{(3/4)}\)

⇒ cot θ = \(\frac{4}{3}\)

6.

cos4A − sin4A is equal to A. 2 cos2A + 1 B. 2 cos2A − 1 C. 2 sin2A − 1 D. 2 sin2A + 1

Answer»

To find: cos4A – sin4

Consider cos4A – sin4A = (cos2A)2 – (sin2A)2 

∵ a2 – b2 = (a – b) (a + b)

∴ cos4A – sin4A = (cos2A)2 – (sin2 A)2 

= (cos2A – sin2A) (cos2A + sin2A) 

= (cos2A – sin2A) [∵ cos2A + sin2A = 1] 

= cos2A –(1 – cos2A) [∵ sin2A = 1 – cos2A] 

= cos2A – 1 + cos2A = 2 cos2A – 1

7.

If sinθ + cosθ = x, prove that sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\)

Answer»

sinθ + cosθ = x

Squaring on both sides

(sinθ + cosθ)2 = x2

⇒ sin2θ + cos2θ + 2sinθcosθ = x2

∴ sinθcosθ = \(\frac{x^2-1}{2}\) ...(1)

We know sin2θ + cos2θ = 1

combining both since

(sin2θ + cos2θ)3 = (1)3

sin6θ + cos6θ + 3sinθCos2θ (sin2θ + cos2θ) = 1

⇒ sin6θ + cos6θ = 1- 3sin2θCos2θ

= 1- \(\frac{3(x^2-1)^2}{4}\) from -(1)

sin6θ + cos6θ = \(\frac{4-3(x^2-1)^2}{4}\) 

Hence Proved.

8.

Prove:sin2 A cot2 A + cos2 A tan2 A = 1

Answer»

We know that, 

cot2 A = \(\frac{cos^2 A}{sin^2 A}\) and tan2 A = \(\frac{sin^2 A}{cos^2 A}\)

Substituting the above in L.H.S, we get 

L.H.S = sin2 A cot2 A + cos2 A tan2

= {sin2 A (\(\frac{cos^2 A}{sin^2 A}\))} + {cos2 A (\(\frac{sin^2 A}{cos^2 A}\))} 

= cos2 A + sin2 A = 1 [∵ sin2 θ + cos2 θ = 1] 

= R.H.S 

Hence Proved

9.

Write the value of sinθ cos(90°-θ)+cosθ sin(90°-θ).

Answer»

sinθ cos(90°-θ)+cosθ sin(90°-θ) 

= sinθ x sinθ + cosθ x cosθ

= sin2θ + cos2θ

= 1

10.

In a right ∆ABC , right-angled at B, if tan A = 1 , then verify that 2 sin A·cos A = 1.

Answer»

Consider ΔABC to be a right angled triangle at B.

angle C = 90 degree

Given: tan A = 1 …(1)

tan A = 1 = BC/AB

AB = BC

Again, tan A = sin A/cos A

sin A = cos A …using (1)

By Pythagoras theorem:

AC2 = BC2 + AB2

AC2 = 2BC2

(AC/BC)2 = 2

Or AC/BC = √2

cosec A = √2

or sin A = 1/√2

and cos A = 1/√2

Now,

2 sin A cos A = 2(1/√2)( 1/√2)

= 2(1/2)

= 1

= RHS

11.

Prove the following trigonometric identities:(secA-tanA)2 = \({\frac{1-sinA}{1+sinA}}\)

Answer»

(sec A - tan A)2 = \(\Big(\frac{1}{cosA}-\frac{sinA}{cosA}\Big)^2\)

 = \(\frac{(1-sinA)^2}{cos^2A}\)  

=  \(\frac{(1-sinA)^2}{1-sin^2A}\)  

= \(\frac{(1-sinA)^2}{(1-sinA)(1+sinA)}\)

=  \(\frac{1-sinA}{1+sinA}\)  

Hence Proved.

sec A = 1/cos A

tan A = sin A/ cos A

Thus,

L.H.S=(1/cosA - sin A/cos A)2

=(1-sin A)2/cos2 A

=(1-sin A)(1- sin A)/(1-sinA)                      By a2-b2=(a+b)(a-b) and sin2 A + cosA=1

=(1-sin A)/(1+sin A)=R.H.S(corrected)

Hence, proved

12.

Prove the following trigonometric identities:\(\sqrt{\frac{1+sinA}{1-sinA}}\) = secA + tanA

Answer»

\(\sqrt{\frac{1+sinA}{1-sinA}}\) = \(\sqrt{\frac{1+sinA}{1-sinA}}\times \sqrt{\frac{1+sinA}{1+sinA}}\) 

  =   \(\sqrt{\frac{(1+sinA)^2}{1-sin^2A}}\)  

= \(\sqrt{\frac{(1+sinA)^2}{cos^2A}}\)  

\(\frac{1+sinA}{cosA}\)  

=  \(\frac{1}{cosA}+\frac{sinA}{cosA}\)

= secA + tanA

Hence Proved.

13.

Prove the following trigonometric identities:(1+cotA - cosecA)(1 + tanA + secA) = 2

Answer»

\(\Big(1+\frac{cosθ}{sinθ}-\frac{1}{sinθ}\Big)\) \(\Big(1+\frac{cosθ}{sinθ}+\frac{1}{sinθ}\Big)\) 

\(\Big(\frac{sinθ+cosθ-1}{sinθ}\Big)\) \(\Big(\frac{cosθ+sinθ+1}{cosθ}\Big)\) 

\(\frac{[(sinθ+cosθ)-1][(sinθ+cosθ)+1]}{sinθ.cosθ}\) 

\(\frac{(sinθ+cosθ)^2-(1)^2}{sinθ.cosθ}\) 

\(\frac{sin^2θ+cos^2θ+2sinθcosθ-1}{sinθ.cosθ}\) 

\(\frac{1+2sinθcosθ-1}{sinθ.cosθ}\) 

= \(\frac{2sinθcosθ}{sinθ.cosθ}\) = 2 = R.H.S

Hence Proved.

14.

Prove:tan θ + 1/ tan θ = sec θ cosec θ

Answer»

We have, 

L.H.S = tan θ + \(\frac{1}{tan\, θ}\) 

= \(\frac{(tan^2 θ\, +\, 1)}{tan θ}\)

= \(\frac{sec^2 \,θ }{tan \,θ}\) [∵ sec2 θ − tan2 θ = 1] 

= (\(\frac{1}{cos^2\, θ}\)) x \(\frac{1}{sinθ \over cos θ}​\) [∵ tan θ = \(\frac{sin \,θ }{cos \,θ}\)] 

= \(\frac{cos \,θ}{(sin θ \,\times\, cos^2\, θ)}\)

= \(\frac{1}{cos\, θ}\) x \(\frac{1}{sin\, θ}\)

= sec θ x cosec θ 

= sec θ cosec θ 

= R.H.S 

Hence Proved

15.

Prove:(sec2 θ − 1)(cosec2 θ − 1) = 1

Answer»

Using identities, 

(sec2 θ − tan2 θ) = 1 and (cosec2 θ − cot2 θ) = 1 

We have, 

L.H.S = (sec2 θ – 1)(cosec2θ – 1) 

= tan2θ × cot2θ 

= (tan θ × cot θ)2 

= (tan θ × 1/tan θ)2 

= 12 

= 1 

= R.H.S 

Hence Proved

16.

If (2 sin θ + 3 cos θ) = 2, show that (3 sin θ − 2 cos θ) = ± 3.

Answer»

(2 sin θ + 3 cos θ) = 2 …(1)

(2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2

= 4sin2 θ + 9 cos2 θ + 12sin θ cos θ + 9 sin2 θ + 4 cos2 θ – 12 sin θ cos θ

= 13sin2 θ + 13 cos2 θ

= 13(sin2 θ + cos2 θ)

= 13

(Because (sin2 θ + cos2 θ) = 1)

=> (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13

Using equation (1)

=> (2)2 + (3 sin θ – 2 cos θ)2 = 13

=> (3 sin θ – 2 cos θ)2 = 9

or (3 sin θ – 2 cos θ) = ± 3

Hence Proved.

17.

 Prove the following trigonometric identities:\(\frac{cosθ}{1+sinθ}=\frac{1-sinθ}{cosθ}\)

Answer»

 \(\frac{cosθ}{1+sinθ}=\frac{cosθ}{1+sinθ}\times\frac{1-sinθ}{1-sinθ}\)

\(\frac{cosθ(1-sinθ)}{1-sin^2θ}\)

\(\frac{cosθ(1-sinθ)}{cos^2θ}\)

\(\frac{1-sinθ}{cosθ}\)

Hence Proved.

18.

Prove the following trigonometric identities:\(\frac{1}{secA-1}+\frac{1}{secA+1}\)  = 2cosec A cot A

Answer»

\(\frac{1}{secA-1}+\frac{1}{secA+1}\) = \(\frac{secA+1+secA-1}{sec^2A-1}\)  

=   \(\frac{2secA}{tan^2A}\) 

\(\frac{2}{cosA}\times\frac{cosA}{sin^2A}\)  

= 2cosec A cot A

Hence Proved.

19.

If cot A = 4/3 and (A + B) = 90, what is the value of tan B?

Answer»

We have

Cot A = 4/3

cot ( 90-B) = 4/3 (A+B = 90)

tan B = 4/3

20.

If cos B = 3/5 and (A +B) = 90, find the value of sin A.

Answer»

We have

cos B = 3/5

cos (90- A) = 3/5

sin A = 3/5

21.

Write the value of sinθ cos(90-θ) + cosθ sin(90-θ)

Answer»

sinθ cos(90-θ) + cosθ sin(90-θ)

= sinθsinθ + cosθcosθ

= sin2θ + cos2θ

= 1

22.

What is the value of (1 – cos2θ) cosec2θ?

Answer»

To find: (1 – cos2θ) cosec2θ

∵ cosecθ = \(\frac{1}{sinθ}\)

∴ cosec2θ = \(\frac{1}{sin^2θ}\) 

⇒ (1 – cos2θ) cosec2θ = (1 – cos2θ)\(\frac{1}{sin^2θ}\) ....(1)

∵ sin2 θ + cos2 θ = 1 

∴ sin2 θ = 1 – cos2 θ 

⇒ from (i), we have

⇒ (1 – cos2θ) cosec2θ = sin2 θ \(\frac{1}{sin^2θ}\) = 1

23.

If x = a cos θ and y = b sin θ, then b2x2 + a2y2 = A. a2b2 B. ab C. a4b4 D. a2 + b2

Answer»

Given: x = a sin θ and y = b cos θ 

⇒ x2 = a2 sin2θ and y2 = b2 cos2θ ………(i) 

To find: b2x2 + a2y2 

Consider b2x2 + a2y2 = b2 a2 sin2θ + a2 b2 cos2θ 

= a2b2 (sin2θ + cos2θ) 

= a2b2 (1) [∵ sin2θ + cos2θ = 1] 

= a2b2

24.

Write the value of (1-sin2 θ)sec2 θ.

Answer»

(1 – sin2θ) sec2 θ 

= (cos2 θ) × 1/cos2 θ

= 1

25.

What is the value of (1 + cot2θ) sin2θ?

Answer»

To find: (1 + cot2θ) sin2θ 

∵ 1 + cot2 θ = cosec2 θ 

∴ (1 + cot2θ) sin2θ = cosec2θ sin2θ

Also, cosecθ = \(\frac{1}{sinθ}\) 

⇒ cosec2θ = \(\frac{1}{sin^2θ}\)

(1 + cot2θ) sin2θ = cosec2θ sin2θ = \(\frac{1}{sin^2θ}sin^2θ\) = 1

26.

If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2 ?

Answer»

Given: x = asin θ and y = bcos θ 

⇒ x2 = a2 sin2 θ and y2 = b2 cos2θ ………(i) 

To find: b2x2 + a2y2 

Consider b2x2 + a2y2 = b2a2 sin2θ +a2b2cos2θ 

= a2 b2 (sin2θ + cos2θ) 

= a2 b2 (1) [∵ sin2 θ + cos2θ = 1] 

= a2 b2

27.

Write the value of sin A cos (90° − A) + cos A sin (90° − A).

Answer»

To find: sin A cos (90° − A) + cos A sin (90° − A) 

∵ cos (90° – A) = sin A and sin (90° – A) = cos A ……………(i) 

∴ sin A cos (90° − A) + cos A sin (90° − A) 

= sin A sin A + cos A cos A [Using (i)] 

= sin2A + cos2

Now, 

∵ sin2 θ + cos2 θ = 1 

∴ sin A cos (90° − A) + cos A sin (90° − A) 

= sin2A + cos2A = 1

28.

Write the value of (1-cos2θ)cosec2θ.

Answer»

(1-cos2θ)cosec2θ

= sin2θ x 1/sin2θ

= 1

29.

Prove: (1 – cos2θ) cosec2θ = 1

Answer»

(1 – cos2θ) cosec2θ = 1

L.H.S. = (1 – cos2θ) cosec2θ

= (sin2θ) × cosec2θ

(Using identity sin2θ + cos2 θ = 1)

= 1/ cosec2θ × cosec2θ

= 1

= R.H.S.

Hence Proved.

30.

Write the value of cot2θ - \(\frac{1}{sin^2θ}\)

Answer»

To find: cot2θ - \(\frac{1}{sin^2θ}\) 

∵ cosecθ  = \(\frac{1}{sinθ}\)

cosec2θ  = \(\frac{1}{sin^2θ}\)

cot2θ - \(\frac{1}{sin^2θ}\) = cot2θ - cosec2θ 

Also, we know that 1 + cot2 θ = cosec2θ

⇒ cot2θ – cosec2θ = – 1

cot2θ - \(\frac{1}{sin^2θ}\) = cot2θ – cosec2θ = – 1

31.

Prove: (1 + cot2θ) sin2θ = 1

Answer»

(1 + cot2θ) sin2θ = 1

L.H.S. = (1 + cot2θ) × sin2 θ

= (cosec2 θ) × sin2 θ

(Using identity 1 + cot2 θ = cosec2 θ)

= 1/ sin2θ × sin2 θ

= 1

= R.H.S.

Hence Proved.

32.

Prove: (sec2θ − 1) (cosec2θ − 1) = 1

Answer»

(sec2θ − 1) (cosec2θ − 1) = 1

L.H.S. = (sec2 θ – 1)(cosec2 θ – 1)

= (tan2θ) × cot2θ

(using identity 1 + cot2 θ = cosec2 θ and 1 + tan2 θ = sec2 θ)

= tan2θ x 1/tan2θ

= 1

= R.H.S.

Hence Proved.

33.

Prove: (sec2θ − 1) cot2θ = 1

Answer»

(sec2θ − 1) cot2θ = 1

L.H.S. = (sec2 θ – 1) × cot2 θ

= (tan2θ) x cot2θ

(using identity 1 + tan2 θ = sec2 θ)

= 1/cot2θ x cot2θ

= 1

= R.H.S.

Hence Proved.

34.

Prove: (1 + cos θ) (1 − cos θ) (1 + cot2θ) = 1

Answer»

(1 + cos θ) (1 − cos θ) (1 + cot2θ) = 1

LHS: (1 + cos θ) (1 − cos θ) (1 + cot2θ)

= (1 – cos2 θ) × cosec2 θ

(Using sin2 θ + cos2 θ = 1)

= (sin2 θ) × cosec2 θ

= sin2 θ x 1/sin2 θ

= 1

= R.H.S.

Hence Proved

35.

Write the value of cos1 cos 2 ........cos180. 

Answer»

Cos 1 cos 2 … cos 180

= cos 1 cos 2 … cos 90… cos 180

= cos 1 cos 2 … 0 … cos 180

= 0 

36.

cosec (- θ) is equal to:(A) sin θ(B) tan θ(C) cos θ(D) -cosec θ

Answer»

Answer is (D) -cosec θ

37.

Prove:cosec θ √(1 – cos2 θ) = 1

Answer»

Using identity, 

sin2 θ + cos2 θ = 1  ⇒ sin2 θ = 1 – cos2 θ 

Taking L.H.S, 

L.H.S = cosec θ √(1 – cos2 θ) 

= cosec θ √( sin2 θ) 

= cosec θ x sin θ 

= 1 

= R.H.S 

Hence Proved

38.

If x = cos3θ, y = bsin3θ,prove that\(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}=1\)

Answer»

x = acos3θ ⇒ \(\frac{x}{a}\) = cos3θ 

y = bsin3θ ⇒ \(\frac{y}{b}\) = sin3θ

Now, \(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}\) = (cos3θ)2/3 + (sin3θ)2/3

= cos2θ +sin2θ 

= 1

\(\Big(\frac{x}{a}\Big)^{2/3}+\Big(\frac{y}{b}\Big)^{2/3}\) = 1

39.

Prove the following trigonometric identities:cosecθ\( \sqrt{1-cos^2θ}=1\)

Answer»

 cosecθ\( \sqrt{1-cos^2θ} \) =  \(\frac{1}{sinθ}\sqrt{sin^2θ}\)

\(\frac{1}{sinθ}\times sinθ\)

= 1

Hence Proved.

40.

Prove the following trigonometric identities:(sec2θ -1)(cosec2θ-1)=1

Answer»

(sec2θ -1((cosec2θ-1)=tan2θ x cot2θ

= 1

Hence Proved.

41.

If tanθ = \(\frac{12}{5}\) , find the value of \(\frac{1+sinθ}{1-sinθ}\)

Answer»

\(\frac{1+sinθ}{1-sinθ}\) = \(\frac{1+sinθ}{1-sinθ}\times \frac{1+sinθ}{1+sinθ}\) 

\(\frac{(1+sinθ)^2}{1-sin^2θ}\) 

\(\frac{(1+sinθ)^2}{cos^2θ}\) 

= sec2θ + tan2θ

=  tan2θ + 1 +  tan2θ

= 2 tan2θ + 1

= 2 x \(\Big(\frac{12}{5}\Big)^2+1\)   \(\Big(∵tanθ=\frac{12}{5}\Big)\)

\(\frac{288}{25}+1\)

\(\frac{288+25}{25}\) = \(\frac{313}{25}\)

42.

Prove:(1 + cot2 A) sin2 A = 1

Answer»

By using the identity, 

cosec2 A – cot2 A = 1 

⇒ cosec2 A = cot2 A + 1 

Taking, L.H.S = (1 + cot2 A) sin2

= cosec2 A sin2 A

= (cosec A sin A)2 

= ((1/sin A) × sin A)2 

= (1)2 

= 1 

= R.H.S 

Hence Proved

43.

Prove:(1 – cos2 A) cosec2 A = 1

Answer»

Taking the L.H.S, 

(1 – cos2 A) cosec2

= (sin2 A) cosec2 A [∵ sin2 A + cos2 A = 1 ⇒1 – sin2 A = cos2 A] 

= 12 

= 1 

= R.H.S 

Hence Proved

44.

Define an identity.

Answer»

An equation that is true for all values of the variables involved is said to be an identity. 

For example: 

a2 – b2 = (a – b) (a + b) 

sin2θ + cos2θ = 1

45.

Prove:sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1

Answer»

From trig. Identities we have, 

sec2 θ − tan2 θ = 1 

On cubing both sides, 

(sec2θ − tan2θ)3 = 1

sec6 θ − tan6 θ − 3sec2 θ tan2 θ(sec2 θ − tan2 θ)= 1 

[Since, (a – b)3 = a3 – b3 – 3ab(a – b)] 

sec6 θ − tan6 θ − 3sec2 θ tan2 θ = 1 

⇒ sec6 θ = tan6 θ + 3sec2 θ tan2 θ + 1 

Hence, L.H.S = R.H.S 

Hence proved

46.

Prove:(cosec θ + sin θ)(cosec θ – sin θ) = cot2 θ + cos2 θ

Answer»

Taking L.H.S 

= (cosec θ + sin θ)(cosec θ – sin θ) 

On multiplying we get, 

= cosec2 θ – sin2 θ 

= (1 + cot2 θ) – (1 – cos2 θ) [Using cosec2 θ − cot2 θ = 1 and sin2 θ + cos2 θ = 1] 

= 1 + cot2 θ – 1 + cos2 θ 

= cot2 θ + cos2 θ 

= R.H.S 

Hence Proved

47.

9 sec2A − 9 tan2A is equal to A. 1 B. 9 C. 8 D. 0

Answer»

To find: 9 sec2A – 9 tan2

Consider 9 sec2A – 9 tan2A = 9 (sec2A – tan2A) 

∵ 1 + tan2A = sec2

∴ 9 sec2A – 9 tan2A = 9 (sec2A – tan2A) 

= 9 (1 + tan2A – tan2A) = 9

48.

If x = a sec θ cos φ, y = b sec θ sin φ and z = c tan θ, then  = \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) A. \(\frac{z^2}{c^2}\) B. \(1-\frac{z^2}{c^2}\) C. \(\frac{z^2}{c^2}-1\) D. \(1+\frac{z^2}{c^2}\)

Answer»

Given: x a sec θ cos ϕ 

Squaring both sides, we get 

x2 = a2sec2θ cos2ϕ 

and y = b sec θ sin ϕ

Squaring both sides, we get 

y2 = b2 sec2θ sin2ϕ 

And z = c tan θ 

⇒ z2 = c2tan2θ

⇒ tan2θ = \(\frac{z^2}{c^2}\)  ........(i)

To find: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) 

Consider \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\)  = \(\frac{a^2sec^2θcos^2Φ}{a^2} + \frac{b^2sec^2θsin^2Φ}{b^2}\)

= sec2θ cos2ϕ + sec2θ sin2ϕ 

= sec2θ (cos2ϕ + sin2ϕ) 

= sec2θ [∵ sin2ϕ + cos2ϕ = 1] 

= 1 + tan2θ [∵ 1 + tan2θ = sec2θ]

\(1+\frac{z^2}{c^2}\) 

49.

Prove the following trigonometric identities:\(\frac{1-sinθ}{1+sinθ}\) (secθ-tanθ)2

Answer»

\(\frac{1-sinθ}{1+sinθ}\) = \(\frac{1-sinθ}{1+sinθ}\times\frac{1-sinθ}{1-sinθ}\)

=   \(\frac{(1-sinθ)^2}{1-sin^2θ}\)  

=    \(\frac{(1-sinθ)^2}{cos^2θ}\)​​

= ​​​​​ \(\Big(\frac{1-sinθ}{cosθ}\Big)^2\)  

= \(\Big(\frac{1}{cosθ}-\frac{sinθ}{cosθ}\Big)^2\)

= (secθ - tanθ)2

Hence Proved.

50.

Prove the following trigonometric identities: sin2A + \(\frac{1}{1+tan^2A}=1\)

Answer»

  sin2A + \(\frac{1}{1+tan^2A}=sin^2A+\frac{1}{sec^2 A}\)

= sin2 A + cos2A

= 1

Hence Proved.